Drag Calculation

16
Fundamental Principles & Equations  < 2.6. An application of the momentum equation >   Drag of a 2-D body   Consider a two-dimensional b ody in a flow Aerodynamics 2008 spring - 1 -

Transcript of Drag Calculation

Page 1: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 1/17

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 Consider a two-dimensional body in a flow 

Aerodynamics 2008 spring - 1 -

Page 2: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 2/17

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 Surface forces : two contributions

•  The pressure distribution over the surface abhi 

 abhi 

 pn dA 

•  The surface force on def created by the presence of the body

Aerodynamics 2008 spring - 2 -

Page 3: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 3/17

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 Resultant aerodynamic force : R' 

 Because the body surface and volume surface haveopposite normals n, this R' is precisely equal and opposite

to all the def surface integrals for the control volume.

Aerodynamics 2008 spring - 3 -

Page 4: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 4/17

dt  

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 Considering the integral form of the momentum equation 

 Vdv  

  V 

  n VdA

 

 

abhi 

 pn dA  R

 

 The right-hand side of this equation is physically the force

on the fluid moving through the control volume 

Aerodynamics 2008 spring - 4 -

Page 5: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 5/17

V   VdA 

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 Assuming steady flow, above equation becomes 

 R    

 n   

 

abhi 

 pn dA 

Aerodynamics 2008 spring - 5 -

Page 6: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 6/17

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 The x component of  R' is the aerodynamic drag D'  

 

 D   V   n u dA 

abhi 

 pn  i  dA 

 Because the boundaries of the control volume abhi are

chosen far enough form the body, p is constant along these

boundaries. So, we have 

abhi 

 pn  i  dA 0 

Aerodynamics 2008 spring - 6 -

Page 7: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 7/17

 

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 Finally, we obtain 

 D    

 n u dA 

Aerodynamics 2008 spring - 7 -

Page 8: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 8/17

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 The momentum-flux integral is zero on the top and bottom

boundaries, since these are defined to be along streamlines,

and hence have zero momentum flux. Only the momentum

flux on the inflow and outflow planes remain.  a

2b

  (V   n)u dA  i  1u1 dy  h 

2u

2dy 

( where dA=dy(1) ) 

Aerodynamics 2008 spring - 8 -

Page 9: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 9/17

1 1

2

2

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 Using continuity equation, 

i  1u1dy 

 h 

2u

2 dy 

 u2 dy i 

 h 2u2u1dy 

So...

  V   n u dA b 

h  

2u2

u1dy  h  u

2 dy 

 h 2u2 u1  u2 dy 

Aerodynamics 2008 spring - 9 -

Page 10: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 10/17

Fundamental Principles & Equations < 2.6. An application of the momentum equation > 

 Drag of a 2-D body 

 Therefore, 

 D  2u

2u

1  u2 dy 

 For incompressible flow, ρ=constant, equation becomes 

 D  

 u2 u1

  u2 dy 

Aerodynamics 2008 spring - 10 -

Page 11: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 11/17

Fundamental Principles & Equations < 2.7. Energy equation > 

 Energy conservation 

 Physical principle : 

Energy can be neither created nor destroyed ; it can only

change in form

 System and surroundings

q w  de 

•  δq : heat to be added to the system form the surroundings

•  δw : the work done on the system by the surroundings

•  de : the change of internal energy 

Aerodynamics 2008 spring - 11 - 

Page 12: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 12/17

Fundamental Principles & Equations < 2.7. Energy equation > 

 Energy conservation 

 The first law of thermodynamics 

 B1   B2    B3 

•  B1 : rate of heat added to fluid inside control volume form

surroundings

•  B2 : rate of work done on fluid inside control volume

•  B3 : rate of change of energy of fluid as it flows through

control volume

Aerodynamics 2008 spring - 12 -

Page 13: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 13/17

Fundamental Principles & Equations < 2.7. Energy equation > 

 Energy conservation 

 Rate of volumetric heating

q dv v 

 Heat addition to the control volume due to viscous effects

Q viscous 

 Therefore,

 B1  qv 

dv  Q viscous 

Aerodynamics 2008 spring - 13 -

Page 14: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 14/17

  V  

Fundamental Principles & Equations < 2.7. Energy equation > 

 Energy conservation 

 Rate of work done by pressure force on S  

   p dS V  S 

 Rate of work done by body forces 

 f  v 

dvV  

 The total rate of work done on the fluid 

 B2

 

 pV  dS

 

  

  dv  W 

 

viscous 

Aerodynamics 2008 spring - 14 -

Page 15: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 15/17

Fundamental Principles & Equations < 2.7. Energy equation > 

 Energy conservation 

 Net rate of flow of total energy across control surface 

    

V 2  

 V  S 

 dS  e 2  

 Time rate of change of total energy inside v (controlvolume)

     V 2 

t    e  2

   dv 

v      In turn, B3 is the sum of above equations 

     V 2       

V 2  

 B3  

   e  dv   V   dS  e   t 

v    2    S     2   

Aerodynamics 2008 spring - 15 -

Page 16: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 16/17

viscous 

2

Fundamental Principles & Equations < 2.7. Energy equation > 

 Energy conservation 

 Energy conservation equation

     

q dv  Qviscous

   pV  S 

 dS     f  v 

V dv  W 

 

      V       V 

2   

dS 

t    e2

dv     e V 2

v       S      

Page 17: Drag Calculation

7/29/2019 Drag Calculation

http://slidepdf.com/reader/full/drag-calculation 17/17

 Aerodynamics 2008 spring - 16 -