Draft: Reimagining the nuclear energy industry

23
1768 East 25 th Street Suite 301 Cleveland, OH 44114 216.367.0602 egeneration.org Reimagining the Nuclear Energy Industry Imagining life without LongTerm Nuclear Waste Authored By: Jon Paul Morrow eGeneration Fellow

description

Not a final version, may contain errors.

Transcript of Draft: Reimagining the nuclear energy industry

   

1768  East  25th  Street  Suite  301  Cleveland,  OH  44114  216.367.0602  

egeneration.org  

Reimagining the Nuclear Energy Industry  

Imagining  life  without  Long-­‐Term  Nuclear  Waste  

Authored  By:  Jon  Paul  Morrow    eGeneration  Fellow  

 

TABLE OF CONTENTS

Abstract  ...................................................................................................................  Error!  Bookmark  not  defined.  

The  Nuclear  Waste  Policy  Act  ........................................................................................................................................  3  

The  Yucca  Mountain  Program  .......................................................................................................................................  3  

Government  Liabilities  .....................................................................................................................................................  3  

Recycling  Nuclear  Waste  ..................................................................................................................................................  4  

The  Integral  Fast  Reactor  ................................................................................................................................................  5  

If  France  Can  Do  It,  We  Can  Do  It  Better,  Right?  ....................................................................................................  6  

The  US  Outlook  for  Recycling  Nuclear  Waste  .........................................................................................................  7  

An  Inherently  Safe  Molten  Salt  Reactor  Actinide  Burner  ..................................................................................  8  

Higher  Outlet  Temperatures  and  Efficiency  ..........................................................................................................  10  

LCMSRs  can  also  use  Thorium  as  a  Fuel  ..................................................................................................................  10  

The  Molten  Salt  Reactor  Experiment  ........................................................................................................................  10  

Safety  of  Molten  Salt  Reactors  .....................................................................................................................................  12  

Better  Inherent  Safety  .....................................................................................................................................................  14  

Self-­‐Stabilizing  Core  .........................................................................................................................................................  14  

Passive  Safety  and  Inherent  Resistance  to  Beyond-­‐Design-­‐Basis  Events  ................................................  16  

Lowering  the  Hurdles  for  a  U.S.  Spent  Nuclear  Fuel  Repository  ..................................................................  17  

Waste  Disposal  Trust  Fund  ...........................................................................................................................................  18  

Co-­‐Location  Offers  Many  Advantages  ......................................................................................................................  19  

Fuel  Processing  ..................................................................................................................................................................  19  

Conclusions  ..........................................................................................................................................................................  20  

 

 

    Reimagining  the  Nuclear  Energy  Industry  |    1    

EXECUTIVE SUMMARY

Many  people  quite  reasonably  feel  that  the  nuclear  industry  should  not  continue  operation  without  having  a  solution  for  the  disposal  of  its  highly  radioactive  waste,  whether  that  waste  is  in  the  form  of  spent  fuel  or  the  results  of  other  operations  such  as  reprocessing.  However,  the  industry  has  in  fact  developed  the  necessary  technologies  and  implemented  most  of  them.    The  remaining  issue  is  an  acceptable  safe  storage  of  long-­‐lived,  high-­‐level  radioactive  material  regardless  of  its  format.  Whatever  the  political  path  forward  on  this  issue,  the  proposed  solutions  must  be  acceptable  to  the  public.    That  requires  a  dedicated  effort  to  educate  the  public  on  the  safety  of  whatever  path  is  chosen.  

Today,  safe  management  practices  are  implemented  or  planned  for  all  categories  of  radioactive  waste.  Low-­‐level  waste  (LLW)  and  most  intermediate-­‐level  waste  (ILW),  which  make  up  most  of  the  volume  of  waste  produced  (97%),  are  being  disposed  of  securely  in  near-­‐surface  repositories  in  many  countries  so  as  to  cause  no  harm  or  risk  in  the  long-­‐term.  This  practice  has  been  carried  out  for  many  years  in  many  countries  as  a  matter  of  routine.  

High-­‐level  waste  (HLW)  is  currently  safely  contained  and  managed  in  interim  storage  facilities.  The  amount  of  HLW  produced  (including  Spent  Nuclear  Fuel  (SNF)  when  this  is  considered  a  waste)  is  in  fact,  small  in  relation  to  other  industry  sectors.  HLW  is  currently  increasing  by  about  12,000  tonnes  worldwide  every  year,  which  is  the  equivalent  of  a  two-­‐story  structure,  built  on  a  basketball  court  and  is  miniscule  compared  with  other  industrial  wastes.  The  use  of  interim  storage  facilities  currently  provides  an  appropriate  environment  in  which  to  contain  and  manage  this  amount  of  waste.  These  facilities  also  allow  for  the  heat  and  radioactivity  of  the  waste  to  decay  prior  to  long-­‐term  geological  disposal.  In  fact,  after  40  years  there  is  only  about  one  thousandth  as  much  radioactivity  as  when  the  spent  fuel  is  removed  from  the  reactor.  Interim  storage  provides  an  appropriate  means  of  storing  used  fuel  until  a  time  when  a  country  has  sufficient  fuel  to  make  a  repository  development  with  economic  and  political  and  public  acceptance  of  the  repository,  or  a  system  to  recycle  the  SNF.  

In  the  long-­‐term,  however,  appropriate  disposal  arrangements  are  required  for  HLW,  due  to  its  prolonged  radioactivity.  Disposal  solutions  are  currently  being  developed  for  HLW  that  are  safe,  environmentally  sound,  and  publicly  acceptable.      In  the  government  sector,  highly  radioactive  waste  has  been  successfully  immobilized  in  borosilicate  glass,  poured  into  stainless  steel  canisters,  and  safely  (temporarily)  stored  in  on-­‐site  concrete  vaults  since  the  middle  1990’s.  

 

 

    Reimagining  the  Nuclear  Energy  Industry  |    2    

The  current  solution  that  is  widely  accepted  as  feasible  is  deep  geological  disposal,  and  repository  projects  are  well  advanced  in  some  countries,  such  as  Finland,  Sweden,  and  the  USA.  In  fact,  in  the  USA  a  deep  geological  waste  repository,  the  Waste  Isolation  Pilot  Plant  (WIPP),  is  already  in  operation  in  New  Mexico  for  the  disposal  of  transuranic  waste  (long-­‐lived  Intermediate  Level  Waste  (ILW)  contaminated  with  military  materials  such  as  Plutonium).  The  proposed  Yucca  Mountain  repository  for  long-­‐lived  HLW  in  Nevada  is  showing  classic  NIMBY  (Not  In  My  Back  Yard)  resistance.  These  countries  have  demonstrated  that  political  and  public  acceptance  issues  at  a  community  and  national  level  can  be  met.  

With  the  availability  of  technologies  and  the  continued  progress  being  made  to  develop  publicly  acceptable  sites,  it  is  logical  and  important  that  construction  of  new  nuclear  facilities  continue.  Nuclear  energy  has  distinct  environmental  advantages  over  fossil  fuels.  In  fact,  prior  to  consideration  of  the  issue  of  containing  and  managing  virtually  all  its  wastes,  it  must  be  recognized  that  nuclear  power  stations  do  not  cause  any  pollution.  The  fuel  for  nuclear  power  is  virtually  unlimited,  considering  both  geological  and  technological  aspects.  There  is  plenty  of  Uranium  in  the  Earth’s  crust,  and  furthermore,  well-­‐proven  (but  not  yet  fully  developed  for  commercial  applications)  technology,  like  liquid  core  molten  salt  reactors  (LCMSR),  has  the  potential  to  extract  almost  all  the  energy  from  nuclear  fuels  (which  current  reactors  do  not  do)  and  produce  no  long-­‐term  waste  and  a  very  small  amount  of  short-­‐term  nuclear  waste.  The  current  safety  record  of  nuclear  energy  is  better  than  for  any  other  major  industrial  technology,  and  it  will  only  continue  to  improve  with  new  nuclear  reactors  such  as  LCMSRs.  All  these  benefits  should  be  taken  into  account  when  considering  the  construction  of  new  facilities  and  in  the  consideration  of  the  budget  for  long-­‐term  storage  or  for  recycling  nuclear  waste.  

Whether  nuclear  fuel  is  used  only  once  or  recycled  for  subsequent  use,  disposal  of  high-­‐level  radioactive  byproducts  in  a  fortified  repository  will  be  necessary.  Underground  disposal  in  specially  designed  facilities  like  Yucca  Mountain  or  the  Waste  Isolation  Pilot  Plant  in  New  Mexico  is  an  essential  element  of  a  sustainable,  integrated  used  nuclear  fuel  management  program.    

 

 

 

    Reimagining  the  Nuclear  Energy  Industry  |    3    

THE NUCLEAR WASTE POLICY ACT

In  1982,  Congress  passed  the  Nuclear  Waste  Policy  Act  directing  the  Department  of  Energy  to  build  and  operate  a  repository  for  used  nuclear  fuel  and  other  high-­‐level  radioactive  waste.  The  act  set  a  deadline  of  1998  for  the  Energy  Department  to  begin  moving  used  fuel  from  nuclear  energy  facilities  to  the  repository.    

To  fund  the  federal  program,  the  act  established  a  Nuclear  Waste  Fund.  Since  1983,  electricity  consumers  have  paid  into  the  fund  one-­‐tenth  of  a  cent  for  every  kilowatt-­‐hour  of  electricity  produced  at  nuclear  power  plants.  These  fees  continue  to  accumulate  at  a  rate  of  $750  million  a  year,  and  the  fund  accrues  more  than  $1  Billion  in  interest  each  year.  The  fund’s  balance,  as  of  May  2013,  was  more  than  $29  Billion.  Without  a  high-­‐level  radioactive  waste  management  program  and  annual  congressional  appropriations,  these  funds  are  not  available  for  their  intended  purpose.  

 

THE YUCCA MOUNTAIN PROGRAM

In  1987,  Congress  amended  the  Nuclear  Waste  Policy  Act,  directing  the  Department  of  Energy  (DOE)  to  study  exclusively  Nevada’s  Yucca  Mountain,  a  remote  desert  location,  as  the  site  for  a  potential  repository  for  geologic  disposal  of  used  nuclear  fuel.  After  two  decades  of  site  studies,  the  federal  government  filed  a  construction  license  application  in  2008  for  a  repository  at  Yucca  Mountain.    

However,  President  Obama  in  2010  stopped  the  Yucca  Mountain  license  review  and  empaneled  a  study  commission  to  recommend  a  new  policy  for  the  long-­‐term  management  of  used  fuel  and  high-­‐level  radioactive  waste.  In  January  2012,  the  Blue  Ribbon  Commission  on  America's  Nuclear  Future  published  its  final  recommendations,  most  of  which  are  supported  by  the  industry.    DOE’s  used  fuel  management  strategy  to  implement  the  commission’s  recommendations  was  issued  in  January  2013.  

 

GOVERNMENT LIABILITIES

The  Nuclear  Waste  Policy  Act  of  1982  to  began  requiring  the  Department  of  Energy  to  remove  used  fuel  from  reactor  sites  by  1998.  The  government’s  failure  to  do  so  has  resulted  in  nearly  $2  Billion  in  court-­‐awarded  damage  settlements  being  paid  from  the  taxpayer-­‐funded  

 

    Reimagining  the  Nuclear  Energy  Industry  |    4    

Judgment  Fund  to  compensate  energy  companies  for  storing  the  used  fuel  onsite.  Damages  could  reach  more  than  $20  Billion  by  2020,  and  up  to  $500  million  annually  after  2020.  

 

RECYCLING NUCLEAR WASTE

The  $29  billion  sitting  in  the  Nuclear  Waste  Management  Fund  is  more  than  enough  to  finish  the  commercialization  of  two  competing  reactor  technologies,  the  IFR  (Integral  Fast  Reactor)  and  the  LCMSR  (Liquid  Core  Molten  Salt  Reactor),  as  well  as  the  infrastructure  needed  to  handle  and  process  high  level  nuclear  waste  to  be  used  as  fuel  for  these  technologies.  These  technologies  could  reduce  current  high-­‐level  nuclear  waste  levels  by  an  expert-­‐estimated  99%.  

When  technology  is  considered,  there  is  no  problem  with  nuclear  waste.  We  have  the  technological  know-­‐how  to  recycle  or  store  many  types  of  nuclear  waste  in  repositories  very  safely.  

Spent  Nuclear  Fuel  (SNF),  otherwise  commonly  known  as  high-­‐level  nuclear  waste  or  just  simply  nuclear  waste,  has  long  been  reprocessed  to  extract  fissile  materials  for  recycling  to  provide  fresh  fuel  for  existing  and  future  nuclear  power  plants.  France  has  been  recycling  nuclear  waste  since  the  1980’s.  

The  entirety  of  spent  nuclear  fuel  is  not  waste.    Plutonium  and  Uranium  –  which  can  be  recycled  –  contribute  about  98%  of  all  the  spent  nuclear  fuel  stockpiles,  and  thus,  only  the  remaining  two  percent  of  the  spent  fuel  is  waste  that  needs  to  be  sequestered  from  the  environment.  

In  the  past,  the  main  reason  for  reprocessing  SNF  has  been  to  recover  unused  Uranium  and  Plutonium  in  the  used  fuel  elements  and,  thereby,  close  the  fuel  cycle.  This  approach  captures  the  vast  amount  of  energy  still  remaining  in  the  SNF.    

The  primary  driver  for  the  recycling  of  SNF  is  to  increase  utilization  of  available  natural  resources  for  energy  generation.  Waste  management  benefits  are  secondary,  and  advanced  fuel  cycle  technologies  are  not  needed  for  the  safe  disposal  of  used  fuel  and  high-­‐level  waste.  

In  America,  the  current  approach  is,  after  being  used  once  in  the  reactor,  SNF  is  typically  removed.  After  a  period  of  onsite  storage,  it  would  be  sent  to  a  repository  (for  which  Yucca  Mountain  was  intended)  for  ultimate  disposal.    This  approach  is  called  an  open  fuel  cycle.  On  the  other  hand,  the  recycling  and  reuse  of  nuclear  fuel  takes  place  in  a  closed  cycle.  This  is  an  

 

    Reimagining  the  Nuclear  Energy  Industry  |    5    

approach  that  captures  the  vast  amount  of  energy  still  remaining  in  the  SNF,  as  what  is  done  in  France.  

While  the  recycling  of  Plutonium  in  light  water  reactors  is  a  mature  commercial  technology,  the  current  improvements  in  resource  utilization  are  modest.  Single-­‐pass  recycling,  for  example,  only  provides  Uranium  savings  on  the  order  of  12%  to  15%.  The  uses  of  competing  technologies  like  a  LCMSR  (Liquid  Core  Molten  Salt  Reactor)  or  IFR  (Integral  Fast  Reactor)  are  technologies  that  could  greatly  increase  the  percentage  of  nuclear  fuels  recycled.  

The  full  promise  of  recycling  –  that  is,  natural  Uranium  savings  on  the  order  of  95  per  cent  -­‐  can  only  be  realized  with  the  commercial-­‐scale  deployment  of  fast  reactor  and/or  Molten  Salt  Reactor  technologies.      

 

THE INTEGRAL FAST REACTOR

The  Integral  Fast  Reactor  (IFR),  a  type  of  Generation  IV  Reactor,  was  developed  at  Argonne  National  Laboratory  in  the  US,  but  was  cancelled  in  1994  for  political  reasons,  just  as  demonstrations  were  being  prepared  after  a  decade  of  successful  development.    

Since  then,  interest  has  grown  in  recovering  all  long-­‐lived  actinides  -­‐  together  with  Plutonium  –  to  recycle  them  in  the  IFR  so  that  they  end  up  as  short-­‐lived  fission  products.  

As  can  be  deduced  from  the  word  “fast”  in  its  name,  the  IFR  is  a  type  of  reactor  that  allows  neutrons  to  move  at  higher  speeds  by  eliminating  the  moderating  materials  used  in  thermal  reactors.  The  greater  velocity  of  the  neutrons  results  in  a  more  energetic  splitting,  and  thus  a  greater  number  of  neutrons  being  liberated  from  the  collisions.  The  result  is  that  the  fuel  is  utilized  much  more  efficiently.  

Whereas,  a  normal  light  water  reactor  utilizes  about  1%of  the  fissionable  material  that  was  in  the  original  ore,  with  the  rest  being  treated  as  waste,  a  fast  reactor  can  burn  up  virtually  all  of  the  Uranium  in  the  ore.  In  addition,  the  fuel  can  be  recycled  on  site  in  a  process  that  removes  the  fission  byproducts  and  incorporates  the  actinides  from  the  spent  nuclear  fuel  (SNF)  into  new  fuel  rods,  which  are  then  reloaded  into  the  reactor.  The  resulting  waste  can  then  be  stabilized  by  vitrification,  and  stored  for  thousands  of  years  without  fear  of  significant  air  or  groundwater  contamination.    

 

 

    Reimagining  the  Nuclear  Energy  Industry  |    6    

The  waste  coming  from  an  IFR  does  not  have  to  be  stabilized  for  nearly  as  long  as  waste  from  a  traditional  reactor.  Unlike  the  waste  from  the  thermal  reactors  used  today,  waste  elements  from  IFRs  have  much  shorter  half-­‐lives  than  the  actinides  that  have  been  retained  in  the  reprocessing  and  subsequently  reloaded  into  the  IFR’s  core  for  further  fissioning.  With  the  actinides  removed  from  the  SNF,  dealing  with  this  new  type  of  nuclear  waste  becomes  easily  manageable.    

The  Science  Council  for  Global  Initiatives  (SCGI),  an  international  Non-­‐Governmental  Organization  (NGO)  aiming  to  get  the  first  commercial-­‐demonstration  IFR,  claims  that  the  98%  -­‐  99%  of  the  energy  left  in  the  spent  fuel  from  traditional  reactors  can  provide  all  the  energy  the  world  needs  for  a  couple  centuries.  

“The  IFR  can  be  the  solution  to  virtually  all  of  the  problems  humanity  faces  today  that  are  in  any  way  connected  to  energy.  Instead  of  recovering  less  than  2%  of  the  energy  in  Uranium,  IFRs  can  utilize  nearly  100%  of  it,  making  them  many  times  more  efficient  than  conventional  reactors.  They  leave  behind  no  long-­‐lived  waste  products,  and  the  small  amount  left  can  be  easily  and  safely  disposed  of,”  the  SCGI  states.  

Chairman  of  the  Georgia  Public  Service  Commission  Tim  Echols  was  recently  heard  saying  that  the  mounting  SNF  being  stored  on  the  site  of  nuclear  plants  was  like  “constipation  blocking  the  progress  of  the  industry,”  and  that  a  better  idea  would  be  to  recycle  the  fuel  rods  as  the  French  do  so  that  they  can  be  used  again.  According  to  Echols,  Nathan  Deal,  the  governor  of  Georgia,  has  already  given  his  support  to  a  policy  change  and  to  locating  a  fuel-­‐reprocessing  plant  in  Georgia.  

 

IF FRANCE CAN DO IT, WE CAN DO IT BETTER, RIGHT?

Areva,  headquartered  in  France,  has  been  at  the  forefront  in  spent  nuclear  fuel  (SNF)  recycling  and  has  reached  an  industrial  maturity  that  lends  itself  well  to  use  elsewhere.  However,  other  countries,  such  as  the  United  States,  have  not  adopted  policies  to  adopt  this  technology.  Areva  has  undertaken  de-­‐conversion  of  enrichment  tails  at  Pierrelatte  since  the  1980s,  and  today,  at  its  La  Hague  site,  it  operates  the  MELOX  plant,  a  used-­‐fuel  recycling  facility  with  capacity  of  1,700  tons  per  year  that  has  been  working  since  1995.  It  is  also  the  world’s  only  operational  large-­‐capacity  Mixed  Oxide  (MOX)  fuel  production  plant.  

 

 

    Reimagining  the  Nuclear  Energy  Industry  |    7    

Areva  has  proposed  building  a  $20  billion  plant  in  the  US  with  a  technology  similar  to  the  one  it  uses  in  France,  where  17  per  cent  of  electricity  is  derived  from  recycled  SNF.  According  to  Areva,  the  group  has  joined  with  Duke  Energy,  one  of  America's  largest  nuclear  power  producers,  to  submit  a  proposal  to  the  Department  of  Energy  for  the  construction  of  a  MOX-­‐fuel  fabrication  plant  to  supply  MOX  fuel  to  reactors  in  the  US.    The  MOX  Fuel  Fabrication  Facility  (MFFF),  which  will  be  used  to  recycle  nuclear  materials  in  weapons,  is  under  construction  at  the  Savannah  River  Site  (SRS)  in  South  Carolina  but  has  experienced  cost  and  schedule  overruns  primarily  due  to  adapting  the  French  approach  to  American  standards  and  requirements.  

 

A  common  question  raised  during  discussions  on  reprocessing  is,  “If  the  French  are  reprocessing  used  fuel,  why  isn’t  the  US?”    

 

In  many  ways,  the  U.S.  and  France  represent  opposite  ends  of  the  spectrum.  

In  France,  the  recycling  of  MOX  in  light-­‐water  reactors  is  a  very  mature,  ongoing  commercial  practice  supported  by  an  existing  industrial,  commercial,  and  regulatory  infrastructure.  This  situation  has  resulted  from  a  deliberate,  multi-­‐decade  national  energy  policy  prioritizing  energy  security  for  a  country  with  limited  domestic  natural  energy  resources.  Accordingly,  there  would  need  to  be  a  compelling  reason  for  France  to  abandon  its  recycling  program.  

In  the  US,  initial  plans  for  building  a  recycling  program  were  abandoned  in  the  1970s  due  to  proliferation  concerns.    The  accompanying  infrastructure  was  not  fully  developed  or  ever  completed.  A  compelling  case  would  need  to  be  made  for  launching  a  recycling  program  in  the  U.S.  in  the  face  of  the  additional  expense  needed  for  development  and  infrastructure.  

 

THE US OUTLOOK FOR RECYCLING NUCLEAR WASTE

In  the  nearer  term,  the  overriding  considerations  for  nuclear  power  are  safety,  reliability,  and  affordability.  Current  Uranium  projections  indicate  adequate  fuel  supplies  for  the  remainder  of  the  21st  century,  and  accordingly,  departure  from  the  once-­‐through  fuel  cycle  using  current  light  water  reactor  technology  will  require  a  compelling  business  case.  

 

 

    Reimagining  the  Nuclear  Energy  Industry  |    8    

Considering  the  capital-­‐intensive  infrastructure  required  to  bring  commercial  recycling  to  the  US,  a  number  of  conditions  must  be  met  to  shift  from  the  current  once-­‐through  fuel  cycle  based  on  light-­‐water  reactor  technology.  These  conditions  include  a  stable  national  energy  policy  and  strategic  vision;  maturity  of  the  regulatory  infrastructure;  a  proven  fuel  cycle  technology  and  designs;  and  cost  and  schedule  estimates.  

Furthermore,  several  other  criteria  need  to  be  met  to  justify  transitioning  from  the  current  fuel  cycle  to  one  of  reprocessing  fuel  for  use  in  our  present  light  water  reactor  fleet.  Uranium  prices  much  higher  than  they  are  today  would  be  required  to  make  such  an  approach  financially  appealing.    Recycling  of  Plutonium  (as  MOX)  could  become  economically  feasible  as  long  as  reprocessing  costs  are  competitive.  The  deployment  of  advanced  reactors,  like  the  IFR  and  LCMSR  and  other  fuel  cycle  technologies  could  extend  the  fuel  supply  through  better  consumption  and  efficient  use  of  nuclear  fuel  if  Uranium  resources  become  limiting.    

Although  the  two  terms  “reprocessing”  and  “recycling”  are  often  used  interchangeably,  reprocessing  represents  just  one  element,  albeit  a  very  important  one,  needed  to  support  a  recycling  fuel  cycle.  

Given  that  the  primary  objective  of  building  and  operating  a  nuclear  fuel  cycle  is  for  energy  generation,  the  primary  focus  on  research,  development,  and  demonstration  (RD&D)  programs  should  be  on  the  reactor,  not  spent  nuclear  fuel  storage,  as  the  key  enabling  technology,  as  that  is  the  point  where  energy  is  generated.  All  other  technologies  and  infrastructures  exist  to  support  the  safe,  reliable,  and  economic  operation  of  the  reactor.    

 

AN INHERENTLY SAFE MOLTEN SALT REACTOR ACTINIDE BURNER

Thermal-­‐spectrum  molten  salt  reactors  have  long  interested  the  nuclear  engineering  community  because  of  their  many  safety  benefits  –  inherent  passive  shutdown  ability,  low  pressure  piping,  negative  void  and  temperature  coefficients,  and  chemically  stable  coolants  –  as  well  as  their  scalability  to  a  wide  range  of  power  outputs.    

MSRs  (Molten  Salt  Reactors),  including  those  using  a  liquid  core  approach,  were  originally  developed  at  the  Oak  Ridge  National  Laboratory  (ORNL)  in  the  1950s,  1960s,  and  1970s,  and  working  versions  were  shown  to  operate  as  designed.    

 

 

    Reimagining  the  Nuclear  Energy  Industry  |    9    

The  bulk  of  the  early  work  on  these  MSR  designs  focused  on  component  lifetime  –  specifically,  developing  alloys  able  to  maintain  their  mechanical  and  material  integrity  in  a  corrosive,  radioactive  salt  environment.  Experimental  tests  running  over  several  years  at  ORNL  in  the  1960s  and  1970s  showed  that  modified  Hastelloy-­‐N  possesses  the  necessary  chemical  and  radiation  stability  for  long-­‐term  use  in  the  fabrication  of  molten  salt  reactors.    

Despite  very  promising  progress  on  the  MSR,  the  United  States  remained  focused  on  light-­‐water  reactors  for  commercial  use,  primarily  because  of  extensive  previous  operating  experience  with  naval  water-­‐cooled  reactors  and  early  success  with  commercial  light  water  power  reactors.    

Advocates  of  Thorium  and  increasing  demand  for  small  modular  reactors  have  driven  a  renewed  examination  of  molten  salt  reactors  beginning  in  the  1990s.  In  2002,  the  multinational  Generation  IV  International  Forum  (GIF)  reviewed  approximately  one  hundred  of  the  latest  reactor  concepts  and  selected  molten  salt  reactors  as  one  of  the  six  advanced  reactor  types  most  likely  to  shape  the  future  of  nuclear  energy  “due  to  advances  in  sustainability,  economics,  safety,  reliability,  and  proliferation-­‐resistance.”    

Nearly  all  currently  operating  commercial  reactors  use  solid  Uranium  oxide  as  fuel.  The  Uranium  oxide,  which  is  in  the  form  of  solid  pellets,  is  surrounded  by  a  metal  cladding  that  helps  the  fuel  retain  its  shape  within  the  reactor  and  provides  a  barrier  to  the  release  of  fission  products  into  the  surrounding  coolant.    

In  contrast,  a  Molten  Salt  Reactor,  such  as  the  design  of  Transatomic’s  WAMSR  (Waste  Annihilating  Molten  Salt  Reactor),  uses  liquid  fuel  instead  of  solid  fuel.  Transatomic’s  WAMSR  uses  Uranium  (or  spent  nuclear  fuel  [SNF])  dissolved  in  a  molten  fluoride  salt,  which  acts  as  both  fuel  and  coolant.    

Liquid  fuel  offers  significant  advantages  during  normal  operation.  Primarily,  it  permits  better  heat  transfer  between  the  fuel  and  coolant,  which  in  turn  allows  for  higher  reactor  outlet  temperatures.  Higher  outlet  temperatures  lead  to  higher  overall  thermal  efficiency  for  the  plant.  Liquid  fuel  reactors  also  eliminate  the  need  for  fuel  enrichment  and  fabrication,  thereby  greatly  reducing  the  overall  fuel  cycle  costs.  

 

 

   Reimagining  the  Nuclear  Energy  Industry  |    10    

HIGHER OUTLET TEMPERATURES AND EFFICIENCY

In  a  commercial  light  water  reactor,  water  is  used  as  a  working  fluid  to  carry  the  heat  away  from  the  hot  outer  surface  of  the  fuel  cladding,  typically  at  about  330°C,  to  the  plant’s  power  conversion  loop.  A  higher  cladding  temperature  allows  for  a  higher  water  temperature,  which  allows  for  a  more  efficient  power  production  cycle.  A  problem  with  solid  fueled  reactors,  however,  is  that  the  Uranium  oxide  material  is  a  poor  heat  conductor.  In  most  light  water  reactors  it  is  not  possible  to  increase  the  outer  cladding  temperature  significantly  beyond  330°C,  because  that  would  result  in  an  unacceptably  high  fuel  centerline  temperature  that  would  destroy  the  fuel  assembly.    

A  liquid-­‐fueled  reactor  does  not  have  these  problems,  because  the  fuel  and  coolant  are  the  same  material.  The  fuel  salt  is  a  good  heat  conductor,  and,  therefore,  can  have  both  a  lower  peak  temperature  and  a  higher  outlet  temperature  than  a  solid  fueled  reactor.    

 

LCMSRS CAN ALSO USE THORIUM AS A FUEL

Molten  Salt  Reactors  (MSRs),  using  liquid  core  designs,  are  usually  geared  toward  the  Thorium  (Th-­‐232)  to  Uranium  (U-­‐233)  fuel  cycle.  They  were  developed  initially  when  there  was  high  emphasis  on  breeding.  MSRs  were  conceived  as  near  thermal  reactors  with  a  graphite  moderator.  The  preferred  salts  are  fluorides,  including  beryllium  and  lithium  fluorides,  because  of  their  desired  nuclear  and  thermodynamic  properties.  Both  the  beryllium  and  the  fluorine  cause  significant  neutron  moderation.  To  achieve  breeding  with  the  soft  neutron  spectrum,  it  is  necessary  to  select  the  Thorium  cycle.    

 

THE MOLTEN SALT REACTOR EXPERIMENT

The  MSRE  (Molten  Salt  Reactor  Experiment)  was  operated  initially  with  Uranium  235  at  35%  enrichment  as  the  fissile  fuel.  That  operation  spanned  34  months  beginning  in  1965  and  included  a  sustained  run  of  188  days  (partly  at  low  power  to  accommodate  the  experimental  program).  All  aspects  of  operation,  including  the  addition  of  fissile  fuel  with  the  reactor  operating  at  power,  were  demonstrated.  Subsequently,  the  mixture  of  Uranium  235  and  Uranium  238  was  removed  from  the  salts  by  on-­‐site  fluorination,  and  Uranium  233  was  added  to  the  fuel  salt  for  the  next  phase  of  the  operation.  Plutonium  produced  during  the  Uranium  235-­‐Uranium  238  operations  remained  in  the  salt  during  the  Uranium  233  operation.  Several  fissile  

 

   Reimagining  the  Nuclear  Energy  Industry  |    11    

additions  consisting  of  Plutonium  (PuF3)  were  made  for  fuel  makeup  to  demonstrate  that  capability.  The  Plutonium  additions  were  made  by  adding  capsules  of  PuF3  in  the  solid  form  to  the  reactor  salt  and  allowing  the  Plutonium  salt  to  dissolve.  Thus,  Plutonium  from  two  sources  was  burned  in  the  MSRE:  the  added  Plutonium,  and  the  Plutonium  that  was  bred  from  the  Uranium  238  in  the  initial  operations.  

The  MSRE,  without  changes  in  design,  operated  successfully  on  all  of  the  major  fissile  fuels:  Uranium  235  and  Uranium  233,  and  Plutonium  mixed  with  Uranium.  This  property  of  the  MSR  provides  the  ultimate  flexibility  in  the  utilization  of  various  fissile  fuels.  

The  LCMSRs  are  fluid  fuel  reactors,  and  as  such,  they  differ  from  all  the  current,  common,  solid  fuel  reactors.  Fluid  fuel  can  be  transferred  remotely  by  pumping  through  pipes  connecting  storage  or  reaction  vessels  (e.g.,  a  reactor  core).  The  relatively  simple  remote  handling  allows  even  the  fresh  fuel  to  be  highly  radioactive,  which  provides  a  strong  diversion  or  proliferation  inhibitor.  Also,  highly  radioactive  fuel  can  be  detected  easily.  If  the  temperature  of  the  fuel  is  allowed  to  drop,  the  fuel  solidifies  and  again  is  difficult  to  manipulate,  providing  additional  diversion  protection.  

The  fluid  fuel  at  operating  reactor  fissile  concentrations  provides  inherent  protection  against  criticality  accidents  during  handling.  In  thermal  designs,  the  graphite  moderator  is  required  for  criticality  so  that  criticality  can  occur  only  in  the  core.  For  other  concepts,  the  design  would  have  to  exclude  vessels  that  are  not  criticality  safe  for  credible  fuel  mixtures.  

Fuel  prepared  for  an  LCMSR  can  be  conveniently  shipped  as  a  cold  solid  and  re-­‐melted  just  before  it  is  added  to  the  reactor  system.  For  small  additions,  the  reactor  can  be  designed  to  accept  the  fuel  in  the  frozen  state,  as  in  the  MSRE.  With  a  fluid  fuel,  the  entire  fuel  element  fabrication  process  is  avoided.  This  saves  a  significant  part  of  the  head-­‐end  effort  and  cost.  The  absence  of  a  solid  fuel-­‐manufacturing  phase  provides  for  enormous  flexibility.  The  fuel  can  be  blended  into  the  reactor  exactly  as  needed  at  any  time.  The  amount  of  fuel  added  will  depend  on  the  type  of  fuel,  its  isotopic  makeup,  and  its  concentration.  There  is  no  need  for  exact  long  range  planning  that  may  be  upset  by  variations  on  either  the  supply  or  the  demand  side.  There  is  no  need  for  long  lead  times  and  interim  storage.  These  advantages  are  particularly  important  for  fuel  derived  from  weapons.  The  reactor  can  accommodate  the  rate  and  exact  kind  of  fuel  that  becomes  available.  The  fine-­‐tuning  of  the  composition  can  be  done  on  an  as  needed  basis  at  the  site.  

 

 

 

   Reimagining  the  Nuclear  Energy  Industry  |    12    

SAFETY OF MOLTEN SALT REACTORS

The  Liquid  Core  Molten  Salt  Reactor  (LCMSR)  can  potentially  achieve  almost  any  degree  of  safety  desirable  at  a  cost.  Some  extreme  degrees  of  safety  were  summarized  in  the  proposal  for  the  Ultimate  Safe  Reactor.  The  MSRs  using  a  liquid  core  approach  possess  many  inherent  safety  properties.  As  a  LCMSR  uses  a  molten  fuel,  a  "meltdown"  is  of  no  particular  consequence.  The  fuel  is  critical  in  the  molten  state  in  the  optimal  configuration:  in  laymen’s  terms,  in  normal  operation  it  is  already  melted  down.  If  the  fuel  escapes  this  environment  or  configuration  because  of  relocation,  it  will  become  subcritical.  Thus,  re-­‐criticality  in  any  reasonable  design  cannot  occur.  

Fluid  fuel  has  inherently  a  strong  negative  temperature  coefficient  of  reactivity  because  of  expansion  of  the  fluid  that  results  from  removal  of  fuel  from  the  core.  This  property  is  in  addition  to  other  spectral  contributions  to  the  negative  reactivity  coefficient.  At  the  very  extreme,  the  fuel  would  cause  failure  of  the  primary  coolant  boundary  (without  a  serious  pressure  rise),  in  which  case  the  fuel  would  automatically  be  returned  to  a  critically  safe  configuration.  Further,  the  ability  to  add  fuel  with  the  reactor  on-­‐line  strongly  limits  the  amount  of  excess  nuclear  reactivity  that  must  be  available  in  the  system.  

On-­‐line  processing  reduces  the  amount  of  fission  products  retained  in  the  system.  This  reduces  both  the  risk  of  dispersal  of  radioactivity  and  the  amount  of  decay  heat  that  must  be  contended  with  during  an  accident.  The  fission  product  inventory,  in  an  earlier  concept  of  the  Molten  Salt  Breeder  Reactor,  was  planned  to  be  a  l0-­‐day  accumulation.  A  more  recent  proposal  suggests  reducing  the  fission  products  to  a  level  where  the  entire  afterheat  can  be  contained  in  the  salt  without  reaching  boiling.  There  is  a  limit  to  the  reduction  of  fission  product  inventory  in  the  reactor.  The  limit  is  determined  by  several  factors,  two  of  which  are  economics  and  concentration  of  the  fission  products.  The  practical  limit  of  the  latter  has  not  yet  been  determined  and  is  not  known.  In  practically  all  LCMSR  concepts,  the  fission  gases  and  volatiles  are  removed  continuously,  reducing  significantly  the  potential  radioactive  source  term,  the  length  of  time  it  is  radioactive.  

Fluid  fuel  also  allows  shutdown  of  the  reactor  by  draining  the  core  into  subcritical  containers  from  which  any  decay  heat  can  be  readily  removed  by  conduction  and  natural  convection.  

The  LCMSRs  can  be  designed  in  an  extremely  safe  manner  with  inherently  safe  properties  that  cannot  be  altered  or  tampered  with.  These  safety  attributes  make  the  LCMSRs  very  

 

   Reimagining  the  Nuclear  Energy  Industry  |    13    

attractive  and  may  contribute  to  their  economy  by  reducing  the  need  for  elaborate  additional  safety  measures.  

Nuclear  waste  is  an  important  issue  affecting  the  acceptability  of  any  nuclear-­‐related  system,  and  reactors  in  particular.  There  is  no  way  that  a  reactor  that  utilizes  the  fission  process  can  eliminate  the  fission  products.  The  LCMSRs,  with  their  continuous  processing  and  the  immediate  separation  of  the  residual  fuel  from  the  waste,  simplify  the  handling  of  the  waste  and  contribute  to  the  solution  and  acceptability  of  the  waste  issue.  

The  on-­‐line  processing  can  significantly  reduce  the  transportation  of  radioactive  shipments.  There  is  no  shipping  between  the  reactor  and  the  processing  facility.    

Storage  requirements  are  also  reduced,  as  there  is  no  interim  storage  needed  for  either  cool  down  or  preparation  for  shipment.  The  waste,  having  been  separated  from  the  fuel,  requires  no  compromise  to  accommodate  the  fuel  for  either  criticality  or  diversion  (proliferation)  concerns.  The  waste  shipments  can  be  optimized  for  waste  concerns  alone.  The  actinides  can  be  recycled  into  the  fuel  for  burning,  and  thus  eliminated  from  the  waste.  While  further  work  is  required  to  fully  analyze  this  possibility,  several  design  proposals  to  burn  actinides  (Spent  Nuclear  Fuel)  to  produce  energy  in  an  LCMSR  have  been  made.  The  LCMSR  designs  with  on-­‐line  processing  lend  themselves  readily  to  recycling  actinides  in  the  fuel.    

Eliminating  the  actinides  from  shipments  and  from  the  waste  reduces  the  very  long  controlled  storage  time  of  the  waste  to  more  acceptable  and  reasonable  periods  of  time  than  is  the  case  today  with  traditional  light  water  reactors.  The  on-­‐site  on-­‐line  processing  allows  for  inclusion  of  some  selected  fission  products  along  with  the  recycled  actinides  for  transmutation  in  the  reactor.  For  example,  the  long-­‐lived  iodine  could  be  removed  from  the  waste  and  retained  in  the  core.  

The  fission  products,  already  being  in  a  processing  facility  and  in  a  fluid  matrix,  can  be  processed  to  the  optimal  form  desired.  That  is,  they  can  be  reduced  in  volume  by  concentration  or  diluted  to  the  most  desirable  constitution.  They  can  be  further  transformed  into  the  most  desirable  chemical  state,  shape,  size,  or  configuration  to  meet  shipping  and/or  storage  requirements.  The  continuous  processing  also  allows  making  the  shipments  to  the  final  disposal  site  as  large  or  as  small  as  desired.  This  can  reduce  to  an  acceptable  level  the  risk  associated  with  each  individual  shipment.  

A  520  MWe  light-­‐water  reactor  would  contain  approximately  40  tons  of  solid  fuel  and  generate  10  metric  tons  of  SNF  (Spent  Nuclear  Fuel)  each  year.  The  SNF  contains  materials  with  half-­‐lives  on  the  order  of  hundreds  of  thousands  of  years.  Although  reprocessing  methods  are  

 

   Reimagining  the  Nuclear  Energy  Industry  |    14    

available  for  partially  reducing  the  waste  mass,  they  are  currently  cost  prohibitive  in  the  U.S.,  and  existing  methods  accumulate  pure  Plutonium  as  a  byproduct.    

The  basics  of  how  a  520  MWe  Transatomic  Waste  Annihilating  Molten  Salt  Reactor  (WAMSR)  reactor  would  operate  are  as  follows:  The  reactor  starts  with  65  tons  of  SNF  (Spent  Nuclear  Fuel)  in  its  fuel  salt.  Each  year,  0.5  tons  of  fission  products  are  filtered  from  the  system  and  a  fresh  0.5  tons  of  fuel  is  added,  keeping  the  fuel  level  steady.  The  fuel  addition  can  occur  in  batches;  it  does  not  need  to  be  added  continuously.  At  reactor  end  of  life,  the  inventory  of  fuel  remaining  in  the  reactor  may  be  transported  for  use  in  another  WAMSR  reactor.  Alternately,  it  may  be  inserted  into  a  disposal  cask  and  stored  in  a  repository.    

Compared  to  a  similarly  sized  light-­‐water  reactor,  the  annual  waste  stream  is  reduced  from  10  to  0.5  metric  tons  –  which  is  95%  less  waste.  Furthermore,  the  vast  majority  of  the  waste  stream  has  a  relatively  short  half-­‐life  decay,  on  the  order  of  a  three  hundred  years  or  less.  We  believe  mankind  can  easily  store  waste  materials  on  these  timescales,  compared  to  the  hundreds  of  thousands  of  years  required  for  waste  from  LWRs.    This  changes  a  civilizational  problem  into  a  relatively  straightforward  engineering  task.  

 

BETTER INHERENT SAFETY

Molten  salt  reactors  are  a  win  for  public  safety.  The  main  concern  in  a  nuclear  emergency  is  to  prevent  widespread  release  of  radioactive  materials.  The  Transatomic’s  WAMSR  materials  and  design  greatly  reduce  the  risk  of  reactor  criticality  incidents,  shrink  the  amount  of  radioisotopes  in  the  primary  loop,  eliminate  driving  forces  that  can  widen  a  release,  and  provide  redundant  containment  barriers  for  defense  in  depth.  Because  of  these  factors,  a  strong  case  can  be  made  for  the  elimination,  or  at  least  the  reduction  in  robustness  by  an  order  of  magnitude,  of  the  containment  vessel,  when  compared  to  a  traditional  light  water  reactor.    This  would  greatly  reduce  construction  and  operation  costs.    

 

SELF-STABILIZING CORE

As  with  light-­‐water  reactors,  molten  salt  reactors  have  a  strong  negative  void  coefficient  and  negative  temperature  coefficient.  In  molten  salt  reactors,  these  negative  coefficients  greatly  aid  reactor  control  and  act  as  a  strong  buffer  against  temperature  excursions.  As  the  core  

 

   Reimagining  the  Nuclear  Energy  Industry  |    15    

temperature  increases,  the  salt  expands.  This  expansion  spreads  the  fuel  volumetrically  and  slows  the  rate  of  fission.  This  stabilization  is  automatic  and  occurs  even  without  operator  action.    

Online  refueling  and  fission  product  removal  primarily  control  reactivity  in  a  WAMSR.  In  light  water  reactors,  reactivity  decreases  over  time  as  the  fuel  depletes  and  fission  product  poisons  accumulate  within  the  fuel  rods.  Therefore,  a  light  water  reactor  core  must  initially  have  significant  excess  reactivity  to  ensure  that  the  reactor  remains  critical  for  the  entirety  of  the  cycle.  In  WAMSRs,  however,  fuel  can  be  added  to  the  core  continuously  to  counteract  fuel  depletion,  and  fission  products  are  extracted  –  either  continuously  or  in  batches  –  to  minimize  the  accumulation  of  fission  product  poisons.  WAMSRs  can,  therefore,  operate  with  very  little  excess  reactivity.    

The  small  amount  of  excess  reactivity  present  during  operation  is  controlled  by  a  central  neutron-­‐absorbing  control  rod,  which  can  be  inserted  to  decrease  reactivity  or  removed  to  increase  reactivity.  As  there  is  little  excess  reactivity  at  all  times  during  operation,  there  is  very  little  coarse  movement  of  this  rod.  There  are  two  additional  neutron-­‐absorbing  shutdown  rods  at  the  center  of  the  core.  These  rods  are  fully  inserted  when  the  reactor  is  shut  down,  and  are  only  moved  in  startup  and  shutdown  procedures.    

The  power  level  is  controlled  primarily  by  operator  adjustments  to  the  turbine.  Slowing  the  turbine  extracts  less  heat  from  the  salt,  thereby  increasing  its  temperature,  which  in  turn  decreases  the  thermal  power  generated  in  the  core.  Once  the  reactor  reaches  the  desired  power  level  where  heat  produced  is  equal  to  the  turbine  heat  draw,  the  system  re-­‐stabilizes.  These  dynamics  provide  tight  negative  feedback  loops  and  give  the  system  inherent  stability.    

Furthermore,  liquid  fuel  is  not  tightly  constrained  by  the  rate  of  power  change  in  the  reactor.  In  solid-­‐fueled  reactors,  changing  the  power  level  too  quickly  can  cause  detrimental  pellet-­‐cladding  interactions.  Also,  large  power  changes  in  LWRs  result  in  significant  fission  product  poison  (Xenon)  contraction  or  expansion,  which  is  counter  to  the  reactor  power  change  desired,  and  must  be  compensated  for  by  control  rod  manipulation,  which  is  undesirable  for  several  reasons.  

Although  the  WAMSR  is  meant  for  baseload  operation,  the  liquid  fuel  and  the  ability  to  control  heat  output  via  the  turbine  enables  excellent  load  following  operation,  which  is  more  difficult  with  light  water  reactors.    

 

 

 

   Reimagining  the  Nuclear  Energy  Industry  |    16    

PASSIVE SAFETY AND INHERENT RESISTANCE TO BEYOND-DESIGN-BASIS EVENTS

A  significant  vulnerability  common  to  all  currently  operating  commercial  light-­‐water  reactors  is  that  typically  they  require  external  electric  power  to  pump  coolant  over  their  cores  to  prevent  a  meltdown.  By  definition,  a  passively  safe  nuclear  reactor  is  one  that  does  not  require  operator  action  or  electrical  power,  whether  internal  or  external,  to  shut  down  safely  in  an  emergency.  It  is  a  further  goal  that  the  reactor  be  able  to  cool  safely  during  an  extended  station  blackout  without  any  outside  emergency  measures.  An  inherently  safe  reactor  will  be  able  to  achieve  these  goals  even  in  the  face  of  events  that  have  historically  been  considered  beyond-­‐design-­‐basis.      

The  Transatomic  WAMSR  is  a  major  advance  over  light-­‐water  reactors  because  it  is  passively  safe  (primarily  because  of  its  freeze  valve)  and  can  passively  cool  its  drained  core  via  cooling  stacks  connected  to  its  auxiliary  tank.  If  the  freeze  valve  fails,  the  control  rods  may  be  inserted  by  operator  action,  or  passively  via  an  electromagnetic  failsafe,  thereby  making  the  reactor  subcritical.  If  the  control  rods  or  other  active  measures  cannot  be  used,  the  hot  fuel  salt  will  simply  remain  in  the  reactor  vessel.  Heat  will  cause  the  salt  to  expand,  thereby  reducing  reactivity.  If  the  freeze  valve  fails  and  the  salt  continues  to  increase  in  temperature,  the  zirconium  hydride  moderator  rods  will  decompose,  with  a  minor  release  of  hydrogen  gas  that  is  not  adequate  to  pose  an  explosion  threat  because  of  the  volume  of  the  primary  loop.  The  lack  of  neutron  moderation  brings  the  reactor  to  a  sub-­‐critical  state.    

If  the  salt  increases  in  temperature  enough  to  induce  material  failure  in  the  vessel,  then  the  salt  will  flow  via  gravity  into  a  catch  basin  located  immediately  below  the  vessel.  The  catch  basin  in  turn  drains  via  gravity  into  the  auxiliary  tank.  The  reactor  and  its  catch  basin  are  sealed  within  a  concrete  chamber  only  accessible  by  hatch.  Thus,  even  in  this  worst-­‐case  accident  scenario,  the  system  is  confined,  non-­‐flammable,  and  shuts  down  passively.  If  fuel  salt  through  some  further  circumstance  escapes  the  primary  containment  surrounding  the  primary  loop,  it  will  still  be  inside  the  concrete  secondary  containment  structure,  which  is  located  at  least  partially  below  grade.    

An  intermediate  loop  creates  a  buffer  zone  between  the  radioactive  materials  in  the  reactor  and  the  non-­‐  radioactive  water  in  the  steam  turbine  (if  a  steam  turbine  is  used).  The  steam  is  at  a  higher  pressure  than  the  intermediate  loop,  and  the  intermediate  loop  is  at  a  higher  pressure  than  the  primary  loop,  so  any  leaks  in  heat  exchangers  will  cause  a  flow  toward  the  core  rather  than  out  of  the  core.  Any  small  counter-­‐pressure  flow  across  the  primary  heat  exchanger  is  trapped  in  the  intermediate  loop.  The  intermediate  loop  feeds  into  a  steam  generator,  and  both  are  also  within  the  concrete  secondary  containment  structure.    

 

   Reimagining  the  Nuclear  Energy  Industry  |    17    

 

If  the  fuel  salt,  despite  all  existing  safety  mechanisms  in  the  system,  escapes  the  containment  structure,  it  will  return  to  solid  form  once  it  cools  below  approximately  500°C.    

In  sum,  in  today’s  nuclear  plants  an  explosion  or  steam  rupture  might  have  wide  area  consequences,  so  safety  must  be  assured  probabilistically  through  the  use  of  multiple  independent  or  redundant  systems,  adding  construction  time  and  materials,  cost  and  complexity.  Transatomic’s  WAMSRs  draw  on  these  redundant  techniques  in  places,  but  ultimately  provide  a  more  resilient  safety  foundation  –  molten  salt  is  inherently  less  capable  of  a  wide-­‐area  public  disaster.    

The  $2  Billion  price  point  for  a  WAMSR  can  greatly  expand  the  demand  for  nuclear  energy,  because  it  is  a  lower  entry  cost  than  large-­‐sized,  solid  core,  nuclear  power  plants.  The  Vogtle  3  and  4  plants,  each  1100  MWe  and  built  in  parallel,  have  a  combined  project  cost  of  $14  Billion  for  about  4  times  higher  output.  Even  if  the  cost  per  watt  were  the  same,  a  lower  price  for  a  smaller  unit  will  still  expand  the  number  of  utilities  that  can  afford  to  buy  nuclear  reactors,  better  match  slow  changes  in  demand,  allow  greater  site  feasibility,  and  reach  cash  flow  breakeven  faster.  The  speed  of  construction  and  faster  payback  also  reduce  financing  costs.    

WAMSRs  will  also  deliver  a  low  levelized  cost  of  electricity  (LCOE).  While  most  observers  assume  nuclear  fuel  costs  are  near  zero,  the  Nuclear  Energy  Institute  estimates  the  2011  cost  was  actually  $0.068  per  kilowatt-­‐hour.  WAMSRs  expect  to  produce  far  more  electricity  per  ton  of  ore  than  the  current  fuel  cycle,  driving  these  costs  down  toward  zero.  The  WAMSR  is  refueled  continuously  for  a  high  capacity  factor.    

LOWERING THE HURDLES FOR A U.S. SPENT NUCLEAR FUEL REPOSITORY

The  United  States  has  set  aside  a  $32  Billion  trust  for  a  repository  and  has  64,000  tons  of  spent  nuclear  fuel  (SNF)  to  store  –  approximately  $500  per  kilogram  of  SNF.  However,  our  country  has  not  been  able  to  agree  on  a  location  or  final  design  for  the  repository.    

Should  the  USA  build  a  reprocessing  facility?  The  cost  to  reprocess  as  the  French  do  is  likely  $1,000  to  $2,000  per  kilogram  of  heavy  metal,  which  is  well  above  what  is  available  in  the  U.S.  Waste  Disposal  Trust  Fund.  Meanwhile,  SNF  can  be  held  inside  existing  wet  storage  pools  at  near-­‐negligible  cost.  As  pools  fill  up,  SNF  older  than  3-­‐10  years  can  be  placed  in  dry  casks  for  roughly  $100  per  kilogram  and  stored  for  40  years  or  longer,  making  this  method  a  cost-­‐

 

   Reimagining  the  Nuclear  Energy  Industry  |    18    

effective  stopgap.  About  one-­‐quarter  of  US  SNF  has  been  loaded  into  dry-­‐casks.  The  other  48,000  tons  remain  in  wet  pools,  adding  to  the  plant  inventory  of  radionuclides.    

The  WAMSR  can  use  fresh  Uranium  fuel  or  SNF.  Utilities  can  currently  only  buy  fresh  Uranium  from  commercial  suppliers.  The  business  case  for  a  utility  using  SNF  is  somewhat  more  complicated,  because  the  SNF  requires  additional  handling  costs  as  compared  to  fresh  fuel.  A  company  would  need  to  (1)  transport  and  receive  the  radioactive  spent  fuel  rods,  (2)  remove  the  cladding  physically,  and  (3)  dissolve  the  Uranium  oxide  into  the  molten  salt  or  convert  it  to  a  gas  that  can  be  injected  into  the  molten  salt.  The  techniques  are  well  known  because  the  same  three  initial  steps  must  be  employed  in  reprocessing  plants  such  as  at  La  Hague  in  France  or  similar  facilities  existing  at  the  Idaho  National  Laboratory.  The  WAMSR  avoids  all  of  the  remaining  chemical  steps  that  are  the  main  cost  drivers  of  reprocessing  work.  If  full  reprocessing  costs  over  $1,000  per  kilogram,  as  in  the  case  of  France’s  reprocessing,  the  WAMSR  could  potentially  perform  just  the  initial  three  steps  for  a  fractional  amount,  perhaps  in  a  small  number  of  regional  facilities  that  ship  fuel  directly  to  WAMSR  reactors.  Transatomic’s  initial  assessment  is  that  a  disposal  charge  of  $500  per  kilogram  of  SNF  is  achievable,  affordable,  and  less  expensive  than  French  style  reprocessing,  and  would  be  within  the  budget  allowed  by  the  U.S.    

 

WASTE DISPOSAL TRUST FUND

The  existing  64,000  tons  of  SNF  contain  an  enormous  amount  of  energy.  If  all  U.S.  light-­‐water  plants  were  replaced  tomorrow  by  WAMSR  reactors,  it  would  still  take  350  years  to  consume  all  of  the  existing  SNF.  Even  if  we  expand  the  role  of  nuclear  by  also  converting  all  coal  plants  to  WAMSRs,  we  could  still  run  for  150  years.  The  SNF  needs  to  be  stored  in  the  meantime.  Furthermore,  the  WAMSR  would  themselves  create  small  amounts  of  short-­‐lived  waste  to  store.  We,  therefore,  cannot  use  WAMSRs  to  avoid  a  U.S.  repository  entirely.  WAMSRs  do,  however,  allow  us  to  build  smaller  and  simpler  repositories.  SNF  would  only  need  to  be  stored  for  a  few  hundred  years  instead  of  hundreds  of  thousands  of  years.  Furthermore,  by  avoiding  a  great  deal  of  future  SNF,  we  may  avoid  the  need  to  ever  build  a  second  or  third  repository.    

 

 

 

   Reimagining  the  Nuclear  Energy  Industry  |    19    

CO-LOCATION OFFERS MANY ADVANTAGES

Co-­‐Locating  LCMSRs  (Liquid  Core  Molten  Salt  Reactors)  with  currently  operating  utility  nuclear  electricity  generation  plants  offers  utility  providers  many  advantages.  Currently,  America  operates  a  very  safe,  yet  aging  fleet  of  Light  Water  Reactors  that  accounts  for  almost  20%  of  U.S.  electrical  generation  with  just  a  few  more  than  100  generating  units.  Because  SNF  consuming  LCMSRs  can  be  made  very  small  they  could  very  easily  be  co-­‐located  onsite  with  retiring  reactors.  This  could  allow  for  much  easier  site  licensing  application,  on  site  storage  of  nuclear  waste,  as  well  as  utilization  of  the  retiring  reactor’s  switchgear  and  steam  turbine.  

While  many  envision  a  LCMSR  as  not  requiring  a  steam  turbine  in  favor  of  a  super-­‐critical  closed  cycled  Brayton  turbine,  which  will  be  much  more  efficient  when  developed,  the  present  reality  is  that  economics  and  practicality  may  indeed  drive  the  first  generation  of  LCMSR  to  use  the  “hand  me  downs”  of  the  legacy  LWR  fleet.  

 

FUEL PROCESSING

The  SNF  processing  and  logistic  infrastructure  from  today’s  light  water  reactors  needed  for  a  LCMSR  fleet  operation  would  not  be  trivial.  A  reprocessing  plant  capable  of  serving  one  hundred  1  Gigawatt  plants,  experts  estimate,  would  cost  $20  billion.  If  LCMSRs  retired  all  of  our  light  water  reactors  (which  would  more  than  likely  never  happen)  and  went  on  to  replace  Coal  and  Natural  Gas,  that  would  equate  to  a  need  for  5  reprocessing  plants  serving  five  hundred  1  Gigawatt  plants.  

Comparing  the  LCMSR  or  the  IFR  Integral  Fast  Reactor  as  a  replacement  for  our  traditional  Nuclear  power  plants,  Coal  power  plants,  Natural  gas  power  plants,  and  Renewable  energy  power  plants  and  farms,  a  fleet  of  either  of  these  advanced  nuclear  reactors  offers  better  economics  than  any  of  the  traditional  power  sources  named  here.  

An  IFR  is  expected  to  cost  half  ($5  billion)  of  a  brand  new  1  GW  LWR  (Light  Water  Reactor)  newly  sited  ($10  billion).  A  1GW  LCMSR  is  expected  to  cost  1/10th  of  a  1  GW  LWR  ($1Billion).  The  IFR  facility  cost,  however,  includes  the  cost  of  reprocessing  on-­‐site,  whereas  the  LCMSR  facility  cost  does  not.  

Constructing  500  new  LWRs  would  cost  an  estimated  $10  Trillion  

Constructing  500  IFRs  would  cost  an  estimated  $5  Trillion.  

 

   Reimagining  the  Nuclear  Energy  Industry  |    20    

Constructing  500  LCMSRs  would  cost  an  estimated  $500  Billion  plus  $100  Billion  in  infrastructure  and  processing  facilities.  

Clearly  LCMSRs  have  a  long-­‐term  economic  edge  over  both  new  LWRs  and  IFRs.  

Because  of  the  need  for  a  light  water  reactor  fuel  reprocessing  facility  that  would  make  SNF  usable  in  LCMSRs,  many  believe  that  the  first  LCMSRs  will  not  consume  SNF.  Many  imagine  the  progression  of  LCMSRs  consuming  fuel  to  start  with  Uranium,  then  Thorium,  and  then  to  a  final  design  that  uses  SNF.  This  is  owing  to  many  experts’  belief  that  the  reprocessing  facility  will  need  the  commitment  of  a  minimum  of  twenty  LCMSRs  consuming  SNF  as  fuel  to  economically  justify  its  construction.  

 

CONCLUSIONS

Based  on  almost  every  conceivable  metric,  including  the  environment,  economics,  safety,  proliferation  resistance,  and  many  others,  Federal  legislators  should  embrace  the  development  of  the  LCMSR  (Liquid  Core  Molten  Salt  Reactor)  for  reducing  the  nation’s  nuclear  waste  while  increasing  the  nation’s  security  and  competition  abroad.  Legislators  should  consider  using  the  Nuclear  Waste  Management  Fund  to  develop  LCMSR  technology  to  produce  less  nuclear  waste  and  to  consume  current  nuclear  waste  stockpiles.  

In  addition  to  all  their  improvements  to  the  production  of  electricity  set  forth  here,  liquid  core  molten  salt  reactors  provide  many  other  benefits.  These  include  the  production  of  nuclear  isotopes  for  medical  imaging  and  cancer  research,  and  to  power  NASA’s  deep  space  probes.    They  also  include  production  of  tremendous  amounts  of  process  heat  for  liquefaction  of  coal,  municipal  solid  wastes,  other  carbon  sources  (including  seawater)  into  liquid  transportation  fuels;  desalination  of  seawater  into  potable  water;  creating  the  economic  viability  of  extraction  of  presently  unrecoverable  near-­‐solid  heavy  oil;  and  many  manufacturing  and  industrial  processes.  All  of  this  will  be  done  at  a  very  reduced  cost  compared  with  today’s  methods,  and  with  no  pollution  or  carbon  production  whatsoever.  

 

 

 

 

 

   Reimagining  the  Nuclear  Energy  Industry  |    21    

 

 

 

1768  East  25th  Street  Suite  301  Cleveland,  OH  44114  216.367.0602  

eGeneration.org  

The  eGeneration  Foundation  is  a  501(c)3  non-­‐profit  educational  charity.  

Your  contribution  to  the  eGeneration  Foundation  is  tax-­‐deductible  as  a  charitable  contribution  to  the  extent  allowed  by  law.  

Your support is greatly appreciated! Please contact us today!