Draft: Energy independence

12
1768 East 25 th Street Suite 301 Cleveland, OH 44114 216.367.0602 egeneration.org National Energy Security Maximizing our Natural Gas and Coal Reserves with Molten Salt Reactors Authored By: Jon Paul Morrow eGeneration Fellow Michael Goldstein J.D. eGeneration Fellow

description

Draft: this may contain errors

Transcript of Draft: Energy independence

Page 1: Draft: Energy independence

   

1768  East  25th  Street  Suite  301  Cleveland,  OH  44114  216.367.0602  

egeneration.org  

National Energy Security  

Maximizing  our  Natural  Gas  and  Coal  Reserves  with  Molten  Salt  Reactors  

Authored  By:  Jon  Paul  Morrow    eGeneration  Fellow  Michael  Goldstein  J.D.    eGeneration  Fellow  

Page 2: Draft: Energy independence

 

TABLE OF CONTENTS

EXECUTIVE  SUMMARY  .....................................................................................................................................................  1  

Coal  Liquefaction  .................................................................................................................................................................  2  

Cutting-­‐edge  High  Temperature  Fission  Technologies  to  the  Rescue  .........................................................  3  

Benefits  ....................................................................................................................................................................................  4  

Natural  Gas:  Extending  the  Boom  ................................................................................................................................  4  

Natural  gas  companies  should  embrace  producing  Synthetic  Natural  Gas  with  Nuclear  Molten  Salt  Reactor  technology  ....................................................................................................................................................  6  

Long-­‐Term  Energy  Policy  ................................................................................................................................................  7  

What  if  Compressed  Natural  Gas  and  Liquid  Natural  Gas  are  not  adopted  by  the  public  as  transportation  fuel?  ...........................................................................................................................................................  8  

Developing  Molten  Salt  Reactor  Technology  is  a  Preferred  Solution  to  the  Crisis  of  Energy  Independence  and  National  Security  ..........................................................................................................................  9  

 

Page 3: Draft: Energy independence

 

    Changing  Perceptions      |    1    

“DEVELOPMENT  AND  DEPLOYMENT  OF  ADVANCED  LIQUID  CORE  MOLTEN  SALT  NUCLEAR  REACTORS  WILL  REDUCE  THE  GEOPOLITICAL  INFLUENCE  OF  MIDDLE  EAST  OIL  PRODUCING  

NATIONS,  AND  THEIR  FINANCIAL  SUPPORT  OF  TERRORIST  ORGANIZATIONS,  WHILE  SUSTAINING  AMERICAN  INDUSTRY”  

 Michael  S.  Goldstein,  J.D.  Retired  Naval  Intelligence  Officer  

   

EXECUTIVE SUMMARY

 The  United  States  should  develop  and  deploy  on  an  industrial  scale  advanced  nuclear  

liquid  core  molten  salt  reactors,  especially  those  fueled  by  Thorium,  for  the  conversion  of  American  coal,  natural  gas,  and  other  carbon  sources  to  large  volumes  of  liquid  transportation  fuels.    Production  of  large  volumes  of  synthetic  liquid  transportation  fuels,  especially  synthetic  gasoline  and  synthetic  diesel  fuel,  has  the  potential  to  lead  to  American  energy  independence  and  completely  eliminate  Middle  East  oil-­‐producing  nations  as  a  geopolitical  force.    The  current  low  price  of  crude  oil  would  drop  precipitously  and  the  resultant  low  price  would  become  permanent.    The  Middle  East  would  be  driven  from  the  transportation  fuels  market,  and  would  thereby  lose  the  financial  ability  to  support  terrorist  nations  and  non-­‐state  terrorist  organizations.  

As  will  be  explained  below,  the  development  of  Molten  Salt  Reactors  would  be  a  boon  to  the  American  coal  and  natural  gas  industries,  which  MSRs  would  complement;  they  would  not  compete.    In  fact,  the  adoption  of  Molten  Salt  Reactor  technology  will  be  a  boon  to  American  industry  and  job  creation  in  general.  

This  would  also  occur  without  prejudice  to  the  United  States  oil  industry,  because  these  new  nuclear  reactors  have  other  properties,  which  will  significantly  lower  the  production  costs  of  American  oil,  much  of  which  is  presently  unrecoverable  at  a  reasonable  price.  

 

Page 4: Draft: Energy independence

 

    Changing  Perceptions      |    2    

COAL LIQUEFACTION

 

The  process  of  converting  coal  into  liquid  transportation  fuels  has  been  around  for  many  years.  Coal  liquefaction  was  first  developed  in  1913  in  Germany.    In  1925,  Fischer  and  Tropsch  developed  the  FT  (Fischer  Tropsch)  process  to  convert  Synthetic  Natural  Gas  into  intermediate  wax  products,  which  were  finally  converted  into  diesel,  naphtha  and  kerosene  using  a  hydro-­‐cracking  unit.  

The  Fischer–Tropsch  process  was  then  developed  by  Franz  Fischer  and  Hans  Tropsch  at  the  "Kaiser-­‐Wilhelm-­‐Institut  für  Kohlenforschung"  in  Mülheim  an  der  Ruhr,  Germany  in  1925.  The  process  is  a  key  component  of  solids  to  gas  and  gas  to  liquids  technology,  which  produced  a  synthetic  lubrication  oil  and  synthetic  fuel  in  the  form  of  synthetic  diesel  fuel  and  synthetic  kerosene  and  naptha,  typically,  from  coal,  natural  gas,  or  biomass.    

During  the  Second  World  War,  Germany  produced  large  amounts  of  transport  fuels  via  Direct  Coal  Liquefaction  (DCL)  and  Indirect  Coal  Liquefaction  (ICL)  technologies.  This  was  an  expensive  process,  adopted  primarily  due  to  German  insufficiency  of  natural  petroleum  resources.  Today,  the  world’s  largest  Coal-­‐to-­‐Liquids  (CTL)  production  capacity  is  located  in  South  Africa,  based  on  locally  available  low-­‐cost  coal.  Numerous  demonstration  units  have  been  built  elsewhere,  but  only  a  few  industrial  plants  are  currently  under  construction  and  most  of  them  are  in  China.  

Performance  and  costs  of  coal  liquefaction  plants  have  been  reviewed  as  the  result  of  an  interest  in  alternative  production  of  transport  fuels  driven  by  the  2008  oil  price  peak.  A  study  on  liquefaction  of  Illinois  No.  6  bituminous  coal  concluded  that  commercial  coal  to  liquid  plants  using  the  U.S.  Midwestern  bituminous  coal  offer  good  economic  opportunities.  The  investment  cost  of  a  CTL  plant  with  a  production  capacity  of  50,000  barrels  per  day  of  diesel  and  gasoline  is  around  $4.85  billion  USD.  The  coal  preparation  and  gasification  in  the  CTL  process  account  for  almost  50%  of  the  total  investment  cost,  the  rest  of  the  cost  being  for  the  GTL  (Gas  to  Liquids)  process.    

The  economic  viability  of  these  projects  depends  heavily  on  crude  oil  prices.  A  crude  oil  price  of  $72/bbl  USD  provides  a  19.8%  rate  of  return  of  investment  (ROI).  Oil  prices  higher  than  $44/barrel  and  $55/barrel  provide  rate  of  investment  greater  than  10%  and  15%,  respectively.  

Page 5: Draft: Energy independence

 

    Changing  Perceptions      |    3    

According  to  the  Energy  Information  Agency,  when  the  price  of  crude  oil  is  considered,  this  technology  would  have  been  market  competitive  since  2005.  The  two  largest  reasons  why  this  technology  has  not  been  widely  adopted  are:    

v The  risk  of  crude  oil  prices  falling  to  a  price  that  would  not  make  this  technology  economically  feasible.    

v Because  the  coal  to  liquid  process  itself  is  powered  by  burning  coal,  large  amounts  of  CO2  are  produced.    Meeting  present  CO2  emissions  standards  adds  too  much  cost  to  the  process  for  it  to  be  competitive.  

 

CUTTING-EDGE HIGH TEMPERATURE FISSION TECHNOLOGIES TO THE RESCUE

Proven  next  generation  technologies  like  Liquid  Core  Molten  Salt  Reactors  (LCMSRs)  can  produce  working  heat  at  a  temperature  needed  to  power  the  conversion  process  without  producing  CO2.    Moreover,  LCMSRs  can  power  this  process  at  a  superior  price  point.    

Cost  estimates,  and  nearly  four  decades  of  taxpayer  funded  research  at  national  laboratories,  that  included  an  operating  proof  of  concept  research  reactor,  have  shown  that  LCMSR  designs  can  produce  zero-­‐carbon  electricity  at  $.02  per  kilowatt  hour  which  is  half  the  price  of  coal  burning  generated  electricity.  If  applied  at  only  a  conservative  25%  savings  to  the  coal  liquefaction  process,  which  is  an  already  a  robust  and  mature  industrial  technology,  LCMSRs  could  reduce  the  price  necessary  for  a  10%  return  on  investment  for  an  equivalent  barrel  of  crude  to  $33  per  barrel  (a  price  not  seen  in  a  nearly  a  decade).  This  price  is  not  just  highly  competitive—  it  is  potentially  market  dominating.  

Page 6: Draft: Energy independence

 

    Changing  Perceptions      |    4    

BENEFITS

There  are  a  myriad  of  benefits  to  developing  a  next-­‐generation  fission-­‐powered  coal  liquefaction  process,  including:  

v Developing  an  important  new  market  for  coal  products,  reenergizing  a  strategically  vital  American  industry  

v Jumpstarting  the  U.S.  economy,  thanks  to  an  abundant,  affordable,  reliable  supply  of  environmentally-­‐friendly  electric  and  fuel  

v Building  a  pathway  to  true  energy  independence,  reducing  the  need  for  crude  oil  imports  from  unfriendly  countries  

v Creating  new,  well-­‐paid  American  jobs  v Reducing  America’s  carbon  footprint  to  a  point  beyond  that  suggested  by  the  Kyoto  

Protocols  Accord  v Curtailing  risks  of  environmental  disasters  due  to  oil  spills    v Eliminating  the  significant  carbon  footprint  of  crude  oil  transport  vessels  v Limiting  military  presence  in  unstable  regions  of  the  world  necessary  to  maintain  

reliable  crude  oil  imports  v Providing  synthetic  fuels,  produced  from  a  coal  liquefaction  process,  allows  the  

creation  of  environmentally  cleaner  fuels  than  those  produced  from  crude  oil. v Produce  domestic  and  good  paying  American  jobs.  

 

NATURAL GAS: EXTENDING THE BOOM

A  manufacturing  renaissance  is  under  way  in  the  United  States,  and  it  is  being  driven  in  part  by  a  natural  gas  boom  thanks  to  new  natural  gas  wells  and  shale  fracturing  technology.  The  questions  on  everyone’s  mind  are:    How  long  will  this  natural  gas  boom  last?  Is  there  a  way  to  maximize  our  domestic  benefit  ?  Is  there  a  way  to  prolong  this  manufacturing  renaissance?  

Although  not  without  a  carbon  footprint,  natural  gas  is  a  clean  and  environmentally  friendly  energy  resource  that  is  expected  to  constitute  an  increasingly  greater  part  of  world  energy  consumption  over  the  next  few  decades.  While  current  natural  gas  reserves  are  more  than  sufficient  to  meet  the  forecasted  demand,  natural  gas  often  has  to  be  stored  and  transported  over  long  distances  from  gas  well  to  the  consumer,  as  winter  consumption  still  far  exceeds  the  rate  of  production.    

The  logistical  transportation  and  storage  challenges  posed  by  natural  gas  potentially  could  be  solved  by  transporting  and  storing  natural  gas  in  liquid  form  (LNG,  Liquefied  Natural  

Page 7: Draft: Energy independence

 

    Changing  Perceptions      |    5    

Gas).    Such  liquefaction,  storage,  and  transport  are  associated  with  considerable  cost  and  use  of  energy,  however,  which  currently  places  these  technologies  out  of  the  realm  of  economic  feasibility  for  the  domestic  American  market.    The  same  is  not  true  for  foreign  markets,  however,  where  prices  are  currently  higher  than  in  is  our  domestic  market.    

Furthermore,  natural  gas  has  historically  been  a  very  price-­‐volatile  energy  resource,  even  with  massive  domestic  reserves,  making  it  financially  attractive  to  produce  synthetic  or  substitute  natural  gas  from  coal,  petrocoke,  biomass  or  municipal  solid  and  organic  wastes  in  order  to  secure  a  more  stable  long  term  price  by  means  of  diverse  and  stable  feedstocks.    

Converting  much  less  price-­‐volatile  raw  materials  into  a  synthetic  natural  gas  that  can  be  used  in  an  existing  natural  gas  network  offers  greater  flexibility  in  addressing  the    storage  and  the  distribution  aspects  of  natural  gas.    The  conversion  of  solid  fuels/feedstocks  as  a  general  source  of  energy  makes  these  sources  another  domestic  source  of  inexpensive  synthetic  liquid  transportation  fuels  to  replace  Middle  East  oil.    

The  low  American  natural  gas  prices  have  sparked  interest  in  large-­‐scale  Liquid  Natural  Gas  exports  to  higher-­‐priced  markets,  such  as  Europe  and  Asia,  where  LNG  storage  and  transportation  makes  sense.  While  high  volumes  of  LNG  exports  would  increase  profits  to  the  oil  and  gas  sector,  the  resulting  increase  in  domestic  gas  prices  will  potentially  disrupt  the  growth  in  domestic  manufacturing,  natural  gas  fleet  vehicle  conversions,  and  electricity  generators.  Consequently,  the  United  States  is  faced  with  a  critical  policy  decision  today:  how  to  balance  future  demand  for  LNG  exports  with  the  realization  of  domestic  value  added  opportunities  of  cheap  natural  gas.    

Why  are  we  not  converting  current  potential  feedstocks,  such  as  coal,  into  SNG  (Synthetic/Substitute  Natural  Gas)?    The  answer,  not  surprisingly,  is  the  current  cost  of  the  process  to  turn  coal  into  Synthetic  Natural  Gas.  With  natural  gas  prices  at  record  low,  and  with  current  SNG  technology,  it  just  isn’t  profitable  to  produce  SNG  because  it  cannot  compete  with  the  glut  of  cheap  natural  gas  on  the  market.  

Energy  is  a  major  cost  in  producing  SNG,  however.  If  the  cost  of  production  of  energy  can  be  reduced,  the  cost  of  Synthetic  Natural  Gas  will  also  be  reduced.  

The  conversion  of  coal  and  other  feedstocks  into  Synthetic  Natural  Gas  takes  place  in  several  steps,  all  of  which  require  energy:  

v Gasification  of  coal,  petrocoke,  biomass  or  waste  to  produce  a  gas  rich  in  hydrogen  and  carbon  monoxide    

v A  shift  conversion  process  to  adjust  the  ratio  between  hydrogen  and  carbon  monoxide    

Page 8: Draft: Energy independence

 

    Changing  Perceptions      |    6    

v Acid  gas  removal,  where  carbon  dioxide  and  hydrogen  sulfides  are  removed  in  a  washing  process    

v High  temperature  methanation  to  convert  carbon  oxides  and  hydrogen  to  methane  (Synthetic  Natural  Gas)  followed  by  drying  and  possibly  compression  of  the  product  SNG  to  pipeline  conditions    

v Production  of  oxygen  for  the  gasification  process  in  an  Air  Separation  Unit    v Recovery  of  sulfur  from  the  acid  gas  removal  unit,  for  example  by  converting  the  sulphur  

to  concentrated  sulfuric  acid  in  a  Wet  Sulfuric  Acid  (WSA)  unit    

Instead  of  using  Synthetic  Natural  Gas,  a  carbon  producer  derived  from  the  process,  to  power  the  process  itself,  the  heat  from  a  modular  MSR  (Molten  Salt  Reactor)  can  be  used  to  power  the  process.  A  thorium  powered  MSR  reactor  has  the  potential  to  cut  the  cost  of  heat  by  more  than  half,  which  would  radically  reduce  the  cost  of  producing  Synthetic  Natural  Gas.    

An  additional  benefit  is  that  because  Molten  Salt  Reactors  can  be  made  very  small,  they  can  be  placed  very  close  to  coal  sources  (and  other  feedstock  resources)  so  Synthetic  Natural  Gas  could  be  produced  upon  demand,  thereby  greatly  reducing  the  need  to  store  and  transport  Synthetic  Natural  Gas  over  vast  distances.  

 

NATURAL GAS COMPANIES SHOULD EMBRACE PRODUCING SYNTHETIC NATURAL GAS WITH NUCLEAR MOLTEN SALT REACTOR TECHNOLOGY

As  traditional  coal  fired  power  plants  are  replaced  with  natural  gas  plants  due  to  environmental  regulations,  and  as  additional  natural  gas  peaker  plants  are  needed  on  the  grid  to  complement  intermittent  power  supply  generators,  domestic  natural  gas  usage  will  dramatically  increase  over  the  next  decade.  Additionally,  it  makes  sense  to  allow  export  of  our  natural  gas  to  nations  that  will  pay  a  premium  for  this  resource.         As  demand  for  natural  gas  increases,  though,  the  price  for  natural  gas  will  increase  as  well,  and  because  there  is  such  a  massive  swing  in  the  electrical  generation  sector  to  use  natural  gas  domestically  in  place  of  coal,  our  domestic  economy  will  be  dramatically  and  negatively  impacted  by  any  rising  cost  of  natural  gas  as  it  raises  the  cost  of  electricity.    

As  the  cost  of  electricity  raises  the  negative  impact  upon  the  economy  will  likely  cause  greater  regulation  and  controls  in  the  natural  gas  industry,  which  means  reduced  profits  for  natural  gas  companies.  It  is  this  fear  by  the  public  and  legislators  that  may  kill  many  LNG  export  terminal  projects  if  nothing  is  done  to  alleviate  the  situation.  

Page 9: Draft: Energy independence

 

    Changing  Perceptions      |    7    

Another  concern  is  that  just  as  fleet  owners  of  diesel  trucks  are  converting  to  LNG,  doubts  about  long-­‐lasting  low  natural  gas  prices  could  very  easily  slam  the  brakes  on  the  developing  natural  gas  transportation  fuel  sector.  In  the  long  term,  the  transportation  fuel  market  for  the  natural  gas  industry  offers  the  potential  of  far  more  profit  per  cubic  yard  of  natural  gas  than  the  electrical  generation  sector  because  of  the  mass  sale  to  individuals  rather  than  volume  sales  to  electrical  generator  utilities.  

Demonstrating  to  the  public,  legislators,  and  the  transportation  industry  that  developing  Molten  Salt  Reactor  technology  over  the  next  couple  decades  to  produce  Synthetic  Natural  Gas  will  head  off  any  long-­‐term  spikes  in  the  price  of  domestic  natural  gas  due  to  exportation  would  allay  fears  and  promote  long-­‐term  investment.  Because  MSRs  would  also  produce  electricity  at  a  much  lower  cost  than  does  natural  gas,  and  will  naturally  supplant  electrical  generation  derived  from  natural  gas,  it  makes  sense  to  let  market  forces  transition  a  large  portion  of  the  natural  gas  electrical  generation  sector  to  a  much  higher  profit  transportation  fuel  market  over  the  next  several  decades.    

LONG-TERM ENERGY POLICY

It  makes  sense  for  U.S.  policy  makers  to  embrace  private  industry  exporting  our  natural  gas  to  higher  profit  markets  in  other  countries,  as  long  as  there  is  no  long-­‐term  negative  effect  on  the  U.S.  economy.  If  the  natural  gas  industry  can  demonstrate  through  investment  in  Molten  Salt  Reactor  technology  that  they  can  extend  the  domestic  natural  gas  boom,  potentially  in  perpetuity,  with  economically  viable  Synthetic  Natural  Gas  production,  there  would  be  little  reason  to  stand  in  opposition  to  licensing  Liquid  Natural  Gas  export  hubs  in  the  U.S.  This  would  be  a  free  market  windfall  for  the  American  natural  gas  industry.  Additionally,  as  recently  related  by  Samuel  Thernstrom1,  America  has  vast  untapped  reserves  of  oil  in  the  form  of  EOR  (Enhanced  Oil  Recovery)  plays  from  traditionally  played  out  oil  fields,  and  from  heavy  oil  reserves.  These  reserves  need  tremendous  amounts  of  carbon  dioxide  in  various  forms  in  order  to  harvest  usable  oil.  The  process  to  produce  Synthetic  Natural  Gas  produces  large  amounts  of  high  purity  carbon  dioxide  that,  unlike  with  traditional  coal  fired  power  plants,  is  easily  captured  and  can  help  fuel  yet  another  renaissance  in  the  oil  recovery  industry.  Domestic  Synthetic  Natural  Gas  plants  can  help  spur  the  domestic  oil  industry  through  inexpensive  carbon  dioxide  used  in  Enhanced  Oil  Recovery  to  dominate  world  markets,  especially  including  those  in  the  crude-­‐rich  Middle  East.    

                                                                                                               1  Thernstrom,  Samuel:  “The  Next  Shale  Revolution?”  The  Weekly  Standard  (December  29,  2014),  pp.  22-­‐29  

Page 10: Draft: Energy independence

 

    Changing  Perceptions      |    8    

WHAT IF COMPRESSED NATURAL GAS AND LIQUID NATURAL GAS ARE NOT ADOPTED BY THE PUBLIC AS TRANSPORTATION FUEL?

While  Compressed  Natural  Gas  is  much  cheaper  than  the  current  market  price  of  gasoline,  and  Liquid  Natural  Gas  offers  semi-­‐truck  fleet  owners  large  savings  over  the  present  cost  of  diesel,  there  is  a  large  drawback  in  the  cost  of  converting  gasoline  and  diesel  engines  to  the  use  of  either  CNG  or  LNG.  Then  there  is  the  chicken  and  the  egg  question  of  the  infrastructure  required  to  support  convenient  refueling  of  vehicles  using  CNG  and  LNG  on  the  road.    Will  the  market  make  it  happen,  or  would  unwonted  government  intervention  be  required?    It  might  not  happen  at  all.  

Thankfully,  a  robust  and  proven  technology  can  again  come  to  the  rescue.  GTL  (Gas  to  Liquid)  technology  is  a  well-­‐proven  and  already  economically  viable  process  to  convert  natural  gas  or  Synthetic  Natural  Gas  into  Synthetic  Gasoline  and/or  Synthetic  Diesel  Fuel.  In  fact,  Sasol  Ltd.  of  South  Africa  is  breaking  ground  in  2015  on  an  $11  billion  Lake  Charles,  LA  Gas  to  Liquid  plant  that  will  produce  96,000  barrels  per  day  of  diesel  fuel  and  other  chemicals  (source).  Using  a  Molten  Salt  Reactor  to  power  this  type  of  conversion  can  make  the  Gas  to  Liquid  process  even  more  profitable,  and  produce  transportation  fuel  that  is  even  more  competitive  in  the  American  market.  

Page 11: Draft: Energy independence

 

    Changing  Perceptions      |    9    

DEVELOPING MOLTEN SALT REACTOR TECHNOLOGY IS A PREFERRED SOLUTION TO THE CRISIS OF ENERGY INDEPENDENCE AND NATIONAL SECURITY

 

Developing  Molten  Salt  Reactor  technology  makes  sense  from  several  different  perspectives  across  many  different  energy  sectors.  Some  MSR  designs  can  consume  98%  of  present  day  nuclear  waste  stockpiles  while  producing  electricity,  thus  eliminating  a  long-­‐standing,  and  previously  almost  unsolvable,  environmental  problem  for  the  traditional  nuclear  industry  and  our  national  security.  Molten  Salt  Reactors  can  be  adapted  for  use  as  the  power  source  for  oil  refinery  production  and  the  fractionation  process,  which  would  reduce  the  cost  of  gasoline  and  other  petroleum  based  chemicals  in  the  crude  to  fractional  distillation  process.  MSRs  can  be  used  to  produce  the  massive  amount  of  cheap  electricity  required  for  the  economically  viable  plasma  gasification  of  municipal  solid  waste,  which  would  dramatically  reduce  the  amount  of  wastes  placed  in  landfills  and  produce  Synthetic  Natural  Gas  at  the  same  time.  Molten  Salt  Reactors  can  be  adapted  for  use  to  transform  kerogen  shale  plays  into  crude  oil  using  either  the  reactor’s  high  heat  or  electricity  it  produces.    

Molten  Salt  Reactors  can  produce  economically  attractive  high  temperature  heat  that  can  be  used  in  heavy  oil  recovery  for  remote  areas  such  as  Alaska’s  North  Slope.  Not  only  can  the  carbon  dioxide  and  ammonia  produced  from  manufacturing  Synthetic  Natural  Gas  be  used  for  enhanced  oil  recovery,  but  also  this  high  purity  carbon  and  ammonia  can  be  used  in  next  generation  FO  (Forward  Osmosis)  desalination  plants  to  produce  fresh  water  very  cheaply  (much  more  cheaply  than  using  reverse  osmosis).  (source)  With  the  hundreds  of  ways  that  MSRs  can  impact  multiple  industries,  first  movers  and  adopters  of  Molten  Salt  Reactor  technology  have  the  potential  to  realize  many  market  benefits  over  those  that  do  not  embrace  the  technology.  

 

America’s  being  the  first  nation  to  adopt,  deploy,  and  commercialize  Molten  Salt  Reactor  technology  will  create  United  States  energy  independence.    Moreover,  the  development  of  Molten  Salt  Reactor  Technology  will  lower  the  world  price  of  oil    and  defang  the  hostile  Middle  East  oil  producing  countries’  hold  over  America  and  their  financing  of  terrorism  worldwide.  

 

 

 

Page 12: Draft: Energy independence

 

    Changing  Perceptions      |    10    

 

 

1768  East  25th  Street  Suite  301  Cleveland,  OH  44114  216.367.0602  

eGeneration.org  

The  eGeneration  Foundation  is  a  501(c)3  non-­‐profit  educational  charity.  

Your  contribution  to  the  eGeneration  Foundation  is  tax-­‐deductible  as  a  charitable  contribution  to  the  extent  allowed  by  law.  

Your support is greatly appreciated! Please contact us today!