DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

133
CERN 84-08 Experimental Physics Division 13 July 1984 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION (WITH AN INTRODUCTION TO THE USE OF COMPUTING PROGRAMS) Anna Peisert and Fabio Sauli GENEVA 1984

Transcript of DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

Page 1: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

CERN 84-08 Experimental Physics Division 13 July 1984

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

(WITH AN INTRODUCTION TO THE USE OF COMPUTING PROGRAMS)

Anna Peisert

and

Fabio Sauli

GENEVA 1984

Page 2: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

/

© Copyright CERN, Genève, 1984

Propriété littéraire et scientifique réservée pour tous les pays du monde. Ce document ne peut être reproduit ou traduit en tout ou en partie sans l'autorisation écrite du Directeur général du CERN, titulaire du droit d'auteur. Dans les cas appropriés, et s'il s'agit d'utiliser le document à des fins non commerciales, cette autorisation sera volontiers accordée. Le CERN ne revendique pas la propriété des inventions brevetables et dessins ou modèles susceptibles de dépôt qui pourraient être décrits dans le présent document; ceux-ci peuvent être librement utilisés par les instituts de recherche, les industriels et autres intéressés. Cependant, le CERN se réserve le droit de s'opposer à toute revendication qu'un usager pourrait faire de la propriété scientifique ou industrielle de toute invention et tout dessin ou modèle décrits dans le présent document

Literary and scientific copyrights reserved in all countries of the world. This report, or any part of it, may not be reprinted or translated without written permission of the copyright holder, the Director-General of CERN. However, permission will be freely granted for appropriate non­commercial use. If any patentable invention or registrable design is described in the report, CERN makes no claim to property rights in it but offers it for the free use of research institutions, manufacturers and others. CERN, however, may oppose any attempt by a user to claim any proprietary or patent rights in such inventions or designs as may be des­cribed in the present document

CERN—Service d'Information scientifique-RD/638-2500-Juillet 1984

Page 3: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

ERRATUM TO CERN 84-08

DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION WITH AN INTRODUCTION TO THE USE OF COMPUTING PROGRAMS

Please note that, in Fig. 35, the right-hand vertical scale (CTT) should be multiplied by 2 (the maximum value will thus read 1000/im).

Also, in the text, the longitudinal and transverse diffusion coefficients are defined as D L and D T . However, in Figs. 2, 3, 6, 29, 160, 162, 166, and 173, they have been labelled as D , (longitudinal) and D L (lateral, or transverse).

August 1984

Page 4: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

ERRATUM TO CERN 84-08

DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION WITH AN INTRODUCTION TO THE USE OF COMPUTING PROGRAMS

Please note that, in Fig. 35. the right-hand vertical scale (aT) should be multiplied by 2 (the maximum value will thus read lOOO/zm).

Also, in the text, the longitudinal and transverse diffusion coefficients are defined as D L and D T . However, in Figs. 2. 3. 6. 29. 160. 162. 166. and 173, they have been labelled as D, (longitudinal) and D L (lateral, or transverse).

August 1984

Page 5: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

ABSTRACT This report is organized in two sections. The first contains an elementary introduction to the

theory of electron transport in gases under the action of electric and magnetic fields, and gives indications on the use of two programs to compute drift and diffusion properties of electrons in gas mixtures. The second section contains an extensive collection of experimental and computed data on electron drift velocity and diffusion, as a function of electric field; an index allows one to find the data referring to any given gas mixture.

m

Page 6: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

CONTENTS

INTRODUCTION

ELEMENTARY THEORY OF ELECTRON DRIFT AND DIFFUSION

THE TRANSPORT THEORY

EXPERIMENTAL DETERMINATION OF DRIFT VELOCITY AND DIFFUSION COEFFICIENT

FACTORS AFFECTING THE DRIFT OF ELECTRONS

COMPILATION OF DRIFT VELOCITIES AND DIFFUSIONS

SOURCES USED IN THE COMPUTATIONS

ÏFERENCES

DEX

GURES

Page 7: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

1. INTRODUCTION The knowledge of the drift and diffusion properties of electrons and ions in gases is primordial for the

understanding of the operational characteristics of proportional gaseous detectors and for any attempt to improve their performances. A very large amount of data on drift properties of electrons and ions exist in the literature; indeed this has been one of the major research fields in the first half of the century. For a modern review of theories and a collection of data see for example Loeb (1961), Brown (1966), Massey and Burhop (1969), Christophorou (1971), McDaniel and Mason (1973), Huxley and Crompton (1974); a compilation similar in conception to the present one has been edited recently by Fehlmann and Viertel (1983).

In recent years, and for the needs of the research on detectors, drift properties have been studied in a large variety of gas mixtures used for various reasons in proportional counters. The emphasis has been, depending on experimental needs, on finding a gas mixture with low or high drift velocity, small diffusion coefficients, high proportional or semiproportional gains, and so on. The resulting data are scattered in a myriad of articles, conference proceedings, and limited circulation notes, which makes it very difficult for the user to find the gas mixture best suited to his particular needs. The frequent use of gaseous detectors in strong magnetic fields, with the modification of drift properties that results, has complicated the issue even more.

We have tried, in the present report, to collect existing data on drift velocities and diffusion of electrons both for pure gases and for mixtures, indicating the relevant properties and the reasons for preferring a given gas in a given detector in order to facilitate the experimenter's choice. It should be understood, however, that many of the recent, detector-oriented measurements may not reproduce the rigorous experimental conditions of the earlier studies. Although the purity of the component gases is generally not a concern, the construction of most modern gas detectors, dictated by feasibility and economical reasons, is not such as to guarantee the absence of unknown impurities. Even the relative concentration of the various components is sometimes poorly estimated, a fact demonstrated by discrepancies in the results obtained by different experimenters.

2. ELEMENTARY THEORY OF ELECTRON DRIFT AND DIFFUSION The classical kinetic theory of gases can be used to estimate drift properties of electrons and provides instructive,

although very approximate, relationships. In the absence of external forces, electrons in a gas at temperature T move around with a Maxwellian energy distribution with a most probable value kT (0.04 eV at room temperature). Under the action of an electric field E they acquire a net motion in the direction of the field with drift velocity w:

< $ > - f " m eE /I \ eE m

where v and £ are, respectively, the velocity and the mean free path of the electron, and r the average collision time. Since the mean free path £ is inversely proportional to the gas pressure P, and the electron energy (and therefore v) is a function of the reduced field E/P, the drift velocity is also a function of E/P as is apparent from expression (1).

The diffusion along any given direction x is described by a Gaussian distribution with a standard deviation:

where D is a field-dependent diffusion coefficient. In the ideal case, where electrons do not modify their energy at increasing values of E, the mean collision time r is

constant, the drift velocity increases linearly with the field, and the following relationship holds:

eE I = kT . (3)

By substitution in Eq. (2) one gets, in this case,

«. • vW • « eE

an expression often referred to as the thermal limit to electron diffusion. Because of the very different behaviour of the molecular cross-section at increasing electron energies, in some

gases the average energy remains thermal up to rather large fields, as for example in carbon dioxide (said to be a 'cool' gas); in argon, on the other hand, even at small values of E (a few V/cm*atm), the electron energy is considerably increased. As a consequence, drift velocity and diffusion properties can be very different in various gases at given values of field and pressure, and the addition of even very small quantities of one gas to another can substantially alter the electron drift behaviour; Fig. 32 is an example of such a behaviour.

Early theories of electron transport attempted to describe the process by introducing a phenomenological field-dependent quantity representing the average energy increase, thus rewriting expression (3) as

1

Page 8: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

eE g = nkT = e k , (5)

where e k , which denotes characteristic energy, is a gas-dependent function of the reduced field E / P that can be directly measured. The diffusion width can then be written:

CT

X ~ V~ër _ ViE7p V F • (6)

where the last expression shows explicitly the inverse square root dependence of ax on pressure at a given value of E /P . Notice that it has so far been assumed that the diffusion is uniform in all directions; this is not the case, especially at high fields, so that one has to use two distinct diffusion coefficients D L and D T , longitudinal and transverse with respect to the electron drift direction.

This classical approach is, however, rather unsatisfactory when applied to gas mixtures, since it requires the introduction of ad hoc phenomenological quantities. Only the advent of a rigorous t ranspor t theory, to be sketched in the next section, has allowed the accurate reproduction of the experimental da ta from the knowlege of the basic electron-molecule cross-sections for the component gases.

The presence of an external magnetic field modifies both the energy distribution (therefore the drift properties) and the average direction of drift of electrons.

Using again the elementary gas kinetic theory, and for the particular case of a magnetic field H perpendicular to E, it can be shown that the electron swarm drifts with velocity w H along a line forming an angle a H with the electric field according to the expressions:

_ w eH ,m\ w = , to = — (7)

H A + tO*T*

and

t a n OJJ = W T H , (8)

where r H is a phenomenological mean collision time, in general a function of both E and H . Since a magnetic field having the direction of E does not affect the average electron's motion (although it does affect the diffusion properties), the general case can be treated by vectorial decomposition.

In the absence of detailed measurements , one can approximate the average collision time r H by its value at H = 0, as deduced from expression (1) if the drift velocity is known, and obtain not too bad an estimate of magnetic drift velocity and angle from expressions (7) and (8). A n example of application is shown in Fig. 120 for a mixture of argon, isobutane, and methylal. The phenomenological E dependence of r, deduced from a drift velocity measurement (Fig. 120a) has been used to compute w H and a H at two values of electric field; the computed value (full curves in Fig. 120b) reproduce rather well the experimental points, at least for moderate fields. Figures 3 8 , 9 8 , and 121 provide the phenomenological dependence of r for other mixtures.

F rom the expressions one can also deduce that, in general, given the values of E and H , gases with small drift velocity have smaller variations of w and small deflections; for example, at 1 kV/cm • a tm and 5 kG, Becker et al. (1983a) have measured in a C O 2 - C 4 H I 0 mixture a magnetic deflection of 2.2° (Fig. 203), as compared with the 18° measured for argon-isobutane-methylal (Fig. 119). A decrease of x at high electric fields (a saturated drift velocity) similarly implies a reduction of magnetic effects.

In the case of parallel electric and magnetic fields it can be shown that the drift velocity remains unchanged and equal to the H = 0 value; the transverse diffusion instead can be considerably smaller at large fields, according to the expression:

V H ) _ i m

D T 1 + W*T£ * W

The reduction is noticeable if cozH > 1, as is the case, for example, in a rgon-methane mixtures (owing to the Ramsauer dip in the argon cross-section).

3. THE TRANSPORT THEORY A rigorous statistical theory, based on the solution of transport and energy conservation equations for free

electrons under the influence of external fields, has been developed by Morse , Allis and L a m a r (1935), Margenau (1946), Fros t and Phelps (1962), and many others. Starting with the knowledge of the appropriate elastic and inelastic cross-sections for the component gases, it allows the accurate computat ion of the drift properties with excellent

2

Page 9: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

agreement with the experimental results. Recently, in the course of development of multiwire gaseous detectors, the transport theory has been reviewed by Palladino and Sadoulet (1974, 1975), Schultz (1976), Schultz and Gresser (1978), Mathieson and El Hakeem (1979), and Ramanatsizehena (1979). These papers contain a modern formulation of the mathematics involved, and specific calculations of drift properties for several gas mixtures, both without and in the presence of strong magnetic fields. Computer programs have been written by the above authors that allow, in principle, the calculation of the drift and diffusion properties in any gas mixture, provided that the pertinent electron cross-sections are tabulated.

The most general of these programs, due to Palladino and Sadoulet, uses a numerical solution of the transport equations and has a wide domain of applicability, up to electron energies reaching inelastic excitation and ionization levels.

A more restrictive program, due to Schultz and Gresser, implements instead an analytical solution of the equations and is therefore more transparent to the user; because, however, of various approximations necessary to obtain the solution, it can only be used for a domain of electron energies well below the electronic excitation levels. As the electron energy distribution is a result of the calculation itself, one has to watch not to exceed the domain of validity of the assumptions. Both programs have recently been revised and commented at CERN by L. Ropelewski, and are available on request from one of the present authors (A. Peisert); gases for which cross-sections are already tabulated are listed in Section 7, and examples of results of the calculation are scattered throughout this work (see, for example, Figs. 16-23,45,48,88,89,116,117,139-150).

Notice that in the formulation sketched here and implemented in both programs it is implicitly assumed that the space distribution of the drifting electrons is spherically symmetric; a single diffusion coefficient is therefore provided. It has been shown both theoretically and experimentally, however, that in many gases the longitudinal diffusion coefficient D L (in the direction of the field) can be considerably smaller than the transverse D T [Parker and Lowke (1969), Lowke and Parker (1969)]. The difference has important implications when computing the limits of the localization accuracy that can be reached in a detector; unfortunately, a theoretical estimate of the effect is mathematically difficult and data are rather scanty for gas mixtures (see, for example, Figs. 18,30,73). In all cases the diffusion coefficient D provided by the following theory coincides with the transverse diffusion D T .

The starting point of the transport theory is to introduce an electron density distribution function in the six-dimensional space of positions and velocities, and to write the appropriate differential relationship describing density and energy conservation. In the stationary case and for the particular case of a magnetic field perpendicular to the electric field, one can reduce the functional dependence to only three variables, the electron energy (or velocity) and the two polar angles 6 and <j> between the instant electron velocity and the electric field. Expanding then in a series of Legendre polynomials and keeping only the first terms the distribution function is written as :

F(e,e,<|)) = FQ(e) + cos 9 Fj(e) + s i n e cos <f> F 2 (e) + s i n e sin <f> F 3 (e) . (10)

Using various constraints, the conservation laws are then reduced to the following system of two differential equations i n F ^ a n d F ^ e ) :

eE 3 ^ x ) Z m J L ^ O V [ ^ ^ m \ T 3e M 3 e ^ A e I ^ _ , «^(e+e^ o ^ V " V m ^

h

/ W 2eEF + r i +

e 2 H , t e , T ' - 0 eE — ^ F + 1 + —= l-T.— = 0 ,

2e mv o ^ 2me J I '

h ( i l ) 2 U 2 o 2

where the sum in brackets in the first equation describes the effect of inelastic cross-sections appearing at the energy e h

with electron mean free path (b; (K is the elastic collision mean free path. Both are functions of e and are obtained from the corresponding cross-sections from the expression:

lmm> N = N » 750 ¥ ' N ° = 2 - 6 8 x 1 Q 2 5 m " 3 • < 1 2 )

Solution of the system of differential equations allows F0(e) and F/e) to be obtained; the transport theory then provides the following expressions for drift velocity and diffusion coefficient:

- the drift velocity in the direction of the electric field E :

2 e E f E*j3(F0/v)/3e] w » = " I "m" J 1 + (e 2 H 2 Jl 2 /2me) d e ' < 1 3 )

3

Page 10: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

the drift velocity in the direction perpendicular to E and H:

e H 2 f ^vf_3(F 0 /v)/9 e ] Jg 3m J 1 + (e2HH|/2me) de (14)

(notice that for H = 0, W|| = w and w x = 0);

the symmetric (or transverse) diffusion coefficient:

°H ~ 3 J 1 + Ce4HU*/2me) d e ( 1 5 )

(again, for H = 0, D H = D, the symmetric diffusion coefficient).

The resulting drift velocity in the direction of motion and the drift angle with respect to the electric field direction are then given by

W H = JK + WI

tg «H - £ . (16) M

The system of differential equations (11) can be solved analytically using some approximations for the quantities involved, or else directly computed numerically using standard algorithms. This second method is used in the program of Palladino and Sadoulet and is, in principle, applicable for any complexity of the cross-sections involved (including inelastic) as far as they are properly tabulated and taken into account.

We will reproduce here some of the analytic solutions used in the program of Schultz and Gresser, indicating the limits of validity of the approximations. Taking into account only elastic (momentum transfer) cross-sections, i.e. for electron energies well below any electronic excitation or ionization level, a solution of Eqs. (11) can be written as

F 0 (e) = cVe exp - J ( e E Î , ) 2 + 3 A ( e ) [ l + ( e

z HUV2me)] • kT d e ' ^ 1 7 ^

where A(e) is the average energy lost in an electron-molecule collision at the energy e (see below). The approximation is valid, for example, in argon up to electron energies of several electronvolts, since the first inelastic excitation level is above 10 eV. In this case the energy loss A is simply given by 2m/M.

The molecular gases used as quenchers—C0 2, CH 4 , and so on—have, however, inelastic rotational and vibrational excitation levels at energies between 0.1 and 1 eV that cannot be neglected. Again limiting the validity of the solution to energies up to a few electronvolts, one can write the following expression for A(e):

. , , 2m . y Tx e _ 2m . y "h "h

h n h e (18)

where cre(e) and ah(e) are the elastic (momentum transfer) and inelastic cross-sections, and e h the excitation energy of state h; the sum is extended to all excited states.

The approximate analytic solution has been applied with satisfactory results to several gas mixtures, and provides values very close to those obtained with the numerical solution as long as the average electron energy (computed by the program itself) remains well below the lower electronic excitation levels (2.5 eV in C0 2 ) . For even moderately quenched gases, in which the electron energy remains low, this corresponds to a practical limitation on the applied field of a few kV/cm • atm. As indicated, the numerical solution is instead, in principle, capable of reproducing the experimental results up to the ionization region.

For gas mixtures, one can use the same expressions, substituting for cross-sections and energy losses the following composite values:

a

e ( £ ) - E PiC Ti( £) «** A ( £ ) - Tl^T E P i a i ( E ) A i ( E ) ' ° 9 )

4

Page 11: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

where pj is the fraction of gas i in the mixture, and ofe) and Ai(e) are, respectively, its elastic cross-section and energy loss estimated through expression (18).

4. EXPERIMENTAL DETERMINATION OF DRIFT VELOCITY AND DIFFUSION COEFFICIENT Different methods have been used to determine experimentally the drift and diffusion properties of electrons; they

are extensively described in the textbooks quoted in the Introduction, and in particular by Loeb (1961). We will here only recall some of them.

The magnetic deflection method, devised by Townsend and used by many authors with various improvements, consists in measuring the lateral deflection and transverse profile of a continuous swarm of electrons emitted by a localized discharge, in the presence of a small magnetic field perpendicular to the direction of motion. Suitably shaped collecting electrodes allow the measurement of the current ratio as a function of electric and magnetic field, and therefore of the magnetic deflection angle and the transverse width of the swarm. The drift velocity for H = 0 is then computed using expressions (7) and (8), and the diffusion coefficient through expressions (5) and (6). This approach is only valid under the assumption that the energy distribution of electrons is not modified by the (small) magnetic field.

A second method, introduced by Bradbury and Nielsen (1936) and developed by many others, relies on an electrical shutter grid. In a multi-electrode gas cell, a continuous stream of electrons is extracted from the cathode by ultraviolet photons. Under the action of the electric field, the swarm drifts towards a first shutter grid where an applied pulse restores transparency for a short time. A second pulse, suitably delayed, and applied on a second grid, allows the bucket of electrons to reach the collection electrode; the value of the delay provides the drift velocity.

Both drift velocity and (longitudinal) diffusion coefficient can be determined with the time-of-flight method devised by Hurst et al. (1963). A flash of light extracts, at a known instant, single electrons from a metal surface in a parallel-plate ionization chamber. After drifting, electrons are detected by a Geiger counter, and their time distribution is recorded. A modified time-of-flight method has been used recently by Piuz (1983) and by Farilla, Ropelewski and Sauli (1984) to determine drift velocity and longitudinal diffusion in various gas mixtures.

Most of the recent measurements of drift velocity have been realized using a drift chamber and a collimated charged particle beam, of which both the position and the timing can be accurately known with external scintillation counters [see, for example, Breskin et al. (1974)]. Because of the large ionization yield of the tracks (around a hundred electrons per centimetre at normal gas conditions) the average of the recorded time distribution provides a very good estimate of the drift velocity; its width (the localization accuracy), however, is not a good measurement of diffusion because of the large (and varying) number of electrons. The drift properties in strong magnetic fields can be determined with a similar device; in a drift cell, a magnetic field perpendicular to the plane of drift deflects the drifting swarm by a given angle a. Only for a particular position in the detection volume are charges allowed into the detecting part through a narrow slit, and the drift-time provides the magnetic velocity.

Drift velocity and diffusion coefficient are obtained in all large systems of multiwire drift chambers or time projection chambers as the direct outcome of tracking analysis; they refer, in general, however, to specific values of electric and magnetic fields, and have not been used for the present compilation.

5. FACTORS AFFECTING THE DRIFT OF ELECTRONS We have, so far, discussed the dependence of drift properties on the external fields (electric and magnetic) and on

the nature of the gas. Other factors may, however, affect the drift of electrons; in particular, the presence of polluting impurities, especially if electronegative, and variations of the gas pressure and temperature.

The effect of impurities on drift velocity for pure gases was already mentioned, and illustrated for example in Fig. 32. For heavily quenched mixtures, the effect is much reduced although precise measurements seem not to exist. However, Fig. 122 shows as an example the variation of drift velocity computed for two mixtures with a constant fraction of argon and addition of a few per cent of methylal, a product used to reduce polymerization effects of isobutane [Schultz and Gresser (1978)].

The drift velocity in mixtures depends, of course, on the relative concentration of components. This dependence is, however, minimal in some mixtures and in the region of electric field where the velocity is saturated and the curves for various mixtures are tangential; examples are given in Figs. 115-117. In argon-isobutane at 1 kV/cm, Breskin et al. (1975) measured a relative drift velocity change of about 1.2 X 10 - 3 for 1% variation in the isobutane concentration. Inspection of similar measurements in other mixtures shows that a similar behaviour appears in many gases.

The presence of electronegative pollutants (such as oxygen and water) has as a direct consequence a loss of electrons by capture, but can also affect the drift velocity. As attachment is often accompanied by a non-negligible detachment probability, it is suspected that even unnoticeable quantities of pollutant may affect sensibly the drift velocity since the process has the net effect of slowing down the electron motion.

As discussed in the previous sections, drift velocity is E/P dependent, and pressure variations at constant field have an obvious effect on w. Again, in mixtures having a pronounced velocity saturation the pressure dependence is minimal, a fact exploited in high-accuracy drift chambers operated at atmospheric pressure.

5

Page 12: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

The gas temperature has two distinct effects on drifting electrons. In the region of field where the electrons are still thermal (for 'cool' gases such as carbon dioxide, up to rather high fields) the average electron energy is proportional to the absolute temperature T, and it can be shown [see, for example, Schultz and Gresser (1978)] that Aw/w = AT/T, or 3.4 X 10 - 3 per °K at room temperature. For non-thermal gases the dependence invervenes mainly through the density variation, and depends on the detailed E/P dependence; it can even be negative, as shown in Figs. 123 and 124. Figures 58 and 59 show the measured relative variation of w for two argon-methane mixtures.

6. COMPILATION OF DRIFT VELOCITIES AND DIFFUSIONS We have restricted our compilation to computed or directly measured drift velocities and single-electron diffusion

widths, excluding indirect data such as space-time relationships and localization accuracies measured for ionizing radiation using drift chambers, since most of these measurements are instrument-dependent and cannot easily be related to the basic drift properties. Figures are collected in groups having a main constituent (in the order H2, N2, the noble gases, other gases); in each group the various mixtures are arranged in an approximate order of increasing molecular weight and complexity.

Drift velocities are generally given in cm/s or cm/fis as a function of electric field in V/cm at normal conditions (20 °C, 1 atm) or of reduced field E/P in V/cm • Torr; sometimes the reduced field is given in terms of E/N, N being the number of molecules per unit volume [see expression (12)]. To deduce the drift velocity in different conditions one should remember that w = w(E/P).

The standard deviation of the linear single electron diffusion is generally given at normal conditions and for 1 cm of drift. To deduce the space diffusion in different conditions one should use the scaling law of expression (6), i.e. multiply by the square root of the ratio between distance of drift in centimetres and pressure in atmospheres. In some curves either the diffusion coefficient D or its ratio to the mobility fi is given; to compute the equivalent space diffusion one should use expression (2) and recall that fi = w/E. Experimental data are given both for the transverse diffusion aT

and for the longitudinal diffusion aL; curves computed with the programs only refer to the (symmetric) transverse diffusion.

For their practical use in single-wire or multiwire gas detectors some mixtures are more suitable than others, depending on the experimental needs. Often several requirements have to be simultaneously satisfied and this explains the continuing search for new gas mixtures. Below are given a few examples of gas mixtures classified according to their main property:

High specific mass: Mixtures with high concentrations of Xe. Used to increase specific energy losses of charged particles and photon detection efficiencies (Figs. 63,135-158).

Low specific mass: Mixtures of H2 and He with a small addition of quenchers. Used to minimize multiple scattering of detected tracks, or to reduce the specific ionization of charged particles when detecting neutral radiation as ultraviolet photons releasing single photoelectrons (Figs. 7-12,77).

High drift velocity: Pure CH4, CF4, or their mixtures with other gases. Used for high-rate detectors (Figs. 52-74, 125,128,174-180).

Low drift velocities: All gases have low drift velocity at small values of the electric field. However, some gases, such as C0 2 , dimethylether, and He-C2H6, have low and sometimes saturated drift velocity also at high fields (Figs. 10,11,193-196,200,204).

Small diffusion: All gases in which electrons remain thermal at high values of the electric field. Hydrocarbons, C0 2 , dimethylether, NH3, mixtures of noble gases with large fractions of these quenchers [Figs. 31, 49, 50, 75, 87, 100-105,163,196,200,204).

Small magnetic deflection angles: COz, CO2-isoC4H,0 (Fig. 203). Electron capture: Most gases listed in the present compilation do not have an appreciable electron attachment

coefficient. This is not the case for 0 2 , H 20, CF3Br and other fréons where electron capture is considerable. Extended tables of attachment coefficients can be found, for example, in Christophorou (1971).

Avalanche multiplication properties: This subject is outside the scope of the present work; we will only mention that various gas mixtures have rather different behaviour in this respect. Pure noble gases allow proportional amplification up to gains of 103-104; mixed with C0 2 , hydrocarbons, or other quenchers they allow proportional gains above 105 and semi-proportional (saturated) gains in excess of 10* to be reached. Small fractions of some quenchers (methylal, ethyl bromide) in noble gases induce Geiger operation, while using large concentrations of hydrocarbons one can reach the very high gains of the limited streamer mode.

7. SOURCES USED IN THE COMPUTATIONS Gases for which, at the present date, cross-sections are tabulated in the programs, and the sources of the data are

the following: Helium: Elastic cross-sections from Huxley and Crompton (1974); excitation from Bowman and Miller (1965),

Lassettre et al. ( 1968), Christophorou (1971).

6

Page 13: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

Neon: Elastic cross-sections from Huxley and Crompton (1974); excitation cross-sections from Bowman and Miller (1965), Lassettre et al. (1968), Christophorou (1971).

Argon: Elastic and excitation cross-sections, approximation by Palladino and Sadoulet (1974) from data of Engelhardt and Phelps (1964).

Xenon: Approximation of Ramanantsizehena (1979) from Pack et al. (1962). Methane: Elastic and inelastic cross-sections approximated by Palladino and Sadoulet (1974) from Bruche

(1930). Ethane: Elastic cross-section approximated by Ramanantsizehena (1979) from experimental points by Bowman

and Gordon (1967) and Bruche (1930); excitation cross-section from Bowman and Miller (1965) and Lassettre et al. (1968).

Isobutane: Elastic and excitation cross-sections approximated by Palladino and Sadoulet from Briiche (1930). Carbon dioxide: Elastic, rotational and vibrational cross-sections approximated by Schultz and Gresser (1978)

from Hake and Phelps (1967). Excitation cross-sections from Watanabe (1957). Nitrogen: Elastic and excitation cross-sections from Huxley and Crompton (1974).

7

Page 14: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

REFERENCES

Alichanian, A.I., V.l. Baskakov, V.K. Chernjatin, B.A. Dolgoshein, V.M. Fedorov, I.L. Gavrilenko, S.P. Konovalov, O.M. Kozodaeva, V.N. Lebedenko, S.N. Majburov, S.V. Muravjev, V.P. Pustovetov, A.S. Romanjuk, A.P. Shmeleva and P.S. Vasiljev, Nucl. Instrum. Methods 158,137 (1979).

Baranko, G., J.P. Guillaud, H. Ogren, D. Rust, S. Ems, S. Gray, B. Martin and P. Smith, Nucl. Instrum. Methods 169, 413(1980).

Barrelet, E., T. Ekelof, B. Lund-Jensen, J. Séguinot, J. Tocqueville, M. Urban and T. Ypsilantis, Nucl. Instrum. Methods 200,219 (1982).

a) Becker, U., M. Capell, D. Osborne and C.H. Ye, Nucl. Instrum. Methods 205,137 (1983).

b) Becker, U., M. Capell, M. Chen, M. White, C.H. Ye, K. Yee, J. Fehlmann and P.G. Seiler, Nucl. Instrum. Methods 214,525(1983).

Binder, U., W. de Boer, G. Grindhammer, R. Kotthaus, H. Lierl and B. Sack, Max-Planck-Institut preprint MPI-PAE/Exp.E 1.115(1983).

Bobkov, S., V. Cherniatin, B. Dolgoshein, G. Evgrafov, A. Kalinovsky, V. Kantserov, P. Nevsky, V. Sosnovtsev, A. Sumarokov and A. Zelenov, preprint CERN-EP/83-81 (1983).

Bowman, CR., and W.D. Miller, J. Chem. Phys. 42,681 (1965).

Bowman, CR., andD.E. Gordon, J. Chem. Phys. 46,1878(1967).

Bradbury, N.E., and R.A. Nielsen, Phys. Rev. 49,388 (1936).

Breskin, A., Nucl. Instrum. Methods 119,7 (1974).

Breskin, A., G. Charpak, B. Gabioud, F. Sauli, N. Trautner, W. Duinker and G. Schultz, Nucl. Instrum. Methods 119,9(1974).

Breskin, A., G. Charpak, F. Sauli, M. Atkinson and G. Schultz, Nucl. Instrum. Methods 124,189 (1975).

Brown, S.C., Basic data of plasma physics (MIT Press, Cambridge, Mass., 1966), 2 n d edn.

Brüche, E., Ann. Phys. 4,387 (1930).

Charpak, G., and F. Sauli, preprint CERN-EP/83-128, presented at the 2 n d Pisa Meeting on Advanced Detectors, Castiglione, 1983.

Chernyatin, V.K., B.A. Dolgoshein, I.A. Golutvin, V.S. Kaftanov, A.N. Kalinowskii, V.D. Khovansky, V.P. Sarantsev, V.G. Shevchenko, V.V. Sosnovcev, V.A. Sviridov and A.V. Vishnevskii, Proc. 2 n d ICFA Workshop, Les Diablerets, 1979 (CERN, Geneva, 1980), p. 320.

Christophorou, L.G., Atomic and molecular radiation physics (Wiley, New York, 1971).

Christophorou, L.G., and A.A. Christodoulides, J. Phys. B 2,71 (1969).

Christophorou, L.G., D.L. McCorcle, D.V. Maxey and J.G. Carter, Nucl. Instrum. Methods 163,141 (1979).

Clark., A.R., O. Dahl, P. Eberhard, D. Fancher, L. Galtieri, M. Garnjost, R.W. Kenney, S.C. Loken, L.T. Kerth, R. Madaras, D.R. Nygren, P. Oddone, M. Pripstein, P. Robrish, M. Ronan, G. Shapiro, M.L. Stevenson, M. Strovink, W. Wenzel, M. Urban, C D . Buchanan, J.M. Hauptman, W.E. Slater, D.H. Stork, H.K. Ticho, J.N. Marx, P. Nemethy, M.E. Zeller, W. Gorn, A. Kernan, J. Layter, B. Shen, B.A. Barnett, C.-Y. Chien, L. Madansky, J.A.J. Matthews and A. Pevsner, Proposal for a PEP facility based on the time projection chamber, Stanford, 1976.

Page 15: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

Daum, H., C.W. Fabjan, S.H. Pordes, M. Franklin, P. Dam and A.F. Rothenberg, Nucl. Instrum. Methods 152, 541 (1978).

Doke,T.,Port.Phys. 12,9(1981).

Dolgoshein, B.A., private communication, 1984.

Drumm, H., B. Granz, J. Heintze, G. Heinzelmann, R.D. Heuer, J. van Krogh, P. Lennert, T. Nozaki, H. Rieseberg, A. Wagner, R. Eichler, J. Olsson, P. Steffen, M.C. Goddard, G.F. Pearce and P. Warming, DESY 80/38 (1980).

Engelhardt, A.G., and A.V. Phelps, Phys. Rev. 133, A375 (1964).

English, W.N., and G.C. Hanna, Can. J. Phys. 31,768 (1953).

Ezban, R., and M. Morganti, Internal Report CERN NP/OM.666 (1974).

Farilla, A., L. Ropelewski and F. Sauli, Search for a low drift velocity, low diffusion gas, 1984, unpublished.

Fehlmann, J., and G. Viertel, Compilation of data for drift chamber operation (ETH, Zurich, 1983).

Fehlmann, J., P. Hawelka, D. Linnhoefer, J. Paradiso and G. Viertel, ETH Zurich Int. Report (1983).

Fletcher, T. in Electron and ion swarms (ed. L.G. Christophorou) (Pergamon, New York, 1981), p. 1.

Franzen, V., and L.W. Cochran, Pulse ionization chambers and proportional counters, in Nuclear Instruments and their Uses (ed. A. Shell) (Wiley, New York, 1956).

Frost, L.S., and A.V. Phelps, Phys. Rev. 127,1621 (1962).

Hake, R.D., and A.V. Phelps, Phys. Rev. 158,70 (1967).

Hurst, G.S., L.B. O'Kelly, E.B. Wagner and J. A. Stockdale, J. Chem. Phys. 39,1341 (1963).

Hurst, G.S., and J.E. Parks, J. Chem. Phys. 45,282 (1966).

Huxley, L.G., and R.W. Crompton, The diffusion and drift of electrons in gases (Wiley, New York, 1974).

Jaros, J.A., Stanford preprint SLAC-PUB-2647 (1980).

Jean-Marie, B., V. Lepeltier and D. L'Hôte, Nucl. Instrum. Methods 159,213 (1979).

Kopp, M.K., K.H. Valentine, L.G. Christophorou and J.G. Carter, Nucl. Instrum. Methods 201,395 (1982).

Krasnov, W.A., A.B. Kurepin, V.I. Rasin, A.I. Reshetin and A.A. Rudenko, Akademia Nauk SSSR, P-0038, Moscow (1976).

Lassettre, E.N., A. Skerbele and M.A. Dillon, J. Chem. Phys. 49,2382 (1968).

Lehraus, I., R. Matthewson and W. Tejessy, Nucl. Instrum. Methods 200,199 (1982).

Lehraus, I., R. Matthewson and W. Tejessy, IEEE Trans. Nucl. Sci. NS-30,50 (1983).

L'Hôte, D., Thesis, Université de Paris-Sud, 1978.

Loeb, L.B., Basic processes of gaseous electronics (Univ. California Press, Berkeley, 1961).

Lowke, J.J., and J.H. Parker, Phys. Rev. 181,302 (1969).

Ma, CM. et al, MIT Technical Reports 129 and 130 (1982).

9

Page 16: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

McDaniel, E.W., and E.A. Mason, The mobility and diffusion of ions in gases (Wiley, New York, 1973).

Margenau, H., Phys. Rev. 69,508 (1946).

Massey, H.S.W., and E.H.S. Burhop, Electronic and ionic impact phenomena (Clarendon Press, Oxford, 1969), Vols. I and II.

Mathieson, E., and N. El Hakeem, Nucl. Instrum. Methods 159,489 (1979).

Morse, P., W. Allis and E. Lamar, Phys. Rev. 48,412 (1935).

Pack, J.L., R.E. Voshall and A.V. Phelps, Phys. Rev. 127,2084 (1962).

Palladino, V., and B. Sadoulet, Berkeley report LBL-3013 ( 1974).

Palladino, V., and B. Sadoulet, Nucl. Instrum. Methods 128,323 (1975).

Parker, J.H., and J.J. Lowke, Phys. Rev. 181,290(1969).

Peisert, A., and F. Sauli, Computed by the authors using the program described here ( 1984).

Piuz, F., Nucl. Instrum. Methods 205,425 (1983).

Ramanantsizehena, P., Thesis, Université de Strasbourg, CRN-HE 79-13 (1979).

Rubbia, C, Internal Report CERN-EP/77-8 (1977).

Saudinos,J.,J.-C.Duchazeaubeneix,C.LaspallesandR.Chaminade,Nucl.Instrum.Methods 111,77(1973).

Sauli, F., Basic processes in time-projection-like detectors, in The time projection chamber (éd. J.A. MacDonald) (Amer. Inst. Phys., New York, 1984), p. 171.

Schultz, G., Thesis, Université de Strasbourg (1976).

Schultz, G., and J. Gresser, Nucl. Instrum. Methods 151,413 (1978).

Teich, T.H., in Electron and ion swarms (ed. L.G. Christophorou) (Pergamon, New York, 1981), p. 241.

Uman, M.A., and G. Warfield, Phys. Rev. 120,1542 (1960).

Villa, F., Nucl. Instrum. Methods 217,273 (1983).

Walenta, A.H., IEEE Trans. Nucl. Sci. NS-26,73 (1979).

Walenta, A.H., J. Fehlmann, H. Hofer, J. Paradiso and G. Viertel, University of Siegen preprint, SI-82-07 (1982).

Watanabe, K., J. Chem. Phys. 26,547 (1957).

10

Page 17: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

INDEX TO THE FIGURES

The figures are collected in groups corresponding to a main constitutent (H 2, D 2 , the noble gases, other gases) with various mixtures in an approximate order of increasing complexity. As each mixture only appears once in the index, the reader is invited to search for the various combinations of the constituents.

Constituents) Fig.No(s).

H,

He He-Xe-C0 2

He-C0 2 -N 2

He-CH^TMAE*' He-C 2 H 6

He-isoC 4H 1 0-TMAE* )

He-CF 4

Ne Ne-Ar-C 2 H 6

Ne-Ar-CH 4

Ne-Ar-C 2 H 4

Ne-Ar-CjHg Ne-C0 2

Ne-CH 4

Ne-CH 4-{OCH3) 2CH 2

Ne-C 2 H 2

Ne-C 2 H 4

Ne-C 2 H 6

N e - C 2 H 6 - C 0 2

Ne-C 2 H 6 -N 2

Ne-CjHg Ne-isoC 4H 1 0

Ne-CF 4

Ar Ar-N 2

Ar-Xe Ar-Xe-CH 4

Ar-C0 2

Ar-C0 2 -CH 4

Ar-C0 2 -CH 4 -(CH30) 2 CH 2

Ar-C0 2 -C 2 H 6 - (CH 3 ) 2 0 A r - C 0 2 - C 2 H t

Ar-C0 2 -C 3 H g

Ar-C0 2 -(OCH 3 ) 2 CH 2

1,2,7 3,4

5,6,7,8,9,12 12 9 77 10,11 77 12,126

7,13 24,26 24 26 26 16,24 14,15,24,25 132 24,25 25 17,18,24 19,20,21 22,23 24 24,26 126

27,28,29,30,31,55,88,123,125,129,155 55,130,131 67 67 32,33,34,35,36,37,38,41,42,43,44,45,46,47,49,50,61,62,63, 203,204 63,204 101 103 100 51 40,42,43,44,48

•) TMAE:tetrakis(dimethylamine)ethylene [(CHj)2N],C = C[N(CHj),]2

11

Page 18: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

Ar-CH 4 52,53,54,55,56,57,58,59,60,61,62,63,69,70,71,74,79,125,127,128 Ar-CH 4 - isoC 4 H 1 0 72,73 Ar-CH 4 -(OCH 3 ) 2 CH 2 64,71,74,76,132 Ar-CH4-TMAE*> 77 Ar-C 2 H 2 63,79,127 Ar -C 2 H 2 -CF 4 128 Ar-C 2 H 4 55,66, 78,82,84 Ar-C 2 H 4 - isoC 4 H, 0 81 Ar-C 2 H 6 65,66,68,69,70,80,83,85,86,87,88,89,90,91,92,93,94,95,96,97,

98,99,106,107 Ar -C 2 H 6 -N 2 106,108,109,110 Ar-C 2 H 6 - (CH 3 ) 2 0 105 Ar-C 2 H 6 -(C 2 H 5 ) 0 O 102 Ar-C 2 H 6 -(C 2 H 5 )OH 107 Ar-C 2 H 6 -(OCH 3 ) 2 CH 2 104 Ar-C 3 H g 63,80,111,112,115 Ar -C 3 H 8 0 47 Ar-C 3 H g - isoC 4 H 1 0 113 Ar-isoC 4H 1 0 47,114,116,117,121,122 Ar-isoC 4Hi 0-(OCH 3) 2CH 2 66,75,118,119,120,122,124,203 Ar -C0 2 - (CH 3 ) 2 0 39,40 A r - H 2 0 129 Ar-CF 4 125,126,127 Ar-TEA» 201

Kr 133,134,136 K r - C 0 2 134 Kr-CH 4 63,134 Kx—CH^C 2"6 63 Kr-C 2 H 6 63 Kr-C 3 H 8 63 Kr-CF 4 126

Xe Xe- • N ,

X e - C 0 2

Xe-CH 4

Xe-CH 4 -N 2

X e - C H 4 - C 0 2

Xe-C 2 H 6

Xe-C 3 H g

Xe-isoC 4 H 1 0 -(OCH 3 ) 2 CH 2

N 2

N 2 0 NH 3

0 2

H 2 0 CO co 2

CO 2 -isoC 4 H 1 0

C 0 2 - N 2

CH 4

CD 4

C H 4 - C 0 2

CH 4 -isoC 4 H 1 0

CH 4 -C 2 H 6

CH 4 -TEA +

135,136,138,139,140,142,155,156,158 156,157,158 137,138,139,140 63,141,142 143,144 143,144 63,145,146,147,148,149,150,151,152,153,154,155 63 119

7,8,9,159,160,167 168,171 74,75,168,172 161 168,169,170,186 162 31,74,75,123,163,164,165,166,167,168,174,204 193,194,195,196,203 167 31,52,57,60,61,62,71,123,173,174,176,177,178,179,180,185,192 192 174,201 185,199,201 201 201

*) TMAE:tetrakis(dimethylamine)ethylene [(CH3)2N]2C = C[N(CH3)2]2

12

Page 19: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

CH^TMAE* 201 C 2 H 2 192 C 2 D 2 192 C 2 H 4 84,173,175,180,181,182,185,192,197,198 C 2 H 4 - H 2 0 197,198 C2H4—CjHg 185 C 2 H 4 -C0 2 (OCH 3 ) 2 74,75 C 2 H 6 85,88,97,155,178,179,179,180,181,183,184,185,192 ^ 2 ^ 6 ~ ^ 3 8 185 C 2 H 6 -isoC 4 H, 0 185 C^g-TMAE* 201 C 3 H 8 115,175,179,181,185,192 C 3 H g - isoC 4 H 1 0 185 iso-C 4 H 1 0 31,88,117,123,185,192 C 5 H 1 2 192 (OCH 3) 2CH 2) 31,71,123,190,191 (CH 3 ) 2 0 186 C 2 H 4 0 2 186 C 3 H 6 0 186 C 3H 7CHO 186 C 5 H 8 0 186 C 2H 5CHO 186 C 4H gO 186 C 5 H 8 0 2 186 CC1F3 187 CH3C1 187 C2H5C1 187 C 4H 9Br 187 C4H9C1 187 CH 2C1 2 187 C3H7C1 187 CHC1F2 187 (CH 3) 3N 188 (C 2H 5) 2NH 188 (CH 3) 2NH 188 C 2 H 5 NH 2 188 C 3 H 7 NH 2 188 (CH 2NHj) 2 188 CH 3OH 189 C 2HjOH 189 C 3H 7OH 189 C 4H 9OH 189 CH 3CN 189 C 2H 5CN 189 C 3H 7CN 189 C 2H 3CN 189 CF 4 12,125 AsH 3 192 AsD 3 192 SiH4 192 SiD4 192 DME X ) 200,204 SF f i 202

*) TMAE:tetrakis(dimethylamine)ethylene [(CH3)2N]2C = C[N(CH 3) 2] 2

X) DME:Dimethylether (CH 3 ) 2 0

13

Page 20: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

id»

aoooi

_4_4-_ b : : : _ J I~ •J::: — : : V - X : : - -- l — i i ==-•=f - : : :^

'—1—'— 1—1 \ T

1 1 1

j . i /

^T"=£=

: H 2

i \A±h\\ !—[_+__

l " ::Q t 1 —

1-jv ! i i X ! '

* * ' • 1

• i , r " t T ' "

é — — EE 1 ! 1 •

EÉE.1;

1—L-+-4 - - + — i h - — rrW 1—r-HH v~\?i &*': U444-i-f|"

h i i r .i

! i i i -, -i !•»' : i

HEEEEJ [M w i i

-h :} . . J . — • 7 f T l ^ - = = % y

/ / i j h . •~30< ' :

—v 1P= -..- ... ;h Pack, Voshall.and Phelps (1962); • 1300"), • (77.4"K).

Crompton and Sutton (1952); + (288°K) . Parks and Hurst ( 1 9 6 5 ) ; ^ ( 2 9 8 ° K ) . Lowke (1963); A (293° K), A (77.4° K).

-2- i 1 -..- ...

;h Pack, Voshall.and Phelps (1962); • 1300"), • (77.4"K). Crompton and Sutton (1952); + (288°K) . Parks and Hurst ( 1 9 6 5 ) ; ^ ( 2 9 8 ° K ) . Lowke (1963); A (293° K), A (77.4° K). y À

4 - . I . IZ ]

Pack, Voshall.and Phelps (1962); • 1300"), • (77.4"K). Crompton and Sutton (1952); + (288°K) . Parks and Hurst ( 1 9 6 5 ) ; ^ ( 2 9 8 ° K ) . Lowke (1963); A (293° K), A (77.4° K). ' it'

Pack, Voshall.and Phelps (1962); • 1300"), • (77.4"K). Crompton and Sutton (1952); + (288°K) . Parks and Hurst ( 1 9 6 5 ) ; ^ ( 2 9 8 ° K ) . Lowke (1963); A (293° K), A (77.4° K).

1 1 Frommhold (1960); • (293°K) . Emeléus. Lunt.and Meek (1936); O .

Fig. 1 Christophorou(1971)

0.1

0.01

0.001

. yU .

H 2 H 2

||| 1 5 L ( i ^ "7

- - 1 — '1 ! I

:: SP m -J-I 1- > v y • ^

i 293»H

l E ? 5 1 J i ^ ^

.4 <-ir * - l E ? 5 1

1

i i t ' l l - 4 * K

;

i

ii 1 ! 1

- ¥ - i — * —

«r* FF+ _ i_ ru t

: Crompton, Elford, and Mcintosh (1968); • (293 U K) 0 (77 .4°K) .

Crompton and Elford ( 1 9 6 3 ) ; ^ ( 2 9 3 ° K ) . Crompton, Rees, and Jory (1965); A (293°K) . Crompton and Sutton (1952); A (293°K) . Warren and Parker (1962 a, b); D (77.4°K) .

\ : Crompton, Elford, and Mcintosh (1968); • (293 U K)

0 (77 .4°K) . Crompton and Elford ( 1 9 6 3 ) ; ^ ( 2 9 3 ° K ) . Crompton, Rees, and Jory (1965); A (293°K) . Crompton and Sutton (1952); A (293°K) . Warren and Parker (1962 a, b); D (77.4°K) .

'

: Crompton, Elford, and Mcintosh (1968); • (293 U K) 0 (77 .4°K) .

Crompton and Elford ( 1 9 6 3 ) ; ^ ( 2 9 3 ° K ) . Crompton, Rees, and Jory (1965); A (293°K) . Crompton and Sutton (1952); A (293°K) . Warren and Parker (1962 a, b); D (77.4°K) .

!

: Crompton, Elford, and Mcintosh (1968); • (293 U K) 0 (77 .4°K) .

Crompton and Elford ( 1 9 6 3 ) ; ^ ( 2 9 3 ° K ) . Crompton, Rees, and Jory (1965); A (293°K) . Crompton and Sutton (1952); A (293°K) . Warren and Parker (1962 a, b); D (77.4°K) .

: Crompton, Elford, and Mcintosh (1968); • (293 U K) 0 (77 .4°K) .

Crompton and Elford ( 1 9 6 3 ) ; ^ ( 2 9 3 ° K ) . Crompton, Rees, and Jory (1965); A (293°K) . Crompton and Sutton (1952); A (293°K) . Warren and Parker (1962 a, b); D (77.4°K) .

: Crompton, Elford, and Mcintosh (1968); • (293 U K) 0 (77 .4°K) .

Crompton and Elford ( 1 9 6 3 ) ; ^ ( 2 9 3 ° K ) . Crompton, Rees, and Jory (1965); A (293°K) . Crompton and Sutton (1952); A (293°K) . Warren and Parker (1962 a, b); D (77.4°K) .

i

D< Townser

: Wager, C Parks an

ia a )avi: d H

na bane , and H jrst (19

y n a z i ) • urst (1967 65); O (29

• Ut ; • 8°K

(21

I. K).

38° K .

0.001 0.01 0.1 10

E / P 3 0 0 (volts cm"1 torr"')

Fig.2 Christophorou(1971)

14

Page 21: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

0.1

0.01

0.001

,JI ' M

D 2 ^ > D L

I 293»K

77.4*|i

D, : Mcintosh (1966); A (293°K)

Warren and Parker (1962 a, b); • (77.4°K) Crompton, Elford, and Mcintosh (1968); < ^ 77.4°K).

aooi aoi 0.1 10

E/PJOO (voitt em"' torr"')

Fig.3 Christophorou(1971)

-i--^- - ———

I X i

2 X'' iffr

i* ?

..r 1 &l Wf J < P — KÎ " J*

i

S ^ 4 ' } ^ - . 2 - • / r s « «

/ J f .,1 t eo i . A /orvnOu"

^ / • (77°K).

/ / Mc

Cr : Intosh omptor

(1966); l , Elford,

&(2 and

93°K) Mclnt osh (1968 );< • (77° K).

E / p j c o , , o l , , ""Hw"'l

Fig.4 Christophorou(1971)

Page 22: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

I I * *

=H* H • II !

/

-V S - - i « " —

lnK«n A_

1 J 1 4

77«K-~_ 11 , 8 " K . ' > r f '

i - a 300* iT

Pack , Voshan.ana rneips uyoz/; • iauu w K.j, 0 ( 1 9 5 ° K ) , 0 ( 7 7 ° K ) .

Bowe (1957); A. Townsendand Bailey (1923); • ( 2 8 8 ° K ) . Crompton, Elford, and Jory (1967) ; ,6 (293°K) .

aaan an oi tAjOO (mm cm"' Mrr'1)

Fig.5 Christophorou(1971)

10

£ 0.1

0.01

D L : a h » - r t f"WY|0|fl. * ( 7 7 . 4 ° K ) .

Crompton and Jory (1965); A (293°K) (see also Crompton, Eifordand Jory (1967) ). Townsend and Bailey (1923 ) ;£ (288°K).

D< : Wagner, Davis and Hurst (1967); • (298°K).

* ( 7 7 . 4 ° K ) . Crompton and Jory (1965); A (293°K) (see also Crompton, Eifordand Jory (1967) ). Townsend and Bailey (1923 ) ;£ (288°K).

D< : Wagner, Davis and Hurst (1967); • (298°K).

. . . . He * ( 7 7 . 4 ° K ) . Crompton and Jory (1965); A (293°K) (see also Crompton, Eifordand Jory (1967) ). Townsend and Bailey (1923 ) ;£ (288°K).

D< : Wagner, Davis and Hurst (1967); • (298°K).

^t * ( 7 7 . 4 ° K ) .

Crompton and Jory (1965); A (293°K) (see also Crompton, Eifordand Jory (1967) ). Townsend and Bailey (1923 ) ;£ (288°K).

D< : Wagner, Davis and Hurst (1967); • (298°K).

* ( 7 7 . 4 ° K ) . Crompton and Jory (1965); A (293°K) (see also Crompton, Eifordand Jory (1967) ). Townsend and Bailey (1923 ) ;£ (288°K).

D< : Wagner, Davis and Hurst (1967); • (298°K). °i-y

* ( 7 7 . 4 ° K ) . Crompton and Jory (1965); A (293°K) (see also Crompton, Eifordand Jory (1967) ). Townsend and Bailey (1923 ) ;£ (288°K).

D< : Wagner, Davis and Hurst (1967); • (298°K).

^U-^U-L . ,

l '

/ / j

- •

z_ - •

/°#« »98*K) - •

/ / y

-, •« t >

300«K r^J •» »o - A * -77.4*K t

i 0XX31 0.01 0.1 1

E / P 3 0 0 (volts cm"' torr - 1 )

10

Fig.6 Christophorou(1971)

16

Page 23: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

100 200 300 E / N (Td)

i00 500 Fig. 7 Fletscher(1981)

100 200 300 E/N (Td)

400 Fig. 8 Fleischer (1981)

200 300 E / N (Td)

400 500 Fig.9 Fletscher(1981)

17

Page 24: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

4 -

3 -

E

1 2

E (kV/cm)

Fig. 10 Peisert and Sauli ( 1984)

" 500 - 500

- 400

- 300 g

1 2

E (kV/cm)

Fig. 11 Peisert and Sauli ( 1984)

E a.

Page 25: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

0.5 1.0 E / P 2 9 8 (V-ctn"'. lorr"')

1.5 2.0 2.5 3.0 3.5 1 1 1 1 r—

CURVE %CF 4 in He o 0 • 2.5 » 5 * 10 • 20 a 30 • 50 « 100

i i i r

. _ • — « — • — •

. - - • '

y y ,«- . - - •

^ • H e - X e - C 0 2

P T 0 T » U - 5 0 0 , ° " T = 2 9 8 K

l i i I I i i i I i i I i I i i i i I i i i i I i i I I I i I i i" 4 5 6 7

E/N (IO" , rV-em 2)

Fig. 12 Koppetal.(1982)

K> II 12

* a IM B

— = :;!! — g ^ - - - -

ai!?! Z2T+ 2 - - :

rs<^ r ^ V

Pack.V 'oshall.and PhelDS (1962).• (300°K). 0 ( 7 '

Bowe 1 195 7,1960) ; A.

O000I a m OM 0.« C/*MO («rift cm"1 tarr-*l

Fig. 13 Christophorou(1971)

19

Page 26: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

E

E 400

200

0 60

E E

>

-7 1 1 1 1 1 1 r

Neon-Methane 2 0 %

H (-

J L 4 0 0 600 E ( V /cm )

800

Fig. 14 Piuz(1983)

7.5 ' Vitesse Um/^sec )

7 •-"^NEON + 5 0 % C H 4

6.5

6 -

5.5 NEON + ?<) •/. CM,

5 ^ ^

4.5

U NEON +10 % CH4

3.5

1 1 1 E / p 1 1 1 1 1 "I

05 0.6 07 0.8 0.9 1.0 1.1 1.2

E/p (kV/cm-atm)

Fig. 15 Saudinosetal.(1973)

20

Page 27: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

(wrl) [luit] J-o

o in

o o CXI

1 1 I

o m

1

-30

-70

~

•90

- o 1 ft 1 i O , O o | ~

10-9

0^30

90-1

\ \

\ 1 ' \ 1 1

-70 \ i1"" \ \ 1 1

o o 1

— Qv X

N

m

o LTl

\ \ \

l 1 1 1 1 1 * ©

~

\ I J N \ 1 1 I

CM

\ \ \ 1 ' ' | " \ \

1 1 ' / £

- \ \ \

1

1 /

/ /

/ / / / / /

-k

/ 1

1 /

/ /

/ / /

k /

/ y / / 1 I " ^ a

^ ^ - ' o - •s ^

" 1

co •a c CO

Ë * \ .2 > u

Oi j e

(STl/un) /v\

1 1 1 1 1

,•

• s .

O*

CM ai o Z LJ

1 1 ' 1

• > CO

- * -a

00

( srl/ui3) M

21

Page 28: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

(ujrl) [unij0

(sri/uiD) M

UJTI) [uni] °

> 1 si

(STl/UJD) M

Page 29: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

K)

1 2

E (kV/cm) .

Fig. 20 Peisert and Sauli (1984)

-20-5

20-50

10-20-70

5-20-75 75-20-5H 68-30-2 70-20-10

— 30-20-50

^10-20-70. '"5-20-75

500

400

300 •£

200

100

1 2

E (kV/cm)

Fig. 21 Peisert and Sauli (1984)

Page 30: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

N>

V) 3 . E

- 500

75-20-5

60-20-20

40-20-20

20-20-60

Ne - N2 - C2H6

_L

400

300 "i

- 200

- 100

1 2

E (V/cm)

Fig. 22 Peisert and Sauli (1984)

5 -

1 -

I I I 90-5-5 / 80-10-10

\ / / /70 -10-10

\ \

\ /y

\ / /s ___ __ ""80-10-10"

~~^—70-10-20

I

Ne - N2 - C2H6

I I

- 500

- 400

E a.

«- 300

200

- 100

1 2

E (kV/cm)

Fig.23 PeisertandSauli(1984)

Page 31: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

1 1 1 1 - I

1 w l

- i.°.L - f t * \$ - < * • j8 0 5?

- = \ \ \ 8 \

• M \ \ — * • o —

- !\\ 1 - in I - + < • o - i n

+ \ M i

i i i —- r - •*

T " -T

1 -?

to» <K>m

f \ IP 9 • <K> I

«o

II

+ O)

* < o

'ML + •4 0 s, Sfcfe,.

CJ o Si" (M O

(STV/OID) P A

1 1 I I 1

. 1 1 o «

«p 1 1 •* * x

o <-> ~

10%

T : . c >1 - l\ — o • _

- 11 - o»

+ <

" vP - m

! :

/ / " +

0) n z ( \

VX 1 1 1 1 1

CVJ

m

d

Page 32: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

6 I — i — i — I — i — | — r H — r

Ne + iC 4 H 10

-i 1—I—r

6%

i i i i

- i — i — i — r " i — i — i — r - i — i — i — r

Ne +

10 A r + 10 C, 2jji__.

20 Ar + 10 C 2 Hg

_] I l i J I I l_ J l_ 0.5 1.0 1.5

E / p [kV/cm.atm]

Fig.26 Lehrausetal.(1983)

10

10

o 0) 1/5

l l o

o 5

10*

10

; t

Pack, Voshall, and Phelps (1962); O (300°K), A (77°K) Bowe (1957,1960); ( • ). Colli and Facchini (1952); ( ' * ) . Townsend and Bailey (1922a);<> (288°K). Townsend and Bailey (1922b); D (288°K). Erret(1951);(*) . JagerandOtto(1962);(A). Brambring (1964); ( * ). Wagner (1964); ( • ) .

00001 0001 001 0-1 1 E/R^JyoWs/cm torr)

10 100

Fig.27 Christophorou(1971)

Page 33: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

10 6 1 1 • - ' "

f ^ * 6 Liquid Ar s. L**-- ' " \ 6

.A. > — - - » • g ^ (5"

S 2

E O 4 [ ^

- » •

* 1 —i I, - «S Specimen d( A 30 2

M™ 9«ï

I

°nn J L

*#/ Specimen d( A 30 2

M™ 9«ï

^ 0 . 6 0 4

>

0.2

0.1

• 32 360 • 36 135 e Halpern et al.

^ 0 . 6 0 4

>

0.2

0.1

c < *J* y • 32 360 • 36 135 e Halpern et al.

^ 0 . 6 0 4

>

0.2

0.1 i

°.0 a A

Swan 36 . 360

10' 10J

( Vcm"') 10* 10°

a)

Spec

o 2

• 2

men

3

•6

d(um)

535

535

20 • 31 225

• 36 135

A Pruelt * S ? A

10 1..-

J - ^ ^ o . - • • " " J Î ^

4

2^ ^

y * '

1 2^ , / 0

10' 10 d

E ( V cm"1)

Fig.28 Rubbia(1977)

10'

b)

10

1

0J

0.01

*— - - < >

1 1- -

Ar * Ar

0 L *

: . l ^ — - .

*""" *P-

-*'* p ' " ** - J --4

/ r ^ / i - ., ^

/ r"

(

f

-—

D, :Warr en and Parker (1962c , b ) ; 0 ( 7 7 . 4 ° K ) ; * 8 7.5°K).

D| Tow

:Wagr nsend and ier, Davis i

Bai ind

ey(192 HursH

.2); ^(281 1967); • (

8°K 298

). °K).

O001 o.oi a i i

E/Pjoo («altt cm - 1 lorr-')

Fig. 29 Christophorou (1971)

27

Page 34: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

E / p 2 9 3 Volt cm Torr"

0.0001 0,001 0.01 0.1 10,0 1 1 1 , . . , , i i 1 1 1 1II 1 I I

Transverse

I I I 1 1 1 1 1 1 |L

^ #

Arg Dn. 7 7 ° K V t f " 1,0

U^^~

• •

Longitudinal "

0,1 —

• Wagner. Davis a Hurst

• Townsei

o Warren

id

a a Bailey

Parker 0.01

_ i ° - I f l l i i i i mi l ni I i i i i i i il i

10 -20 10" 10 -18 10' 17

E/N Volt cm' Fig. 30 Lowke and Parker (1969)

3.10 -

10"

2.10'

"I I I 1 I I I I I

100

T r

o- -- xF1*

Argon

J I I ' I I I I I J L 500 1000

E [v/cm] 3000

Fig. 31 Schultz(1976)

Page 35: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

2.0r

L5-

C.G.E. Argon * CO; 8ppm I600ppm

aoooe% ° 0.16%

0.05 0.1 OIS ' , 0 . 2 0.25 X/p V/cm/mm Hg

0.3

4.0r

CG.E. Argon -t CO; 0.16 7. la 2.1%

0.3 0.4 X/p V/cm/mm Hg

5.0-

4 .0-

so-

^o-

'£>-

C.G.E. Argon + CO; 2 .1% 10 21%

0.3 0.4 X/p (/cm/mm Hg

Fig.32 EnglishandHanna(1953)

29

Page 36: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

1*1 ©

3.0,

Fig. 33 Uman and Warfield ( 1960)

1 2

E (kV/cm)

Fig. 34 Peisert and Sauli( 1984)

Page 37: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

Fig. 35 Peisert and Sauli( 1984)

E u ~ 4 -

O Ar 8 3 . 6 % , C 0 2 16.4 %

Û Ar 8 9 . 3 % , CO, 1 0 . 7 %

• Ar 8 7 . 0 % , CO, 1 3 . 0 %

2 "

_ l _ _L 0.6 0.8 1.0 1.2 1.4 1,6

( k V / c m )

1.8 2.0 2.2 2.4

Fig.36 EzbanandMorganti(1974)

31

Page 38: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

6 -

(A

i 4

o Ar 72.1 7 . , C0 2 27.1 %

• Ar 79.2 % , C0 2 2 0 . 8 %

_L

0.6 1.0 1.4

E ( k V / c m )

Fig. 37 Ezban and Morganti (1974)

1.8 2.2

s i

I Mean collision time

so

« 1 • • •

[ # T

TAU

XIO

-"S

EC

411

3 1

SO

-.

1 Ar -CO,

2 1

1 0

i 1 1

o* oi ot or oe o* io E-FIELD XrO> V/CM

Fig. 38 Barankoetal.(1980)

32

Page 39: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

3 0 0 1 - r i i — i r " !

-

2 0 0 •

• • •

• • -

100

1 i i i i i I I

20 1 1 I 1 1

Ar(50%) C0 2 (25%) (CH 3) 20 (25%) ATMOSPHERIC PRESSURE

1 1

" T

15 •

~

10 •

-

5 • •

i i i i i i i ., 1

200 1 T l i - r - - r - T 1

km D

RIFT

-

• • • • • • • -

CE

£ 100 - -

T

n 1 1 l i i _ i . I I

20 i i i i i i

Ar (33.3%) C0 2 (33.3%) (CH 3) 20 (33.3%) ATMOSPHERIC PRESSURE

i r "

c E

10 i -

• •

i i i i i i

• •

_ i 100 200 300 400 500

E [v/cm] 600 700 800 100 200 300 400 500 E [V/cm]

600 700 800

Fig. 39 Fehlmannetal.(1983) Fig. 40 Fehlmanetal.(1983)

Page 40: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

I I I I I ' l I I I I I I I I I I I I I I I I I I I I I I I I Argon « C0 2

1.02 at m .*-— »"" . 80^20 /" / . M

/ 1.02 at m 60=40 / - -

.02atm 7 0 ' 3 0

4.08atm 90 = 10

4.08 a tm , 80 = 2 0 ^

^ " 4.08 atm 70=30.

4 . _ - + - ' + " + ' 4.08 + - ' + ' _ - X ' - * " " 6 0 = 4 0

E [ kV/cm]

1.0 2.0 Fig. 41 Maetal.(1982)

3.0

0.6 1.0 1.4

E ( k V / c m )

Fig. 42 Ezban and Morganti (1974)

1.8 2.2

Page 41: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

6 -

^>

E o - 4

^ - . * • , ^ ^ > - - 4 o -

o Ar 87.3 % , C0 2 10.7% , Met h 2 . 0 %

• Ar 89 .3% , C0 2 10.7%

1.4 1.8

E ( k V / c m ) Fig. 43 Ezban and Morganti ( 1974)

2.2

0.6 1.0 1.4

E (kV/cm)

Fig. 44 Ezban and Morganti ( 1974)

.8 2.2

35

Page 42: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

J! S«îS <D. ni S M 16

00

fV/cm

l

79%

80

%

79,2

%

1 g . ,

I I I I I l_ o 10

[sil/ujui] "M [srf/iuui] XM

o (M

-1 1 1 1 ! " • 1—

-

- - -

- • • l -

-

S" 1 1

1

- \ .

Ar

83,6

%

-

-

I 1 1 1 1 i

. -

. 9

o 8 [sif / ujui] "M [fli/Ullu] XM

36

Page 43: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

I/)

7 _.

10 20 30

Fig. 46 Krasnowetal.(1976)

40 50 (% C02)

I/)

\ E

fir+7XCaH*0

10% C*H* - » »—

20%C>LHjo

1,2 I ,* i , « 1,8 2.0 2.2

V/cm • Torr Fig. 47 Krasnowetal.(1976)

37

Page 44: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

60

1 —r~ i i i i i 1 i i i

- ^ ^ ^ \ T i i i -

^ 40 E

/ 1 -

A 20

/ Ar 84% 0^14% Methylal 2 %

0 f 1 i i i i i i i « i « i 400 800 1200 4600

E [v/cm] 2000 2400

60

I I I I I I I I I I I I

/ \ -

40 -

-

20

^ ^ Ar 71,3% C02 26,7% Methylal 2 %

-

""

O ^ l I I I l I I l i I l I 400 800 1200 1600

E [v/cm] 2000 2400

Fig. 48 Schultz(1976)

38

Page 45: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

ce Q É u

%

É 4.

m c E 4.

> Q

1,1 1 y - — i — i • •• 1 - r i i •

300 — * •

• *

200 -*

« * * *

• * *

A

*

A

100

* F.PIUZ CERN-•EF 82-11

i i A TPC PROPOSAL FOR PEP 1976

i i i i i i

40

1 1 1 1 1 1 1

_ Ar (80%) C02 (20%) ATMOSPHERIC PRESSURE

i

* _

* B^

30

* s* 20

V"S 10

^ ^ a I-LEHRAUS CERN-EF 82-1 ^s* * F.PIUZ CERN-EF 82-1

^ i i i i i i i 1 100 200 300 400 500 600 700 800

E [V/cm]

Fig. 49 Fehlmanetal.(1983)

400

S 6

E

300

200

_ J

b° 100

0

50

mm

/sec

] 40

30

Q >

20

10

T T (o not corrected

this meas { ? 1+ corrected c = 25 « Allison [8] a T.RC [7] A Ullaland [21]

o +

« O +

kT

ARGON - C0 2 80 /20

+

o U. BECKER et al [14]

200 400 600 E [V/cm]

800 1000

Fig. 50 Piuz(1983)

Page 46: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

o

85 = 15=0 (o) 83.4 = 14.5-2.1 (.) 82.5=14.6 = 2.9 (+)

E [ kV/cm ] i_j i i I

3.0

Fig.51 Maetal.(1982)

1_ I s J . ^ 2 S3 (SA X/p V/cm/mm Hg

Ô5 T5T^

Fig. 52 English and Hanna(1953)

Page 47: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

1 1 1 1 1 „ 1 (\J

1 '

1

-20 +1

et a

l

S LLI

rr

— X o

1 ,

< J JEAN

MA

-

— +/ m -

— +

-

1 1 1 1 1 1 i ~ — - i « .

O o CD

O O CO

O O

o o 00

E o >

UJ

• r 9

O o O O o O r- CD m sfr ro CVJ

[ ujyv LUT/ ] "TOQ [ S T / / L U D J ] Q A

T " T

J I L

i* o i o

o

o (M

o o o 00

o 10

J L_J L—

Z i i l i—i—i 1—i—i r—r

o (M

O (M

J I I l_ 8 00

I I I I I

1000

12

00

1400

/c

m]

_1 X > Ol

600

8

Ul

Fig.

S3 S

chul

tz(

i*

Si O

I O o t

J« o m <

200

o o o

["sil/UlUl"! *M f St{/UIUJ~| * «

41

Page 48: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

-Ft

Liquid Ar

* Ar+CH 4 ( 0 . 27 . )

o Ar+CH 4 ( 0 .57 . )

A Ar+C 2 H 4 ( 0.0 27.)

. A r+C 2 H 4 (0 .2 7.)

— A r ( p u r i f i e d ) * A r + N 2 ( 0 . 2 % )

_I_ _L 1 U 6 8 10 12

Elect r ic Field S t r e n g t h ( KV/cm)

Fig.55 Doke(1981)

a

M

M

! :

5 70

Vital•• da dériva dans la aflanga Argon-Htthana

«-^ *»» ^ s « « ^ >,^*^1» ""^ ^ ^ V «

^jhO . x. \ ^i^>^>^'-?s\ \ ^i^>^>^'-?s\ \ a

^^^^^^^^0\ •

^^"*^^2^£?^ > " s ^ ' s^»v ^ " * ^ £ ^ \ N v

^^^^v^y

^s^ "

• •

• •

a si a POURCENTAGE D'ARGON

Fig. 56 L'Hôte (1978)

Page 49: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

DRIFT VELOCITY IN ARGON METHANE MIXTURE

120

no

/

20

o too

•10-90

r z r ^ _ ^ = * ^ ^ .20 80

#

1.5 2. 2.5 E <KV/cm)

Fig.57 Jean-Marieetal.(1979)

43

Page 50: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

*

100 200 300 400 500

Electric field (V/cm) Fig. 58 Peisert and Sauli (1984)

9 i i i i 1

9

8 A-CH4

(90-10) 8

7 Y Av 1 v

7

6 6

5 - 5 X

4 i \ ^ s * \ v

4 o

-3I>

3 3

2 - / \ 2

1 1

0 C

i 1 ^ * - 1 X 1 1 0 0 C ) 100 200 300 400 500

0

Electric field (V/cm) Fig. 59 Peisert and Sauli (1984)

Page 51: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

CO

2000

1750

1500

1250

1000 -

750

500

250

E/P (Volts/cm Torr)

Fig. 60 Clark et al. (1974) Fig. 61 Clark et al. (1974)

O

o CN II

CO

0.4 0.6 E/P (Volts/cm-Torr)

0.8

Fig. 62 Clark et al. (1974)

45

Page 52: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

"T 1 1 1 -

Ar + -l 1 1 1 1—r*—i—i r - i — i — i — i — | — r

A — A " _ A " 2 0 % C 0 2

a ^ ° 10% CC

* X—9%C02+I% CH 4

.A-/V Y—*

//ftx// y"* A *-— "5%co2

m « » * 5%C3H„

s — • — • — . — . -Iff ,> 0 / L °—-° -—

- • 5 % C H 4

•o—2.5%CH 4

0 T «V

I I I l _

2-

0

Kr + • 1 ' ' ' > | . . . 1 | <

A

"•"—o

—+. - - A

• A

- ° o - • .

_ + 5%CH 4 +5%C 2 H 6

- » - » — 5 % C 3 H 8

~° ° - 5 % C 2 H 6

5%CH 4

1 1 1 1 1 i ' » 1 . , , i 1 i i • i 1 i

4 I 1 1 I I 1 T 1 - T T I T I T I I 1 1 I I 1 1

Xe +

r *~~——, 20%CH 4

2

/f*^^* * -• •_ +— 5 % CH 4

/ 2 % C , H e

3 8

+' I I I ^i i i • 1 i i i i 1 i i i i 1 i i i i 1 i

0 0,5 1.0 1,5 E/p (kV/cm.atm.)

Fig. 63 Lehrausetal.(1983)

2.0

0.5 1 1.5 E/P(V/cmmmHg)

Fig. 64 Walenta(1979)

Page 53: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

5.5 1 1 1 1 1 1 1 1

500 o not corrected -+ corrected c 2 = 35

400 "\*

-

300

200 \

? o +

o +

o + o

+ o

+ o

+_

100

1 1 1 1 1 1

——!iL 1 1

-

60

50

40 30 20 10

0

-1 1

ARGON -

1 1 1 I 1 1

- ETHAN 50 /50

-~ . O T —Q r

-

m

i i

+ B.JEAN MARIE et ol [ 2 ] o H, DAUM et al [1 ] _

I ! I I I I

200 400 600 800 E [V/cm]

Fig. 65 Piuz(1983)

5.0

Qi

I u

O O _ l UJ >

a

4.5

4.0

3.5

T — i — i — r T — i — i — r 1—i—i—r i—r

- + Ar 6 4 % C 2 H 6 3 6 % • Ar 46% C 2 H 6 54%

- o Ar 63% C 2 H 4 3 7 % 1 A Ar 66% r s o C 4 H , 0 3 0 % Methy la l4%

I I I J I L J _ l L 0.5 1.0

E| (kV/cm)

Fig. 66 Jaros(1980)

Page 54: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

-, , , r

p = 100

-| 1 r

I

0,2 0.4 0.6 0.8 I.O 1.2 1.4 I.6 I.8 2X) E, kV/cm

Fig. 67 Chernyatin(1979)

1. Ar+0.5% Xe 2. Ar+0.5% Xe+0.1%CH4

3. Ar+0.5% Xe+0.2%CH4

4. Ar+0.5% Xe+0.5% CH k

5. Ar+0.5% Xe+1.0% CH4

500 1000 1500 2000 E[V/cm]

2500

Fig. 68 Ramanantsizehena(1979)

Page 55: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

8 0 . 0

6 0 . 0

140.0

2 0 . 0

0 . 0 0.0

E [kV/cm]

8 0 . 0

6 0 . 0

4 0 . 0

2 0 . 0 -

0 . 0 0.0

_l 1_

2.5 j • •

7.5 —>

10

E [kV/cm] Fig. 69 Binder et al. (1983)

Page 56: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

-, , 1 , r 1 r-

B=1.3T Ar/methane(90:10) Ar/ethane (50:50)

o.o 0.0

1 •

1 25 2.5

Fig. 70 Binder et al. (1983)

3.75 5.0

E [kV/cm]

10

1 -

>

a

10

10'

T" i

CH4

0.9Ar + 0.ICH 4 /

s /

> / 0 .83Ar + 0.09CH4 + / 0.08CH t(OCH,),

• -** .>? /CH 1 (OCH,) 1

i 1

/CH 1 (OCH,) 1

i

10 10 1 E/P (V/cm mm Hg)

10

Fig. 71 Walenta(1979)

50

Page 57: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

VD(cm/psec)

3-

940 V/cm A-Cfy-i-C4H1 0

(88.7-8.5-2.8)

— i 1 1 1 1 1 1 • i 1 1 —

300 400 500 600 700 800 900 1000 1100 1200 E(V/cm)

Fig. 72 Drumm et al. ( 1980)

1.0 ' 1 «"I 1 1 I I I I I ' 1 r-| 1 1 | | | | | : D/p (v)

0.1

A - C H A - i - C A H 1 0

10 V. 2.8 V.

Uatm. ) D T / M r<

y / \

i y y

s? /f I DL/M

E ' P ( ^ T ^ ) J l_l I I I I I I I J L_JL

cm Torr J ' ' ' ' ' • i _

0.1

Fig. 73 Drumm et al. (1980)

1.0

51

Page 58: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

Ut

10

in

E ^ 5

Q >

90% Ar+ 10% CH 4 + Methylal

/ / 0%

8%

0

I.I///V-KfcX _NH 3_

C 2 H 4 * 8 %

COz

0.5 1.0 E/P (V/cm Torr)

Fig. 74 Walentaetal.(1982)

1.5

t.O

S o.i E E

X

b 0.01 -

0.01 0.1 1.0 E/P (V/cm Torr)

Fig. 75 Walentaetal.(1982)

10.0

Page 59: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

400

i r— *

1 1 1

300

. t • * • • *

200 * F.PIUZ CERN-EF 82-11

-

100 —

1 1 i i i

30 -

20 -

10 -

1 1 1 1 4 _ Ar(73%) CH 4 (20%) (CH 30) 2 CH 2 (7%) •_

ATMOSPHERIC PRESSURE * •

* F.PIUZ CERN-EF 82-11 * •

• ^ - ^ %Z>^ _

^ ^ " ^ 1 1 1 1 1 50 100 150

E [V/cm] 200 250

Fig. 76 Fehlmanetal.(1983)

53

Page 60: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

"i 1 1 1 1 1 1 1 r

I I I I l I I I I L

~l 1 1 1 1 1 1 : 1 r

200 400 600 800 1000

He - C 4H 1 0 - TMAE

(93-7-5x10"^)

_i i i i i i i i i i

'200 400 600 800 1000

Electric field (V/cm)

Fig. 77 Charpak and Sauli (1983)

Page 61: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

I I I I I I I I I I I I I I I I I I I I I I I t I I I I I I

V 6

5

4

3

2

im '-& ~X~V

x— X __ x _x^x—x—x 70 ' 30 8 0 ' 2 0

.02 otm

Argon •• Ethylene

E [ kV/cm ] i i i i i i t i i i i i i i i i i i i i i i i i i i i i i

1.0 2.0

Fig. 78 Ma et al. (1982)

3.0

O

E / P 2 9 8 (volts c m - 1 Torr -')

Fig. 79 Christophorouetal.(1979)

55

Page 62: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

200

£

E u

ë 100

b •it . , \ ! »

E 1 K V / c m

. PROPANE

o ETHANE

• ' I L J I I I L

20 40 60

PERCENTAGE OF ARGON

Fig. 80 Jean-Marie et al. (1979)

80 100

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

V 6

5

4

3

2

im

Argon • Ethylene-Isobutane = 70 = 15 = 15

E [ kV/cm ] i i i i i i i i i i i i t i i i i i i i i i

1.0 2.0 3.0

Fig. 81 Ma et al. (1982)

Page 63: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

1 i i i i r i i i i i i i i i i i i i i i i i i i i i i i i i

1.0 2.0 Fig.83 Maetal.(1982)

3.0

57

Page 64: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

E

60

i i i

A -

1 1 1 i i

-^-^3o^ ^5i 40 20 -

^5i 40

^5i '2-

20 -

0 i i i i i i i i

0

60

£ 40

E

20

0 0

E (kV/cm)

Fig. 84 Jean-Marie et al. (1979)

1

A

i

- C 2 H 6

i i i

_ 100

1 1

A

i

_ 100

1

—-__40__

- BÊ/K

1P_

___30____ 20 - BÊ/K

1P_

___30____ 20 — - BÊ/K

1P_

i i i i i i 1 1

E (kV/cm)

Fig. 85 Jean-Marie et al. (1979)

58

Page 65: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

5 5 -

5 0 -

4 5 -

500

t

Ar 44%, C2H« 56% a) B = 0.5 T

Tees- 4500 2000 C[V/cm]

SO

Tàr

Ar 44%, C 2H 6 56% b) B = 1 T

«X» 1! EfV/lcm]

ste- 2000

9 0 -

_1_

Ar 44%, C 2H 6 56% c) B= 1.5T

_ i _ - i _ 500 « 0 0 «00- 200O

ClWtanl

Fig. 86 Ramanantsizehena(1979)

55

Ar50%,C2H650% a) B = 0.5 T

-f

WOO 1500 E [ V/cm !

2000

55 1 t 1 T

-

50

/ /

é Ar50%,C2H650% b) B = 1T

>

45 /

i i 500 1000 1500 2000

E [ V/cm ]

55 1 1 I

44. i

50 1 /t 1 Ar50%,C2H650%

/ c) B = 1.5 T 45 /

I ! i i 5CC (000 (500 2000

Fig. 87 Ramanantsizehena(1979)

Page 66: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

o

2.10 -

10' 1

'ox -\ eE Ar

E o

o

^Ar 80% C 2 H 6 20%

Ar60% C 2 H 6 40% / .Ar40%CgH 6 60%

10" 100 1000 200C

E[V/cm]

Fig. 88 Ramanantsizehena(1979)

Page 67: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

57 - 1 1 1 1

" [ { • 1 1

52

/

1

\y V

1

-

47

/ a) Ar 2 5 % C 2 H 6 7 5 %

4? 1 1 1 1 1 500 1000 1500

E[v/cmJ

1000 1500 E [v/cm]

2000 2500

v. E

,E.

55 — I I I I l_

50

/T" "T> Y I

45 b) Ar 4 4 % C> H 6 56%

40 I I I I I 500 1000 1500

E [V/cm]

2000

500 1000 1500

E [V/cm]

2000

2500

2500

ON Fig. 89 Ramanantsizehena(1979)

Page 68: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

60V. Argon - 50*/. Ethane

55

E E - 50

MM H

• B = 0 T • B « 0.5T x B = 1.0 T A B = 1.5 T

• * 45

• #

55

ED(kV/cm)

44*/o Argon - 56*/. Ethane • B = 0 T • B = 0.5 T « B « 1.0 T

A B z 1.5 T

£ E

w 50

* n t L i 1 i i »

45 *

E„(kV/cm)

Fig.90 Daumetal.(1978)

i •

1 • I i T

400 —

• • •

• r-LL. • • • • • or ° 300 _ £ u

p "" 200 _ E Jt

- i

b° 100

n i i i 1 1

J U 1 • 1

^^ -——' • •

40 /m

• -

80

/ •

/ •

Ar(60%) C 2 H 6 (40%)

-

20 ~* ATMOSPHERIC PRESSURE ~"

10 - /

i i i i .L 100 200 300

E [V/cm] 400 500

Fig. 91 Fehlmanetal.(1983)

Page 69: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

MEASUREMENT OF DRIFTVELOCITY AND DIFFUSION VANOOE '- 600 Volt, V G R 1 0 = - 844 Volt, V F 0 C U S =-633 Volt

I I 1 \ ARGON (50%) ETHANE (50%)

1 1 1

50 - 9 ATMOSPHERIC PRESSURE

S 40 - 1 C v ^ c 1 \ J^ • • : PIUZ CERN-EF82-11

E \ \ • / Jt * \ / " 3 0 - -H * ^x / 0 \ Nf • O _ i » ^ \ " ID > 20 - / N v TD»-^^ -1- / VN"V^ *~—-- u. / """- .. "O-—__^^ œ / """-"*-.. ^*~~" a 0 . 0 -

/ ~~ .. a 0 . 0 -

1 1 1

BOLTZMANN LIMIT

1 1 1

500

400 H-U-

a 2

300 !f or

200 |_

100 a

100 200 300 4 0 0

DRIFTFIELD [V/cm]

500 600

Fig. 92 Fehlmanetal.(1983)

55

50

45

8 = 0 / / B=1T B=0.5T

-L X 500 1000 1500

E[V/cm] 2000

Fig.93 Ramanantsizehena(1979)

Page 70: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

55

1 50

45-

j_ 500 1000 1500

E[V/cm] 2000

Fig.94 Ramanantsizehena(1979)

1000 1500 2000

E[V/cm]

2500

Fig. 95 Ramanantsizehena (1979)

64

Page 71: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

DRIFT VELOCITY IN ARGON ETHANE MIXTURE

I I I L I I I 1 U

0 10 20 30 40 50 60 70 80 90 PERCENTAGE OF ARGON

Fig. 96 Jean-Marie et al. (1979)

65

Page 72: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

2. 25 E< k V /cm)

Fig. 97 Jean-Marie et al. ( 1979)

66

Page 73: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

T I ­

TO-

t »

o *°f teJ 10 u • 7 fi »0 X

8 " I S

SO

t.s

10

Mean collision time

* •

• i Ar-ETHANE

. . . . ! . . - . • . • . • ! . . . . I I 1 . . . 1 A A

- J

OS 0« V M M 10 tO

E"FIELD XIO' V/CM

Fig. 98 Barankoetal.(1980)

SO

a. E

E (kV/cm)

Fig. 99 Peisert and Sauli ( 1984)

Page 74: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

300

200 -

100 -

. • *

• • • * *

ou 1 1 1 ! 1

Ar(50%) C 2 H 6 (25%) C0 2 (25%) ATMOSPHERIC PRESSURE

1 1

20

• .-

10

^ ^ \ i i i i i i i

100 200 300 400 500 E [V/cm]

600 700 800

t 300 CE O

l ~ 1 1 l 1 —

• •

1 •

E o • o: 200 • • • -

2

" 100

1 1 1 1 . i.

E

ce

4 0

1 1 1 1

_ Ar(45%) C0 2 (10%) CH 4 (40%) (CH 3 0) 2 CH 2 (5%) ATMOSPHERIC PRESSURE

—r «L

30 •

-

20 •

^ ~

10

m ^ ^ - " " ^

• ^ - " " ^

^ ^ " ^ i i i i 1 100 200 300

E [V/cm] 400 500

Fig. 100 Fehlmanetal.(1983) Fig. 101 Fehlmanetal.(1983)

Page 75: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

H U U 1

i r • • i " " !

(-u. • S 300 a • • • • r

E u •

Q: _ o 200 — —

E =t

 100 _ _ b°

i i i i i

<r Q E u

oe 2 T

40 m,i r

Ar(50%) C 2 H 6 (43.5%) ( C 2 H 5 ) 2 0 ( 6 . 5 % )

• - r ' ' i

i •

E

J

60

20

~ ATMOSPHERIC PRESSURE

-

10 •

i i i

200 ., _ _..T _ [ — i - 1 - 1 T - "T I

• • • • • • • • -

100

n I i i ,L. | 1 1 1

20

E 4.

> S

10

— I 1 1 1 1 1 Ar(30%)C02 (30%) C 2H 6 (30%) (CH3)20 (10%) ATMOSPHERIC PRESSURE

100 200 300 E [V/cm]

400 500 100 200 300 400 500 600 700 800 E [V/cm]

Fig. 102 Fehlmanetal.(1983) Fig. 103 Fehlman et al. (1983)

Page 76: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

• ' 1 i 1 •

300 • • • • • •

200 -

100

i i i i i

1 1 1 1 •

40 _ Ar(47.5%) C 2 H 6 (47.5%) (CH30)2 CH2 (5%) •

• —

30 ATMOSPHERIC PRESSURE

- •

-

20 • yS

-

10 • yS

•y'

< 1 1 1 1 1

100 200 300 [V/cm]

400 500

in c E 4.

30 1 1 1 1 1 Ar (50%) C 2 H 6 (25%) (CH 3) 20 (25%) ATMOSPHERIC PRESSURE

1 1

T '

20

10 •

i i i i i 1 i i

100 200 300 400 500 E [V/cm]

600 700 800

Fig. 104 Fehlmanetal.(1983) Fig. 105 Fehlman et al. (1983)

Page 77: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

.5L 5 0 -

Fig. 106 Jean-Marie et al. (1979)

0 . 1 0.3 0.5 0.7 0 .9 ELECTRIC FIELD IkV/cm)

1 .1 1 .3

Fig. 107 M.Atac, private communication (1983)

Page 78: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

(wrl) [u)3i]o o o o

1 1 1

51-1

5)

-

_ - * to to

i m

\ I

\ . -V-\ \ ' \ \ • '

X <M

LJ 1 *N| z 1

<

1 - " ' x "

) V* • \ •

1 1 1 1

) V* • \ •

1 1

<vi G

>

(ST1/UJ3) X M

(uirl) [UJDUD

•a c

o o o o 5 Ln ~* m CM e 1 1 1 1 1

CO

3 1— 35

-36-

29)

• \ • I

•\

to

1 _i Ito li

x° l_J

1

f <

1 1 1 """

rr it

I i

>

(Sll/UID) X

M

Page 79: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

5 -30-10-60 45-10-45

A - N2 - C2H6

1 2

E (kV/cm)

Fig. 109 PeisertandSauli(1984)

- 500

400

E ZL

300 •=

- 200

- 100

to a. E

-500

65-30-5 "0-20-10-1

Ar - N, C,H, 2 n 6

I I

400

300

200

100

1 2

E (kV/cm)

Fig. 110 Peisert and Sauli ( 1984)

Page 80: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

s

DRIFT VELOCITY IN ARGON PROPANE MIXTURE

30 : E=.5KV

j i_ _L J I I L 0 10 20 30 40 50 60 70

PERCENTAGE OF ARGON

Fig. 111 Jean-Marie et al. (1979)

80 90

i i i i i i i i i i i i i i i i i i i i i i i i i i • i

6

5

4

3

2

V

t î î ] +-+-T + + +~~+-

- + — + — + — 8 0 » 2 0

-——— 90 = 10 95 = 5

/ 1 j- 1 .02 a t m

4 Argon •• P r o p a n e E[kV/cm ]

i i i i I i i i i I i i i i I t i i i I i i i i i i i i i I— 1.0 2.0

Fig. 112 Maetal.(1982)

3.0

74

Page 81: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

fc=«

1.0 2.0

Fig . 113 M a et al. ( 1 9 8 2 )

3.0

i i i l i I l l I l I i i i i I i i i i i i I i i i i i i

V

~ " ^ 7 5 = 25 80=20

3.0

Fig. 114 Maetal.(1982)

Page 82: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

E (kV/cm) Fig. 115 Jean-Marie et al. (1979)

76

Page 83: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

60

i r i i i i i i i i r

Ar 75 % Isobutane 25%

J 1 I I I 1 I L 800 1200 1600

E [v/cm] 2000

_1_ 2400 400 800 1200 1600

E [V/cm] 2000 2400

60

I I I I I I I I I I 1

a. /• -

E 40 —__^^ -JS •/ • •

*

20

0 I

Ar 86.5% Isobutane

I I I

13.5%

I . I I I 1

-

400 800 1200 « 0 0 E [V/cm]

2000 2400

"T I I I I I 1 1 1 1

60

Î S .

-

40 /• •

• • -

20

Ar 93% Isobutane 7%

-

0 I I I . I _,_ 1 1 1 1 1 400 800 1200 1600

E [v/cml 2000 2400

Fig. 116 Schultz(1976)

Page 84: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

~1 00'

1200 1600 E [v/cm]

60

40 I I

I

I I I I T I I I

i i

i

A.

E

60

40 I I

I

I I

• • • w-

i i

i

20

0 I

Ar 6 2 %

I

Isobutane 38%

l I l I I I

i i

i

400 800 1200 1600 E [V/cm]

2000 2400

60

I I I I I I I I

I I

• ' r~

i i I I I I

• •

I I

I I

• ' r~

i i

40

_

-

20

Ar 6 9 % Isobutone 3 1 %

-

0 ' I I I l I I I I i i I i 400 800 1200

E 1600 2000 2400

[v/cm]

60

I I I I I I I I I I

A. V. E 40

• / -

K *

20

0 I

Ar 7X>%

I

Isobutane 30%

I l I I I I I I 400 800 1200 1600

E [v /cm] 2000 2400

Fig. 117 Schultz(1976)

Page 85: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

Ar-iso C^H 1 0-(OCH3)2CH2

(67.2-30.3-2.5)

i . 3

£ o

S

0.5 I.O

E ( k V / c m )

Fig. 118 Breskin et al. (1975)

1.5

T

50'

40°

30 e

20°

10e

Magnetic angl

A 67.2% , Iso C^HK) 30 .3% , (0CH 3 ) 2 CH 2 2.5% » 57.0% " " 40.7% " " 2 .3% X, 66 .0% •' " 31.5% » » 2 . 5 %

10

B ( k G )

Fig. 119 Breskin et al. (1975)

Page 86: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

- 3 u a> </> a.

^

Mean collision time

Ar-iso C4H 1 0-(OCH 3) 2 CH2

(67.2-30.3-2.5)

j i ' I i i i i L

a)

O.I 0,5 I.O 2.0 3.0

E (kV/cm)

b) 5 - A-isoC 4H 1 0-(OCH 3)2 CH2

(67.2-30,3-2.5)

E o

Magnetic deflection angle

E = 0 .5 kV/cm

9 - 50°

40°

3 0 °

2 0 °

IO°

IO

B U G )

Fig. 120 Breskinetal.(1975)

Page 87: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

' »0

I »

• 0 •

1 1

Mean collision time

* • »0

1

• >

o Ul l/i

»s 1 . Ar-ISOBUTANE

0""

«0 1 ' X • r> »* < i -

50

4!> i i

« 0

so ' } OS 0 4 OS OC 0 » O i O » l O 1 0 SO 4 0

E-FIELD XIO' V/CM

00 Fig. 121 Barankoetal.(1980)

6 0

E E

"i 1 r

30.2% 30.3% Méthylal 2.5% 30.2% Méthylal 3.4%

I 1200

E rv / cm] 1600 2000

6 0

40

i r i i

a) Ar 66.4% IsoC 4 H i 0 33.6% / / b) Ar 66.4% IsoC 4 H„ 0 30.2% Méthylal 3.4%

_L J_ _L 400 800 1200

E[v /cm] 1600 2000

Fig. 122 Schultz(1976)

Page 88: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

0 0

100 500 1000 2000 3000

E [v/cm]

Fig. 123 Schultz(1976)

X10-

2 —

X

i • <

-2

0 —

Ar66,4% Iso C 4 H w 30,2% Méthylal 3,4% x

Ar67,2% Iso C 4 H 4 0 30,3% Méthylal 2 5 %

100 500 1000 E [V/cm]

2000 3000

Fig. 124 Schultz(1976)

Page 89: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

J3 O

60

T T I I I I I I I I I

(,_38S W3 9 0 H *

I XI o

so

E

<D lO *

( V . 3»S UJD 9 0 H M

,2 ^, «. •a

o S "6 (\J S 3

O L i

• E o S J3 D. * g s GO 0)

•n .P1 _C

^ U bJ

Fig.

125

If) * K) CM — O 0* <& N (0 ID

(j_o»s ui3 9 oH«

83

Page 90: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

r r - r

10%CF 4+ 10%C 2 H 2 + 80%Ar

5%CF 4 + 10%C 2H 2 + 85 %Ar

I I I I I I I

o 5%CF 4 +15%C 2 H 2 + 80%Ar

3%CF4 +10 % C 2 H 2 + 87%Ar

P-10

i i . ; i i i i i i i i

1.5 2.0 2.5 E / P 2 9 8 (volts cm"1 Torr~')

3.0 3.5

Fig. 128 Christophorouetal.(1979)

2.8 « 10

2.4

2.0

f~ 1-6

1275 Ratio H, O/Ar pressure

PURE Ar

0.1 0 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 E/P (volts cm"1 torr" 1)

Fig. 129 Christophorou(1971)

84

Page 91: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

OL3S

a 30

0.25

S a20|

0.10-/ '

ARGON + NITROGEN 0.11 - 10 %

I

I I aosjf,,/

0.01 0.02 0.03 X/p V/cm/mm H«

0.11*

0.04 Q 05

L6 ARGON + NITROGEN

1 - 2 0 % • v " / 1.4

s'Siax 1.2

/ S i o \ s ^ 8 i.o « g 0.8 S^s' ^ ^ .

> 0.6

J *^^^"—

04 ^ ^ ^ ^ 0.2

0 1 i i i • i i • i • i • 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OSS O60

X/p V/cm/mm H«

1.6-

M

1.2

» I I

a6

04

az

o'

ARGON » NITROGEN

1%

.f '•

~*

10%

— PRESENT WORK — KLEMA 8 ALLEN

aos a io ais azo a25 0.30 0.35 0.40 a45 aso ass a60 X/p V/cm/fflm Hg

Fig. 130 English and Hanna( 195 3)

Page 92: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

00 0\

2.5

2.0

Ar +

i.o%N t

COLLI fcFACCHINI KIRSHNER 1TOFFOLLO

O . 2 .4 .6 .8 1.0 1.2 \A 1.6 1,8 2.0 2.2 2A 2.6 2.8 3j0 %2 3.4 3.6 3.8 4.0

Fig. 131 UmanandWarfield(1960)

_ 4 0 0

E

e ~ 200

corrected c 2 = 35

0 .

40 - Ar Ne CH 4 Methylal

• 7 3 20 7

A 72 17 II o 74 19 7

E E

a >

200 E ( V/cm )

300

Fig. 132 Piuz(1983)

Page 93: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

K>

10*

"•• K r J F /

. - s * '

" i 1 ^ ^ "f" *•

' t

/

300 " * ' V ^ •(9S"K

Bowe(1957, 1960);-ûr

0001 o.ot 0.1

E/PJOO (vol»» cm-1 torr"')

Fig. 133 Christophorou(1971)

700 PPM

300 PPM

100 PPM

OPPM

KRYPTON + C 0 2

0 - 3 0 0 PPM

KRYPTON + C H 4

0 - 3 7 0 PPM

0.10 0.20 0.30 0.40 X/p V/cm/mm Hg

0.60

KRYPTON +COg

0.^0

Fig. 134 English and Hanna(1953)

0.10 a 2 0 0.30 0.40 X/p V/cm/mm Hg

0.50 0.60

87

Page 94: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

S 10* E

K>»

0.0004

-zzx n—^_ Y —| 1 ' '^~~^ 1 (.U;-'" ••'-!—! l ' I f "HT i—*~ '

; • ; II ! , ^ ' 1 1 ' ! • I ! i : | i

X e • j ' ! ! ! • ! : : i i : jf 1 !

l ir l 1 Jr

1 . ; 11 i 1 iv^ ; . !

1 1 ji «r*- 1^

•»™ — -fi— _± , 1 —

|T T J 7 i

: I i y i

i le 4 y JJ , - -\ -it\ 1 1 -3X- : ! À* 1 I i

/ 2 i 300 *K

195 '

1 — / 195 »K

;

-*-rU i ... 1

^~M* —zt —L|-j _J J-y i t 1 ' i T I i f T

~t | i " j 0 . 1 Bowe (1957,1960);<fr.

\ 193 0 .

OXXH on» o.i

Fig. 135 Christophorou(1971)

Page 95: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

E/p^j. ion cm" Torr"

E/N, wit cm

Fig. 136 Lowke and Parker ( 1969)

50

40

30

20 -

80*/. Xenon - 20'/. CO,

+ *

f , '

• B > 0 T • B = 0.5 T x B = 1.0 T * B = 1.5 T

E D (kV/cm)

Fig. 137 Daumetal.(1978)

Page 96: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

0.9 -5600 ppm

XENON + C0 2

0 - 5 6 0 0 ppm 0 - 0 . 5 6 %

0.8 1

0.7 -

0.6 -

S « _ - i I E u - 1560 ppm » 0.4

. -0.3

-

_ 540 ppm

0.2

j Pm» f ' « • • » •

I20ppm • — — • — « •— t , _ •"" 1Z^

0.1

j Hobm " Oppm

. t —

w i i 1 , 1 , 1 1 r 1 , 1 . 1

0.1 0.2 0.3 0.4 0.5 Q6 Q7 0.8 0.9 X,'p V, cm, mm Hq

2.4^

XENON * C 0 2

0 .56%-8 .9%

0.2 0.3 0.4 S5 06 OJ X/p V/cm/mm Hg

Ql 0.8 09

Fig. 138 English and Hanna(1953) •

90

Page 97: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

2 -

E

1 1 1 1 1 1 1 1 1 1 1

Xe-C02

i i i i i i |

-

^ — 95-5

/J "^^ 98-2

1 • i i t i i i 1 i i

' ^ 99-1

100-0 i i i i i i 1

10 100

E(V/cm.atm)

Fig. 139 Peisert and Sauli(1984)

1000

10 1 1 1—I—I—I I I 1 1 1 — i — r i i i

E E

g 1

Xe-C02

— - 100-0

— 99-1 — 98-2

95-5

0.1 j i i i—i i i i J I l i i i i i 10 100

E (V/cm.atm)

Fig. 140 Peisert and Sauli( 1984)

1000

91

Page 98: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

2 -

\ E

1 1 1 1 1 1 1 1 1 1 1

Xe-CH4

i i i i i 1

1 1 i i i i i i 1 i i i

95-5

^ ^ ^ 98-2

— 99-1

i i i i i 1

10 100 E(V/cm.atm)

Fig. 141 Peisert and Sauli ( 1984)

1000

10 ~ l — I — I — I I I -I 1 1 — I — I I I I

E E

E 1

Xe-CH4

- - — - 100-0

99-1 98-2

^ 95-5

^ 80-20

0.1 j i i i i i i i J l i I I l i J I 10 100

E (V/cm.atm)

Fig. 142 Peisert and Sauli (1984)

1000

92

Page 99: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

"1 I I I I I I I 1 1 — I — I — I I I I

E E

Xe-CH,,-N2 (96-2-2)

^^"X e-CH 4-C0 2 (96-2-2)

2 -

0.1 J I I I ' ' i i J I l__l i i i 10 100

E (V/cm.atm)

Fig. 143 Peisert and Sauli (1984)

1000

"I 1 1 1 I I I I 1 1—I—r

l/l a. E

Xe-CH(,-N2 (96-2-2)

X e-CH 4-C0 2 (96-2-2)

J I I l _ l 1000

E (V/cm.atm)

Fig. 144 Peisert and Sauli (1984)

93

Page 100: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

s-•a

i i ©

4 0 I I I

\

I

Xe 5 0 % c 2

I

H 6 50%

30 f

20 ^^ \ - * ^ E J = 1 . 5 T -

* i

- $_

- B = U i - -

_1 B=0.5T

I

10 i

- $_

- B = U i - -

_1 B=0.5T

I l I i I

- B = U i - -

_1 B=0.5T

I 500 1000 1500 2000

E[V/cm]

Fig. 145 Ramanantsizehena(1979)

2500

45

40

V. E E

35

30

IB=1,5T B=0.5T

Xe 50 % C 2 H 6 5 0 %

0 500 1000 1500 E[V/cm]

Fig. 146 Ramanantsizehena(1979)

2000

94

Page 101: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

500 1000 1500 E[V/cm]

2000

Fig. 147 Ramanantsizehena(1979)

4 5

1 1 I 1

-

4 0

/ Xe 60 % C 2 H 6 4 0 % / b) B--1T

1 "

3 5

/ -

3 0

1 / 1 t 1

-

500 1000 1500 E[V/cm]

2000

I 1 1 1

40

I

/ Xe 6 0 % C 2 H 6 4 0 %

/ c) B s 1 5 T

35 -

30 - -

25

I ...... 1 1 |

-

500 1000 1500 E[V/cm]

2000

95

Page 102: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

I 30;

Xe 7 3 % C 2 H 6 27%

B-1.5T

500 1000 1500 E[Wcm]

2000

40

E E * 35

30

500 1000 1500 E[V/cm]

Fig. 148 Ramanantsizehena(1979)

2000

96

Page 103: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

35-

30-

25-8=0

B = 1.5T

_J I I 500 1000 1500

E[V/Cm]

2000

Fig. 149 Ramanantsizehena(1979)

1 0 -

B-1.5T

JL J_ 500 1000 1500 2000

E[V/cm] 2500

500 1000 1500 2000 E[V/em]

2500

Fig. 150 Ramanantsizehena(1979)

Page 104: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

00

45

S 4 0

.g. E E

35

30 1

60'UXe-U0'U Ethane

. B= 0 T • B = 0.5 T « B = 1.0 T A B= 1.5 T

V u \ t»

E D (kV/cm)

Fig. 151 Daumetal.(1978)

1900 E (to»]

2000

1 1 1 1 1 4 0 - t —

A.

E E 39 i—« -•" T ci M 73% CJHJ 27%

90 1 1 1 1 1

Fig. 152 Ramanantsizehena(1979)

Page 105: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

45-

40-

Ê E

35-

30-

500 1000 1500

E[V/cm]

2000

Fig. 153 Ramanantsizehena(1979)

45

A0 -

35

30

- 73V. Xe-27*/. Ethane • B= 0 T

+ A B = 1.5 T

t t 50°/. Xe - 50°/. Ethane t t o B= 0 T • B = 0.5T

H •

-T

+ •

X 1 1 i 1

E D (kV/cm)

Fig. 154 Daum et al. (1978)

99

Page 106: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

2.10

10'

'ox ' 2 C ,

ec

E u

é

.Xe

Xe80%C 2 H 6 20%

/ X e 6 0 % C 2 H 6 40%

^7x^40% C 2 H 6 60%

X e 2 0 % C 2 H 6 8 0 %

100 1000

E[v/cm]

Fig. 155 Ramanantsizehena(1979)

2000

E E

\ «/» c

?

E (kV/cm) Fig. 156 Alichanian et al. ( 1979)

100

Page 107: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

l/>

T 1 r i i i | T 1 1 1—I I I I

Xe-N,

i i i i i i i i 10 100

E(V/cm.atm)

Fig. 157 Peisert and Sauli (1984)

1000

10

E E

g 1

0.1

1 1 1 1 1 1 T ' T ' I 1 1 I 1 1 1 1 1 1 | -

Xe-N2

i i

i i

^ ^ — 98-2 i ^ 95-5

i ii

.i

i_iJ

1

1—

i i i i i i i i 1 i i i i i i i i 1 i

-

10 100 E (V/cm.atm)

Fig. 158 Peisert and Sauli (1984)

1000

101

Page 108: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

/ " . • "

N 2 J 4 /

wM T __ \* j -•

J -•••^t

*>

_ ! , ! — s"-1 -

„ « . ' — ' ' W"""

_ / •^

7f

.

Pack Voshall,and Phelps (1962); A (300UK). Lowkfi I19R3): « (9930k ) Pack Voshall,and Phelps (1962); A (300UK). Lowkfi I19R3): « (9930k ) Townsena ana oaney u a z i j ; <J uoo~M. Emeléus, Lunt, and Meek (1936); O (288°K). Prasad and Smeaton (1967); • (293°K). Frommhold (1960); « (293°K).

Townsena ana oaney u a z i j ; <J uoo~M. Emeléus, Lunt, and Meek (1936); O (288°K). Prasad and Smeaton (1967); • (293°K). Frommhold (1960); « (293°K).

Townsena ana oaney u a z i j ; <J uoo~M. Emeléus, Lunt, and Meek (1936); O (288°K). Prasad and Smeaton (1967); • (293°K). Frommhold (1960); « (293°K).

Fig. 159 Christophorou(1971)

D L : Crompton and Sutton (1952): 'A'(293 0K). Cochran and Forester (1962); <r (298°K) . Crompton and Elford (1963); A (293°K). Townsend and Bailey (1921 ); O (288°K). Warren and Parker (1962 a, b); • (77.4°K).

D : Wagner, Davis, and Hurst (1967): + (298°K).

10 100

E / P 3 0 0 (volts cm" 1 t o r H )

Fig. 160 Christophorou(1971)

Page 109: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

10"

10 '

10 6

10"

0 2 1

tt* •« 4

O

O

* A i

* °*, ..' ° • 1

, .HI < 0 *• i A

** A

A < 4 i

< V

a *

O Townsena ana oaney i i»^i j , • . Brose (1925): o . Crompton (taken from a graph given in Chanin, Phelps and

Blonc i (1962); O. ~ Nielsen and Bradbury (193/); i r .

Raether (1961 );fc. Healey and Kirkpatrick (in Healey and Reed (1941 Emeleus, Lunt, and Meek (1936); A. Frommhold (1960); • .

; A .

0.1 0.2 0.5 I 2 S 10 20

E / P J 0 0 (volts c m - 1 torr" 1)

Fig. 161 Christophorou(1971)

50 100 2 0 0

1 TTTI 1 i Tn 1 m i ^ .. . 4~-\- ^-j- 4-M-j ( -,-U

r i t ' , J _ ^ _

y --- °\-A

0.1 jT ,*-»

«>

- — 1 - T ^ — ; J : :*..:.! ,*-»

«>

- — - —

- - \-\—-f - - J . r - - \-\—-f - - J . r

/< •••• i .. * j "

!

..

0.01 - • 4 7 7 . 4 " K -j t

•fi i '

m—U^- | . ^ * H f - ,*~* r D, : Warren and Parker (1962 a, b); r D, : Warren and Parker (1962 a, b);

~t~r m. \ i i . t I N ; .

... ^ Skinker and White (1923); ... ^ •fr (288°K).

>nni "" °t w ag ner,

(29! Javis, ai 3°K).

i d -lurst iyt>/);

0.001 o.oi o.i i

E/P300 (volts cm"' torr" 1 )

10

Fig. 162 Christophorou (1971)

Page 110: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

120

100

80 E

60

40

20

w co 2

XgR=16mm

Thermal limit

C0 2 pressure

A-0.5 o-1 • -2 + -3 A-U • -S 1-6 x-7

0 8

E D R kV/cm Fig. 163 Bobkovetal.(1983)

104

Page 111: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

10 7

10e

10=

10'

. 2 : " - r /

\~zt co2 tr " I /

/ À i

Pack, Voshaii, ana rneips UUBZ) ; • (300° K).

Elford (1966); O (293°K). Wagner, Davis, and Hurst (1967);

A (298°K). Bortner, Hurst, and Stone (1957);

A (298°K).

Pack, Voshaii, ana rneips UUBZ) ; • (300° K).

Elford (1966); O (293°K). Wagner, Davis, and Hurst (1967);

A (298°K). Bortner, Hurst, and Stone (1957);

A (298°K).

Pack, Voshaii, ana rneips UUBZ) ; • (300° K).

Elford (1966); O (293°K). Wagner, Davis, and Hurst (1967);

A (298°K). Bortner, Hurst, and Stone (1957);

A (298°K).

Pack, Voshaii, ana rneips UUBZ) ; • (300° K).

Elford (1966); O (293°K). Wagner, Davis, and Hurst (1967);

A (298°K). Bortner, Hurst, and Stone (1957);

A (298°K).

Pack, Voshaii, ana rneips UUBZ) ; • (300° K).

Elford (1966); O (293°K). Wagner, Davis, and Hurst (1967);

A (298°K). Bortner, Hurst, and Stone (1957);

A (298°K). 0.01 0.1

E / P J 0 0 (volts cm"' torr" -1 ta,r-M

Fig. 164 Christophorou(1971)

10

C \ E ra. oc o

>

10

1 r~ p.ATM

1 1 1 1 1 r

m; 4 6 8 E kV/cm

10

Fig. 165 Bobkovetal.(1983)

Page 112: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

10

0.1

0.01

D L Skinker (1922):O <288°k-> Warren and Parker (1962a,b); A (300°K), • (195°K Rees(1964);« (293°K), Warren and Parker (1962a,b); A (300°K), • (195°K Rees(1964);« (293°K),

1 Warren and Parker (1962a,b); A (300°K), • (195°K Rees(1964);« (293°K), Warren and Parker (1962a,b); A (300°K), • (195°K Rees(1964);« (293°K),

Dt : Wagner, Davis, and Hurst (1967); • (298°K). C02 =»"" s ?*

*

V i

1

D5 „ r»ht ) ^ > \ (300-K)»— - i , • * • - • • • • ,iLL

I I ,iLL

0.002 0.01 0.1 1 E / P 3 0 0 (volts cm"' torr"1)

10 100

Fig. 166 Christophorou(1971)

15

E u

(0 O

10

O - i UJ >

o 2 O rr

3 -

LU o

A PURE C0 2

• r r ! ' 1 ' i • i

c 'a

0 2 0 % N 2 6 *

• 8 0 % N 2 *L^^~~^ - " ' -"" 1

o PURE N 2 . " a _â.a-S—

r n W T 1 5 ^ < 8 0 % CO» ^ o. A ^ ~ « f a ^ * #

*r*

-

f ^ / o . * ' « /J*-. ^

. 1 1 L i . . . . . 1 J 10 20 3C 40 50 60

E/N (Td 1

7C 80 90

Fig. 167 Fletcher (1981)

Page 113: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

K36

I _ 10*

10»

10* 10"

H 2 0xQ[

• Bortner, Hurst, 6 Stone « Boiley 6 Dunconson 288 °K » Nielsen 8 Bradbury 293 °K_ • Skinker 288°K -• Rudd 288°K • Boiley S Rudd 288°K

Solid Points Present

10" ' 1.0 E/p (volts/cm-mm Hg)

10 100

Fig. 168 Pack et al. (1962)

r H 0 9 ~f\

o' 4 ~f\ - -I , V-- ;=-F _._ -+>• # _._ -+>•

Ï—C3 - -I ,

- i r - ^A

ï î t • -

r -

° l .0«

ï î t • -

— i

/ : zz: Jrv.:r bW H .ï. zz: """ ,; — 3 T "

.... !:._. _ .... !:._. _ T H

.]ASL T

1 t / . _ . t K>! 1 t / . _ .

:-A?— — , ±_ I J ' i :._T". .:-

/ • /

:._T". .:-

A? .x-ï: 443 K / y

.0*

^3cx i»K

i —i Mi l l Pack, voshall, and Phelps (1962); o (300UK)

• (433° K). Lowke and Rees (1963a,b); + (293°K). Christophorou and Christodoulides (1969);

• (298°K).

Pack, voshall, and Phelps (1962); o (300UK) • (433° K).

Lowke and Rees (1963a,b); + (293°K). Christophorou and Christodoulides (1969);

• (298°K).

Pack, voshall, and Phelps (1962); o (300UK) • (433° K).

Lowke and Rees (1963a,b); + (293°K). Christophorou and Christodoulides (1969);

• (298°K).

Pack, voshall, and Phelps (1962); o (300UK) • (433° K).

Lowke and Rees (1963a,b); + (293°K). Christophorou and Christodoulides (1969);

• (298°K).

Pack, voshall, and Phelps (1962); o (300UK) • (433° K).

Lowke and Rees (1963a,b); + (293°K). Christophorou and Christodoulides (1969);

• (298°K).

,n>

Ryzkc Bailey

> (1966), and Dur

A icar isond 930); D (28 8°K).

E/PjogtvOlt) cm"' forr*')

Fig. 169 Christophorou (1971)

Page 114: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

23

za

H 2 0

jf&ti • K

A

288*1 288*1 D L : Crompton, Rees, and Jory (1965);

»A 4

A

à Bailey and Duncanson (1930);

k (288°K).

20 25 30 35 40 45 90 55 E / P , _ («*> cm"'li»rH)

Fig. 170 Christophorou(1971)

10s

0.01

N 2 0

PFH

Mrtr i

^ pfl

•/ ? +/ 0 °

V* i i

*r / ' -•<

A

/ / Pack, Voshall, and F •helps (1962); D (300°K) .

/

Nielse Skink Bailey

n an Bran and

dV Ri

rauuu Vhite ( Jdd (1<

•y U S o / j ; 1923); O ( 332); A (21

288< 38° >

>K) 0.

at 1.0 E /PJOO (volts em"1 torr"')

«0 100

Fig. 171 Christophorou(1971)

Page 115: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

t ' ' ' ^ J I-»»

17

«>• I

j

1

"1*1=1— - - - ! 1 9

y Y . 0 s i f

\

•o* Y An *K

1

/. Pack, Voshall.and Phelps (1962): • (300°K), / / A(195°K).

,„1 V Nielsen and Bradbury (1937); O (288°K).

Bailey and Duncanson (1930); • (288°K).

Fig. 172 Christophorou(1971)

0.1 O.Z 0.3 0.4 0 .5 0.0 0.7 0.0 0 .9 1.0

1 ' • 1 : 1 • : : C M . • i

.... .... . ,_ . . . 1 . . . . ^-*!-< .-"'•

— •Jr.-" ' i

— —

0 0.04 0.0*1 0.12 0.1S 0.20 0.24 0.22- 0.92 O.M 0.40

C 2 H 4 : D L :

C H 4 : D L

Cochran and Forester (1962);0 Bannon and Brose (1928); Wagner, Davis, and Hurst (1967); • (298°K). Cochran and Forester (1962);4> Cottrell and Walker (1965); Wagner, Davis and Hurst (1967); O (298°K).

Fig. 173 Christophorou(1971)

Page 116: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

o O •o

V7 à

5 I

h

\0 *& CM O (D9ST*/UJD) A1I3013A u iaa

n — i — i — r I — r - i — r

E

8 - 2

o

[SH/UJUJJ "M

o u T3

i s-

a.

(wsrt/ius) A1I0013A idldO O 00 «O * » CM O

(3»srt/uj3) A1I0013A uraa

110

Page 117: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

l 1

Methane 1 1 1 1 1 1

• this meas. corrected c 2= 25 - 725 torr x Wagner [15]

~ 400

•s E

LO 200

• •

« •

+

+ Cochran [22]

*

0 1 1 1 1 ' 1 1 1 0 l l 1 1 1 1 1 1

100 - <~ 0

8 0 / • this meas.

_ / 0 Lehraus [|6]

^ 60 — A —

E E ~ 40 1

20

/ 1 1 1 1 1 1 l l 0 200 400

E ( V/cm ) 600 800

Fig. 177 Piuz(1983)

• " • ( o Christophorou This experiment

• Bortner et al. CH4 | A Wagner et al.

This experiment

100 A

A

A

A

50 - A o A O

<

J ^ 0.5 1.0 1.5

ED(kV/cm)

Fig. 178 Daumetal.(1978)

Page 118: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

N>

200

E

E u Ï

in t

• METHANE

• PROPANE

• ETHANE

111 l l ( -

E (KV/cm)

Fig. 179 Jean-Marie et al. (1979)

DRIFT SPEED IN METHANE AND ETHANE

100

60

40

i E WAGNER

o BORTNER

• DAUM

A CHRISTOPHOROU — THIS EXPERIMENT

CH4

C 2 H B

•<rx*

DRIFT SPEED IN ETHYLENE • A. BRESKIN al AL. I

» E. WAGNER «I AL. 4/ DC. CHENG 5/

+ JE. PARKS at AL V

o TE BORTNER MAL. 7

— THIS EXPERIMENT

50

40

30-

1. 2. 3.

E (Kv/cm)

Fig. 180 Jean-Marie et al. (1979)

Page 119: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

V [ c m / / x s ] Ethylene

Propane

E [kV/cm] J i

0 4 0.6 0.8 Fig. 181 Fehlmann and Viertel (1983)

0

CilO

E/P VOLTS C I * I M I Hg)"'

Fig. 182 Hurst et al. (1963)

113

Page 120: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

f ^ 1 1 — i — I i i i i i 1 1 — i — i i i i i i 1 r

, L l ' ' ' > i i i i i t _ — J — I — I I I I I I I U c * 10 30 50 TO 100 300 500 TOC 1000 3000

C 2

H 6

£ [v/trr.]

-i 1—i i i i i I i 1 1—i—i i I l I i 1 r

U I I I I I M i l 10 3C 50 TO K »

100- '

7 0 -

5 0 -

i 1—i—i i i i i i 1 1 — i — i i i i i i 1 r

i ' I I I I I I I I U i l _ l _ 300 500 TOO 1000 3000

I I I I I I I I I

n — i — i i i i i i

E [v/cmj

1 1 — i — i i i M i 1 r

SO 50 7C 100 XX- a o c TOO 1000

E [v/cmj

_J I I I I I I I ] I I I I I I I I I 30 50 TO OO 300 SOO TOC 100C

100- '

7 0 -

- I 1 ' ' ' ' ' I [_

~t I I I I I I I I I 1 1—I I I | I I T"

J I I ' ' / " l I I l i l i i i • * j 30 K WO 3ÔC K O 7 0 0 <ÔÔÔ~

E [v/cm] t [V/a»0

114

Fig. 183 Ramanantsizehena(1979)

Page 121: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

0 500 1000 1500

E [V/cm]

Fig. 184 Ramanantsizehena(1979)

2000 2500

i 1 1 1 1 1 1 1 1 1 r-

10-

CH 4

1 5 >

A fiC 4H|o+0.2CH4 l i C 4 H l 0 + 0 . 2 C 2 H 6

A i C 4 H l 0 + 0 . 2 C 3 H 8

fC 3r% + 0 .2C 2 H 4

LCjHg+O^CzHe

C 2 H 6

/

/

/ n ^ ° C 2 H .

/ -/ Ay

,+ ''^°'

A A

C 3 H 8 . » • —

iC 4 H| 0

// /Y/ s' . /

_L I - i — i _ 0 0.5 1.0

E/p (kV/cm.atm.) Fig. 185 Lehraus et al. (1982)

1.5

Page 122: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

x I0 6 2 0

1-5-

E u

10

0-5

-

(CHj ) 2 0 /

/ C 4 H 8 O /

/ c 2 H 4 <y C 5 H 7 C H 0 ^ C 2 H 5 C H 0 ^ O / ^

/

/ S^ ^ ^ ^ ^ X 5 H 8 0

^ T i T 1 , 1 , 1 : . 1 i > 1 1

5 6 7 8 9 ElP (V cm-1 torr- 1)

10 12 13 14 15

Electron swarm drift velocities in methyl ether ( (CH 3 ) 2 0) , methyl formate ( C 2 H i 0 3 ) , butyraldehyde (C 3H 7CHO), propionaldehyde (C 2H 6CHO), acetone (C 3 H s O), 2-butane (C4H8O), cyclopentanone (C 5 H e O) and acetylacetone ( C B H B 0 2 ) .

x I0 6 20

1-5

>> 3 1-0

0-5

J 1 L- _i I 1 I 1 I 1 l_ 8 9 10 II 12 13 14 15

ElP Cv cm-' torr-0

Electron swarm drift velocities in water: A, present work; O, Pack et at. 1962; D, Lowke and Rees 1963.

Fig. 186 Christophorou and Christodoulides (1969)

116

Page 123: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

Electron swarm drift velocities in chlorotrifluoromethane (CClFa), chloro-methane (CHSC1), chloroethane (C aH sCl), 1-choropropane (C 3H 7C1), chlorodi-fluoromethane (CHClFa), dichloromethane (CHaCla), l-chlorobutane (C4HBC1) and

1-bromobutane (C4H«Br).

Fig. 187 Christophorou and Christodoulides ( 1969)

x l O 6 3 0 -

25

E u

ss

2 0

1-5

10-

0 5

'_ (C2H5)2MHf /(CHj)2NH

(CHj)3N/ /

/ / / /CJHJNH^

/ / / / /C3H7NH2

II 1 / *7

1 / / / / -^-''CCH2NH2)2

P < 1 , ! , ! , ! , ! . ! i i

1 2 3 4 5 6 7 8 9 ElP (v cm-' torr- l)

10

Electron swarm drift velocities in trimethylamine ((CHs^N), diethylamine ((CaHs)aNH), dimethylamine ((CH 3)aNH), ethylamine (C 2H 8NHa), n-propylamine

(C3H7NH2) and ethylenediamine (CH aNH a)a.

Fig. 188 Christophorou and Christodoulides (1969)

Page 124: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

x 10* 20 CHjOH C 2H 50H

CJHTOH

C 4H 90H

J i i i u 10 II 12

Electron swarm drift velocities in methanol (CH3OH), ethanol (CaHsOH), 1-propanol (C 3H TOH) and 1-butanol (C 4H 9OH).

20

1-5

10

0-5

CHjCN/

C 2 H 5 CN.

-J L _ _ i 1 i l_ J i__l i L J i L J 1 1_ 5 6 7 8 9 10 II

ElP (v cm-' tprr-«i 12 13 14 15

Electron swarm drift velocities in acetonitrile (CHSCN), propionitrile (CaHsCN), butyronitrile (CsH7CN) and acrylonitrile (C 3H aCN).

Fig. 189 Christophorou and Christodoulides (1969)

Page 125: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

E/p [V/cmxTorr]

Fig. 190 Schultz(1976)

— 5 to

E 4

(OCH3)2CH4

/ 20 mm Hq

87mm Hg

100

J L

200 E [ V /cm J

_1 I i

300

_i_

400

3 4 5 6 7 E /p I V/cm • mm Hg J

10

Fig. 191 Breskin(1974)

119

Page 126: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

l lW* !

J u ,--«-- e,H4 -*-—. • / * 1

1 '

Ct»V,

. . • • • >

t !

1 '

Ct»V,

. . • • • >

f r f J? 1 ' J

1 1

/ t

e H t ^ t O i i C i H *

/ L 0

0 0.4 M I.» I.« 1 0 t.4 ! • 9.1 5 4 4.0

CjHjjCjDg: Cottrell and Walker (1965). C H : Hurst and Porks (1966) • (298°K);

2 4

Waqner, Davis, and Hurst (1967) A (298° K)-,

Bowman and Gordon (1967) A-,

Cottrell and Walker (1965) 0.

! i * > , *

uio*)

H

! ' 1 «,M,

H> — >7 i

// " • v

\il ! 1 \

S y »>M,. 4,0, i «IM,. l iD,

8 • »

s - ~ - / . . .. . — — *"**, " ^

/^..

4

3 / / ; - /y

^ " S

2 il

- ) V

->i

- i 0 0.» tt4 0.» O.l 1.0 1.Z 1.4 l.« l.l 2.0

£/•> (««lis cm'1 ter»*'} «/P (•«teCuT' t*rr-')

CH^: Cottrell ond Walker (1965) • ; AsH,, AsD,, SIH 4 , SID4: Cottrell ond Wolker (1965).

Bortner, Hurst, and Stone (1957) A ;

Waqner, Davis and Hurst (1967) 0 •

CD4, CjH,, C SH 8: Cottrell ond Walker (1965).

^ H » * CjH^: Christophorou, Hurst, and

Hodjiantoniou (1966).

Fig. 192 Christophorou (1971)

Page 127: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

1.0

6 4x10

10

2 -

Fraction of Isobutane .80 .60 .40 .20 0 i r

CO2- Isobutane T = 2 9 8 K

.20 .40 .60 Fraction of C0 2

Fig. 193 Becker et al. (1983 b)

.80

10 p 1 1 1 I I I I I I 1 1 1—I I I I I I 1 1 1 I I M-T

</> 6

u _o * 5

> I 0

10

C 0 2 : Isobutane =.95 : .05

i i 11 1 1 i i i i 11 I 1 i i i i i 10 10 10

Electric Field , V/cm

Fig. 194 Becker et al. (1983 b)

10

121

Page 128: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

8

7 -

6

5 -

C 0 2 » Isobutane = .95 ! .05

• Data Calculation

400 600 E( V /cm)

Fig. 195 Becker et al. (1983 b)

1000

100 ~t—i i i i i I 1 i — r

C0 2/iC 4H 1 0 (80/20)

T = 293 K P = 760 Torr

^LONGITUDINAL "

1000

500

c w too §

50

%

500 1000 5000 ELECTRIC FIELD V/cm

10000 10

Fig. 196 Fehlmannetal.(1983)

Page 129: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

1.00

0 20 -

0 .10-

-• 100 TCRR ETHYLENE I

_ A 50 TORR ETHYLENE / . o 99.75 TORR ETHYLENE PLUS 025 TORR WATER •

A 99.5 TORR ETHYLENE PLUS 0.5 TORR WATER S . V 99 TCRR ETHYLENE PLUS 1 TORR WATER , *

CD 98 TORR ETHYLENE PLUS 2 TORR WATER / . Q 96 TCRR ETHYLENE PLUS 4 TORR WATER /

- X _ S 0 - y - y y - y A - / y y

y X - S y y* " / y s - y S es

- /yy ^ -

y y y ^ / y y* ^ _ — " '

/ y y ^*- ^J~'-

• F r T l i i I 1 I i i l_i i_i 1 i_i i_l ] i ; 1 i i_i 1 i i i 1 i . i 1 J i i 1 i 001 0 0 2 0 0 4 0.05 0 0 6 007

E / p ( VOLTS cm-.TORR" )

Fig. 197 Hurst et al. (1966)

0 0 8 0 0 9 0.10

D.UU

- • 100 TORR ETHYLENE 4 50 _ A 50 TORR ETHYLENE , , — 1

_ O 99.75 TORR ETHYLENE PLUS 0 25 TORR WATER A " " A 99.5 TORR ETHYLENE PLUS 0 5 TORR WATER , " " , 0

V 99 TORR ETHYLENE PLUS I TORR WATER ^ . * " . ^ ^ " ' 4 00 CD 98 TORR ETHYLENE PLUS 2 TORR WATER ^y' ^'~ L

96 TORR ETHYLENE PLUS 4 TORR WATEFi ^ 1 „ „ • ' " ^.^•"* - Q 98 TORR ETHYLENE PLUS 2 TORR WATER ^y' ^'~ L

96 TORR ETHYLENE PLUS 4 TORR WATEFi ^ 1 „ „ • ' " ^.^•"*

' 3.50 " yx ^ y'

- *' y' *>' s ' y _ ^ - '' y y

*/ ' y ^ ,='

3.00

2.50 [ '' y y

*/ ' y ^ ,=' / / * y a

2.00

/ / / y a' • n / / / y a' • n

1 50 — /// y ^ ~--~D /// y ^ ~--~D

1 00 1

'// y ay - - Q ' 0.50

gSf-r 0 r i u i i i i i i i I _ J i i i ; i i ' ' ' • ' i ' ' i i i i i i i i i i i

01 0.5 0.6 0 7 0.8

'p ( VOLTS cm-.TORR"' )

Fig. 198 Hurst et al. (1966)

123

Page 130: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

0 5 10 15 20

PERCENT ISOBUTANE IN METHANE - ISOBUTANE MIXTURE

Fig. 199 Barreletetal.(1982)

124

Page 131: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

e 60 -

Fig. 200 Dolgoshein(1984)

Page 132: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

+ — CH t • 7.2 10"' TMAE

CH, • 2.9 1(T3 TEA

x - CH t 8 5 % • C 2 H 4 15%

^ CH t 9 7 % • C0 2 3 %

CH t 8 9 % • i so -C t H w 11%

Ar + 5 10 TEA

C 2 H 6 * 7.2 10"4 TMAE

y CH4 8 7 % • C0 2 13%

J I L -I I I L 0.5 I.O

E D ( kV /cm) at 7 4 0 Torr

Fig. 201 Barrelet et al. ( 1982)

126

Page 133: DRIFT AND DIFFUSION OF ELECTRONS IN GASES: A COMPILATION

VELOCITY (cm/^sec)

°o

p In

3 l

o

•a

I m

- •

1

0 -

- •

Vi

1 -•

o ?•

• •

• • •_, m

a • o

« j Q

a This Work

Ref 1

> o o

ro o i

1

• 0

• •

1)

e

00

a / l c m (microns)

3 l

\ • k

\ . \

<\

\ ^

\ \ C O <o o « o

w A

z ^ o m IO — ^ JP

" < »».

. o 3

V (cm/s)

* 5-

^ i o Œ> o. o 1 ' '

/ /

1 ' •

/

/ /

09 • A o o /

o / '-' /

-^ / n

/ > n / o> o Ul

/ "«4 * .rf. M JE i - O 1 o

w a - . ^ N «< Ul fi) w ""

m

Ul

o

•n N , ^

oV O

s» o K> <: H <* eich

3 - i

100

00

orr)

. ' I -4

' I ' i • i

-* --*

-4 --t

-* \

en 0 ^

-H "

•H + -

- -

- -

- •

- -_ + -

_ -

- 8* -- ~ •

- •

- • > -

- • > •

- • » -- > -

• I i , i , i

-