Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in...

25
Droplet breakup in turbulence Prasad Perlekar Prof. F. Toschi, Prof. L. Biferale, Dr. M. Sbragaglia

Transcript of Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in...

Page 1: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Droplet breakup in turbulence Prasad Perlekar Prof. F. Toschi, Prof. L. Biferale, Dr. M. Sbragaglia

Page 2: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Applications: Industry •  Two phase flow chemical reactors, gas-liquid separators, liquid atomization,

spray systems, aeration process etc.

Science Droplet dispersion occur in many physical phenomena

Physics of elasticity Energy transfer from fluid to elastic modes

Motivation

Page 3: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Gopalan and Katz. Turbulent Shearing of Crude Oil Mixed with Dispersants Generates Long Microthreads and Microdroplets. PRL, 104, 054501 (2010)

Some recent work-Experiments

Page 4: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Qian et al., Simulation of bubble breakup dynamics in homogeneous turbulence. Chem. Engg. Commun. 193, 1038 (2006)

Some recent work- Simulations 1/2

Page 5: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Some recent work- Simulations 2/2

J.J. Dersksen and H.E.A. Van Den Akker, Chem. Engg. Res. (2006)

Page 6: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

J.O. Hinze, A.I.Ch.E, (1955)

Phenomenology (Hinze)

Maximum droplet diameter that does not undergo breakup Inertial force Surface tension force Weber number:

R

ud

We =ρu2

dR

σ

Page 7: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

d > dmax: Droplet breaks; d < dmax: Droplet does not break

We =ρu2

dR

σ

K41 : u2 ∼ d2/32/3

dmax = 0.75 ρ

σ

−3/5−2/5

Phenomenology (Hinze)

Page 8: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Boltzmann equation

D3Q19 model

f ≡ f(x, v, t)

∂tf + (v ·∇)f = Ω− (F ·∇)f

fα(x+ eα, t+ 1) = fα(x, t)−fα(x, t)− f (eq)

α (x, t)

τ

Lattice Boltzmann method (LBM)

D3Q19 model:

Multicomponent using Shan-Chen force

Page 9: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

LBM: Turbulence

•  Forcing: Large scale forcing in first two Fourier modes

fx =

k≤√2

f0[sin(kyy + φ2k) + sin(kzz + φ3

k)]

fy =

k≤√2

f0[sin(kxx+ φ1k) + sin(kzz + φ3

k)]

fz =

k≤√2

f0[sin(kxx+ φ1k) + sin(kyy + φ2

k)]

φik Random phases generated from Uhlenbeck-Ornstein process

N = 5123

ν = 5× 10−3

λ ≈ 13.89lu

η ≈ 6lu

σ ≈ 0.028

Reλ ≈ 29.13

Page 10: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

LBM: Energy and enstrophy

N = 128

Rλ ≈ 18.8

E =1

2

ρu2

Ω =

ω2

Page 11: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

LBM: Energy and acceleration

Acceleration of a fluid parcel N = 128

Reλ ≈ 18.8a =

Du

Dt; a ≈ −∇p ≈ −c2s∇ρ

SC: acceleration for single component flow

Page 12: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

•  JUGENE (FZJ-JSC IBM Blue Gene/P)

•  23.5RM (about 15Mhours)

•  32-64 kprocs

•  I/O HDF5

•  Fully parallel code

Simulations

Page 13: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Droplet breakup in turbulence

Page 14: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

0 2 4 6 8

5

10

15

t/ eddy

No.

of d

rops

Towards a stationary state!

Page 15: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

G (LU)

D (Hinze)

D (LBE)

We

RUN0 29.1 512 0.5/0.5 0.005 N/A 6 - - -

RUN1 29.1 512 2.038/0.362

0.005 0.03 6 24.2 24+/-1 0.075 0.3%

RUN2 29.1 512 1.757/0.088

0.005 0.08 6 39.5 36+/-1 0.033 0.3%

Simulations 5123

ρh/ρlReλ N ν η φ

Page 16: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Simulations 1283

G (LU)

D (Hinze)

D (LBE)

We

RUN0 18.8 128 0.5/0.5 0.005 N/A 3 - - -

RUN1-4 18.8 128 2.038/0.362

0.005 0.03 3 8.65 11,13,15,18

0.12 0.07,0.5,5,10%

Increasing vol. fraction

ρh/ρlReλ N ν η φ

φ = 0.07% φ = 0.5% φ = 5% φ = 10%

Page 17: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Droplet radius and volume distribution

N = 128, Reλ ≈ 18.8

Page 18: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Sauter diameter

d32 =

dmax

dmind3p(d)

dmax

dmind2p(d)

Sauter dimension: Estimate to characterize the droplet diameter

Expt : 1.6− 2.2

Expt.: Pacek et al. Chem. Engg. Res. (1998)

N = 128, Reλ ≈ 18.8

Page 19: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Droplet PDF: Re dependence

d32 (LBM) 18.8 14.5 3.5e-8 29.1 24 2.85e-9

Reλ ε

Page 20: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Droplet trajectory

Although trajectory is smooth the acceleration is very noisy

Page 21: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Filetering

Filter the trajectory in frequency space Kc : Filtering frequency

Page 22: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

PDF of acceleration

Page 23: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Presence of droplets leads to a modification of the energy transfer.

Energy spectrum

sc

mc

sd

mc-sc

N=512, Re=29.1 sc: Single component mc: Multicomponent sd: Static droplet

Page 24: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Energy spectrum: volume fraction

5% vol. fraction

Single component

Diff.

Larger volume fraction => More surface => larger modification of the energy spectrum

N=128, Re=18.8

Page 25: Droplet breakup in turbulence - Lorentz Center - LBM.pdf · Conclusions • Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

Conclusions

•  Droplet breakup in turbulence using LBM can be used to study stationary droplet dispersion in turbulence.

•  Dependence of PDF of droplet dispersion on the volume fraction and Reynolds number dispersion studied.

•  Energy spectrum shows that the droplet deformations lead to transfer of energy between different modes.

•  More statistics needed for acceleration studies