Dr. Un-ki Yang Particle Physics Group

26
1 Dr. Un-ki Yang Particle Physics Group [email protected] or Shuster 5.15 Amplifiers and Feedback Amplifiers and Feedback 1 1

description

Amplifiers and Feedback 1. Dr. Un-ki Yang Particle Physics Group. [email protected] or Shuster 5.15. Real Experiment. How can we catch cosmic particles & measure their energies?. Real Experiment. Trigger. cosmic ray. scintillator. coincidence. integration. - PowerPoint PPT Presentation

Transcript of Dr. Un-ki Yang Particle Physics Group

Page 1: Dr. Un-ki Yang Particle Physics Group

1

Dr. Un-ki Yang

Particle Physics Group

[email protected] or Shuster 5.15

Amplifiers and Feedback 1Amplifiers and Feedback 1

Page 2: Dr. Un-ki Yang Particle Physics Group

2

Real Experiment

How can we catch cosmic particles & measure their energies?

Page 3: Dr. Un-ki Yang Particle Physics Group

3

Real Experiment

Trigger

coincidence

cosmic ray

scintillator

Signal

X10Amp.

integration

ADC

Page 4: Dr. Un-ki Yang Particle Physics Group

4

OutlineOutline

Prerequisites: 1st-year electronics, and vibration & waves

Aims: to understand how analogue signals are amplified, manipulated, and how they can be interfaced to digital systems

Learning outcomes• To understand the behavior of an ideal amplifier under negative (positive) feedback• To be able to apply this to simple amplifier, summer, integrator,

phase shifter, and oscillator• To understand the limitations of a real amplifier • To understand basic methods of analogue-to-digital conversion

(ADC)

Lectures: 4 hours lectures (2 hours per day)• Oct. 5 & Oct. 12 (1st) , Oct 19 & Oct 26 (2nd)

Page 5: Dr. Un-ki Yang Particle Physics Group

5

Lecture notes and references

Page 6: Dr. Un-ki Yang Particle Physics Group

6

Basic Circuit Theory

Ohm’s Law: V = IR • V is the potential difference across the resister• R is the resister (): typically k• I is the current (A): typically mA

Kirchoff’s Laws• Conservation of energy: for a closed loop

• Conservation of charge: net charge into a point (node)

ΣiVi = 0

Σi Ii = 0

Page 7: Dr. Un-ki Yang Particle Physics Group

7

Dividers

Voltage Divider

Current Divider

Page 8: Dr. Un-ki Yang Particle Physics Group

8

AC Circuit

Alternating current (AC) circuits: v(t), i(t)

Consider v(t), i(t) with sinusoidal sources

v(t) =V0 cos(ωt+φv), i(t) =I 0 cos(ωt+φI )

v(t) =V0ej (ωt+φv ), i(t) =I 0e

j (ωt+φI )

Extension of Ohm’s law to AC circuits

v(ω,t) =Z(ω)i(ω,t),Zisageneralizedresistance:"impedance"

Z is a complex number

is a phase

Z = Z eiφ

Page 9: Dr. Un-ki Yang Particle Physics Group

9

AC Circuit with Capacitor & Inductance

In AC circuit, capacitance (C) and inductance (L) are used to store energy in electric and magnetic fields

Capacitance : v = q/C• Source of i and v• To smooth a sudden change in voltage• Typically F or pF (farad)

Inductance : v = L di/dt • To smooth sudden change in current• Typically H or mH (henry)

Page 10: Dr. Un-ki Yang Particle Physics Group

10

RC Circuit with Sinusoidal Source

Resistive impedance: ZR=R,

• same phase

Capacitive impedance: Zc = 1/jωC, • -/2 phase

Inductive impedance: ZL = jωL,

• /2 phase

v(t)−Ri(t) =0

v(t)−q(t) /C =0

v(t)−Ldi(t) / dt=0

v(t) =V0ejωt, i(t) =I 0e

jωt

Page 11: Dr. Un-ki Yang Particle Physics Group

11

Capacitor

Circuit with capacitor

v =V0 cosωt⇔ V0ejωt

v=q /C V C

i(t)

Z(ω) -/2 phase

In a DC circuit, ω0inf

it acts like an open circuit The current leads the voltage

by 90o

v(t) =i(t) / jωCZ=−j /ωC

Page 12: Dr. Un-ki Yang Particle Physics Group

12

RC Low-Pass Filter

G ≡Vout

Vin

=1

1+ jωRC

R

CVin Vout

ω → 0 ⇒ G(ω) →Glow = 1

ω → ∞ ⇒ G(ω) →Ghigh =1

jωRC

Ghigh =1

RCω −1

Page 13: Dr. Un-ki Yang Particle Physics Group

13

RC Low-pass filter

Low pas filter acts as an integrator at high frequency

IR =IC

IR =Vin −Vout

R, IC =C

dVout

dtVin −Vout

R=C

dVout

dtifVin ? Vout(lowgain:highω)Vin

R≈C

dVout

dt

Vout =1

RCVindt∫

R

CVin Vout

VIN (t) Vejωt

Ghigh 1

jwRC

Page 14: Dr. Un-ki Yang Particle Physics Group

14

RC High-pass filter

High pass filter acts as a differentiator at low frequency

Vin Vout

Vout =R

R+1 / jωCVin

Vout =jωRC

1+ jωRCVin

G≡Vout

Vin

=jωRC

1+ jωRC

ω → 0 ⇒ G(ω ) →Glow = jωRC

ω → ∞ ⇒ G(ω ) →Ghigh = 1

Vout = RCd

dtVIN at low frequency

Page 15: Dr. Un-ki Yang Particle Physics Group

15

RC circuits

Low-pass

filter

high ω

High-pass

filter

low ω

1

jwRC

ω → 0 ω → ∞

jwRC

1

1

Vout =1

RCVindt∫

Vout =RCddt

VIN

Page 16: Dr. Un-ki Yang Particle Physics Group

16

Amplifiers

The amplification (gain) of a circuit

G = VOUT / VIN

Ideal amplifier• Large but stable gain• Gain is independent of frequency• Large input impedance (not to draw too much current) • Small output impedance

Obtained by “negative feedback”

Page 17: Dr. Un-ki Yang Particle Physics Group

17

Negative Feedback

An overall gain G is independent of G0, but only depends on

Stable gain

VOUT =G0v, VOUT =VIN + VOUT

VOUT =G0

1−GO

VIN

G ≈−

1,ifG0 ? 1

Vout =G0V, V=VIN + Vout

Page 18: Dr. Un-ki Yang Particle Physics Group

18

Operational Amplifier

Vout =G0 (V+ - V-) (called as differential amp.)• Vout = - G0 V- , if V+ =0 : inverting amplifier• Vout = G0 V+ , if V- =0 : non-inverting amplifier

Amplifier with a large voltage gain (~105) High Zin (~106 ) Low Zout(<100 )

Page 19: Dr. Un-ki Yang Particle Physics Group

19

OP Amplifier 741

Many interesting features about OP amplifier http://www.allaboutcircuits.com/vol_3/chpt_8/3.html

+15V

-15V

VoutV-

V+

Page 20: Dr. Un-ki Yang Particle Physics Group

20

Non-inverting Amplifier

Golden rules Infinite Gain Approx. (IGA)Small v(=V+- V-): V+=V-

Small input currents:

I+=I-=0 (large Zin)

G =VOUT

VIN

≈1=

R1 + R2

R1

,

ifG0 ? 1

V−=VOUT

R1

R1 + R2

VOUT =G0 (V+ −V−), VIN =V+

G =VOUT

VIN

=G0

1+R1

R1 + R2

G0

⎝⎜⎞

⎠⎟

Page 21: Dr. Un-ki Yang Particle Physics Group

21

Inverting Amplifier

Inverting Amplifier

Golden rule: V+= V- (v- is at virtual ground)

Calculate gain!

Page 22: Dr. Un-ki Yang Particle Physics Group

22

Differentiator

Vin −V−

ZC

=V−−Vout

R

−jwCVin =Vout

RwhereV+ =0&V+ =V−, thusV−=0

G =VOUT

VIN

=−RZC

=−jwCR

Vout =−RCddt

VIN

Not necessaryto assume

Vin>>V-

Page 23: Dr. Un-ki Yang Particle Physics Group

23

Realistic OP Amplifier

Gain is NOT infinite

Gain is NOT constant against frequency

Output response is NOT instantaneous

Gain drops at high frequency

Bandwidth: a stable range, -3dB

Slew rate: response rate

Page 24: Dr. Un-ki Yang Particle Physics Group

24

Gain

Open gain, Go ~ 105: const. for a small range

Go

G

Closed gain, G(R,C): const. for a wide range

-3dB dB =20 logVOUT

VIN

=10 logPOUT

PIN

20 log(G / 2 ) =20 logG−3Bandwidth

Bandwidth: the range of frequencies for gain to be within 3dB

Page 25: Dr. Un-ki Yang Particle Physics Group

25

Slew Rate

Output response is not instantaneous

Slew rate: the rate at which the output voltage can change: V/t

t

Page 26: Dr. Un-ki Yang Particle Physics Group

26

Output Impedance

Vout will drop by r/(r+R), thus output impedance can be measured using an external register, r

VOUT ⇒r

r + RVOUT