Dr. Saiidi - Shake performance of bridges with novel materials.pdf

61
Shake Table Performance of Bridges with Novel Materials with Novel Materials M Saiid Saiidi M. Saiid Saiidi http://wolfweb.unr.edu/homepage/saiidi/ Professor, Department of Civil and Environmental Engineering Director, Center for Advanced Technology in Bridges and Infrastructure

Transcript of Dr. Saiidi - Shake performance of bridges with novel materials.pdf

  • Shake Table Performance of Bridges with Novel Materialswith Novel Materials

    M Saiid SaiidiM. Saiid Saiidihttp://wolfweb.unr.edu/homepage/saiidi/

    Professor, Department of Civil and Environmental EngineeringDirector, Center for Advanced Technology in Bridges and Infrastructure

  • Standard Bridge Seismic P f Obj iPerformance Objective:

    No Collapse under Severe Earthquake

  • Failure and Success

    Failure

    Success

  • New thinking: N C ll i tNo Collapse is not success

    Serviceability after earthquake: Serviceability after earthquake:Minimize permanent drift and damage

    (Bridges need to be sustainable)(Bridges need to be sustainable) Performance-based design

    Ad d t i l /d t il Advanced materials/detailsShape memory alloys/ductile concreteP i d lPost-tensioned columnsColumns w/ built-in elastomeric padsFiber-reinforced polymers

  • Evolution in SMA (NickelEvolution in SMA (Nickel Titanium) Use/Research

    Also military applications

  • Shape Memory AlloyShape Memory Alloy

    SuperelasticSuperelastic response

    Shape memory p yeffects

    First developed pin 1932

    NiTi SMA developed in1962

  • Research on SMA-ReinforcedResearch on SMA Reinforced Concrete Members at UNR

    1) Half cycle load testing of 8 beams2) Static cyclic load testing of 3 columns2) Static cyclic load testing of 3 columns3) Shake table testing of 2 columns4) Sh k bl i f 4 b id4) Shake table testing of a 4-span bridge

    (Dec 08)

  • SMA bars

  • 18 800 .00 5 .08 10 .16 15 .24

    D eflection (m m )

    Load vs

    10

    12

    14

    16

    18

    K

    i

    p

    s

    )

    4 4

    53

    62

    71

    80

    K

    N

    )

    Load vs Deflection

    2

    4

    6

    8

    10

    L

    o

    a

    d

    (

    K

    9

    18

    27

    36

    44

    L

    o

    a

    d

    (

    K

    SMA Reinf. Beam0

    2

    0 .0 0 .2 0 .4 0 .6

    D eflection (in ch es)

    0

    9

    0 .0 0 5 .0 8 1 0 .1 6 1 5 .2 4 2 0 .3 2D eflec tio n (m m )

    1 0

    1 2

    1 4

    1 6

    i

    p

    s

    ) 4 4

    5 3

    6 2

    7 1

    K

    N

    )

    2

    4

    6

    8

    L

    o

    a

    d

    (

    K

    i

    9

    1 8

    2 7

    3 6

    L

    o

    a

    d

    (

    K

    Steel Reinf. Beam0

    2

    0 .0 0 .2 0 .4 0 .6 0 .8

    D eflec tio n (in ch es)

    0

    9

  • Findings from Beam Tests

    Residual displacement and strain in SMA-reinforced beams was 75-80% lower than that in steel-reinforced beams. (Superior Columns)

    SMA-reinforced beam was 60% less stiff than conventional beam. (Too Soft for Gi d )Girders)

  • Slow Cyclic Load Tests ofSlow Cyclic Load Tests of Columns

    Objectives: (1) Determine residual displacement recovery of

    SMA reinforced columns under load reversalsSMA reinforced columns under load reversals. (2) Study effect of using ductile concrete on

    damage.>> 3 columns:

    Conventional RC, SMA/regular concrete, SMA/ductile concrete

  • Engineered Cementitious Composites(ECC, Ductile Concrete)

    1. Fiber-reinforced cementitious composite2. Tensile strain-hardening behavior2. Tensile strain hardening behavior3. Typically 2% or less fiber content by

    volumeo u e

  • ECC

    800

    1000

    s

    i

    ) 5.6

    7

    P

    a

    )

    ECC

    400

    600

    S

    t

    r

    e

    s

    s

    (

    p

    s

    28

    4.2

    S

    t

    r

    e

    s

    s

    (

    M

    P

    Conventional

    ECC

    Polyvinyl Alcohol 200400

    T

    e

    n

    s

    i

    l

    e

    1.4

    2.8

    T

    e

    n

    s

    i

    l

    e

    Conventional Concrete

    Fiber 00 0.5 1 1.5 2 2.5 3 3.5 4

    Strain (%)

    0

    ( )

  • Cyclic Load Plan

    6%8%

    10%12%14%16%

    -8%-6%-4%-2%0%2%4%6%

    D

    r

    i

    f

    t

    R

    a

    t

    i

    o

    (

    %

    )

    -16%-14%-12%-10%

    8%

    0 5 10 15 20 25 30 35 40 45 50Cycle

  • Conventional SMA/ECC

  • 10% Drift

    ResidualConventional SMA/Conc. SMA/ECC

    ResidualAfter

    10% Drift10% Drift

  • 78RSCRNC

    6

    7

    %

    )

    RNCRNE Through -12% DriftLinear (RSC)Linear (RNC)Li (RNE Th h 12% D ift)

    Conventional82%

    4

    5

    a

    l

    D

    r

    i

    f

    t

    ( Linear (RNE Through -12% Drift) 82%

    SMA/Conc

    2

    3

    R

    e

    s

    i

    d

    u

    a SMA/Conc.27%

    0

    1

    2

    SMA/ECC14%0

    0 2 4 6 8 10 12 14Maximum Drift Reached (%)

    14%

    (%)

  • Shake Table Tests of Columns

    Objectives: (1) Determine residual displacement recovery of ( ) p y

    SMA reinforced columns under dynamic loading. (2) Study performance of repair by ductile

    concrete.2 columns:

    SMA/regular concrete, SMA/repaired w/ ductile concrete

  • Conventional

    SMA/Conc.

    SMA/ECCRepairRepair

  • Mode of failure: Buckling and rupture of longitudinal bars in rubberlongitudinal bars in rubber

  • New Elastomeric Pad Developed at UNR:Shimmed pads to prevent buckling and rupture of longitudinal bars

    Column Bar

    Upper steel plate

    Lower steel plateIsolator

    Shear Key

  • 4-Span Bridge Model w/4 Span Bridge Model w/ Advanced Details

    PTElastomer

    SMA/ECCPT

    Total model length= 110Total model length 110Top Plastic Hinges: Conventional RC

  • Column Details

    Built-in l t i d

    Post-SMA barselastomeric pad

    & post-tensioned column

    tensioned column

    SMA bars& fiber reinforced

    concrete

  • Bridge Assembly

    20 t 20 components

  • Complete BridgeComplete Bridge

  • Input Motions 1994 Northridge Century City-Modifiedcolumn point of fixity

    top of soil

    Part 1-EQ record

    Both transverse and longitudinal

    Abutments motions:8ft

    depth to bedrock ro

    -

    s

    h

    a

    k

    e

    p

    e

    n

    s

    e

    e

    s

    Part 4-FinalAbutments motions:

    Opensees disp. histories at abutments

    bedrock

    depth to bedrock

    2

    -

    p

    r

    3

    -

    o

    p

    Transverse Direction: 0.075, 0.15, 0.25, 0.5, 0.75, 1.00, 1.0g

    Longitudinal Direction: 0.09, 0.18, 0.3, 0.6,

    Acceleration Record - Transverse Direction

    0.6

    Acceleration Record - Longitudinal Direction

    0.8

    0.9, 1.15, 1.15g

    -0.2

    0

    0.2

    0.4

    0 5 10 15 20

    c

    c

    e

    l

    e

    r

    a

    t

    i

    o

    n

    (

    g

    )

    -0.2

    0

    0.2

    0.4

    0.6

    0 5 10 15 20

    A

    c

    c

    e

    l

    e

    r

    a

    t

    i

    o

    n

    (

    g

    )

    -0.6

    -0.4

    Time (sec)

    A

    c

    -0.6

    -0.4

    Time (sec)

    A

  • Column D f i

    Pin

    DeformationsPin

    L i di l Transverse:Longitudinal:Single Curvature

    Transverse:Double Curvature

  • Damage: Rare Earthquakeg qSMA Bent PT Bent Elasto Bent

    TOPTOP

    RC RC

    BOT.

    SMA/ECC

  • Damage: Final MotiongSMA Bent PT Bent Elasto Bent

    TOPTOP

    RCRC RC

    BOT.

    SMA/ECC

  • Experimental Results A) Negligible residual displacements (less

    than 0.2% drift)than 0.2% drift)

    80

    120

    m

    m

    )

    _

    3.1

    4.7

    n

    )

    _All Bents-Long

    R 1 R 2 R 3 R 4 R 5 R 6 R 7-80

    -40

    0

    40

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    m

    -3.1

    -1.6

    0.0

    1.6

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    i

    Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

    Run 5 Run 6 Run 7

    -1200 20 40 60 80 100 120 140 160

    Time (sec)

    D

    -4.7

    D

    80

    120

    m

    )

    _

    80

    120

    3.1

    4.7

    )

    _

    -80

    -40

    0

    40

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    m

    m

    SMA-TranISO-Tran

    SMA-TranISO-Tran -80

    -40

    0

    40

    -3 1

    -1.6

    0.0

    1.6

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    i

    n

    )

    SMA-TranISO Tran

    Time (sec)

    -120

    80

    93 95 97 99 101 103 105

    D

    i

    ISO-TranPT-Tran

    116 118 120 122 124 126 128

    ISO-TranPT-Tran

    -120

    80

    138 140 142 144 146 148 150-4.7

    3.1

    D

    iISO-TranPT-Tran

  • Force-Displacement relationshipsp p

    -0.007707 1.466045 -0.006108 4.283415 -0.008137 1.720305 0.023811 1.489976 -0.009419 0.908549 -0.00368 1.4118210 006564 1 415291 0 003633 4 27999 0 007167 1 644908 0 02258 1 460351 0 008483 0 868204 0 015124 1 562883

    Displacement (in)Displacement (in) Displacement (in)

    Max. achieved drifts:5.37% 5.16% 4.96%

    -0.006564 1.415291 0.003633 4.27999 -0.007167 1.644908 0.02258 1.460351 -0.008483 0.868204 -0.015124 1.562883-0.005299 1.361912 0.00017 4.354587 -0.005703 1.577517 0.022341 1.557723 -0.007094 0.838178 -0.020375 1.631919-0.007863 1.312003 0.004039 4.564765 -0.008504 1.506568 0.00799 1.535348 -0.00946 0.811978 -0.036446 1.821903-0.006597 1.262717 0.017867 4.504714 -0.00676 1.438155 0.001298 1.328195 -0.008185 0.772211 -0.032662 1.580631-0.005443 1.210272 0.027544 4.502045 -0.005472 1.364537 -0.020053 1.439845 -0.007579 0.753128 -0.030861 1.611057-0.008242 1.153379 -0.000933 4.600351 -0.00863 1.283935 0.001768 0.891691 -0.010294 0.719011 -0.034699 1.778444-0.007005 1.100713 -0.017186 4.573217 -0.008111 1.219658 0.029875 0.750904 -0.009066 0.684492 -0.033947 2.1341680

    90

    180

    270

    c

    e

    (

    k

    N

    )

    _

    0

    20

    40

    61-5.9 -3.9 -2.0 0.0 2.0 3.9 5.9

    p ( )

    e

    (

    k

    i

    p

    s

    )

    _

    PT-Long

    0

    90

    180

    270

    e

    (

    k

    N

    )

    _

    0

    20

    40

    61-5.9 -3.9 -2.0 0.0 2.0 3.9 5.9

    p ( )

    e

    (

    k

    i

    p

    s

    )

    _

    ISO-Long

    0

    90

    180

    270

    e

    (

    k

    N

    )

    _

    0

    20

    40

    61-5.9 -3.9 -2.0 0.0 2.0 3.9 5.9

    p ( )

    e

    (

    k

    i

    p

    s

    )

    _

    SMA-Long

    -0.005577 1.044754 0.002993 4.730684 -0.006541 1.13999 0.019129 0.59059 -0.007398 0.655579 -0.029507 1.982573-0.008248 0.977319 0.017286 4.812087 -0.008659 1.071399 -0.000149 0.513592 -0.009088 0.63227 -0.041798 1.738632-0.008017 0.925275 0.02936 4.87792 -0.008241 0.99827 0.000478 0.462615 -0.008983 0.611052 -0.038186 1.692815-0.006277 0.861887 0.038336 4.721788 -0.00679 0.926031 -0.001205 0.203355 -0.00771 0.577602 -0.031841 1.725866-0.005418 0.778572 0.005409 4.344845 -0.00556 0.863533 -0.016788 0.064117 -0.007069 0.55198 -0.04523 1.749797-0.005881 0.741563 0.005235 4.271405 -0.006275 0.775236 0.01824 -0.10883 -0.006154 0.523956 -0.050876 2.4171640 003654 0 686272 0 010963 4 585672 0 005099 0 706689 0 024237 0 207234 0 005128 0 512791 0 027821 2 953086

    -270

    -180

    -90

    -150 -100 -50 0 50 100 150Displacement (mm)

    F

    o

    r

    c

    -61

    -40

    -20

    F

    o

    r

    c

    e

    -270

    -180

    -90

    -150 -100 -50 0 50 100 150Displacement (mm)

    F

    o

    r

    c

    -61

    -40

    -20F

    o

    r

    c

    e

    -270

    -180

    -90

    -150 -100 -50 0 50 100 150Displacement (mm)

    F

    o

    r

    c

    -61

    -40

    -20

    F

    o

    r

    c

    e

    -0.003654 0.686272 0.010963 4.585672 -0.005099 0.706689 0.024237 0.207234 -0.005128 0.512791 -0.027821 2.953086-0.002841 0.615812 -0.000517 4.562986 -0.003468 0.630002 0.00941 -0.065051 -0.004786 0.469332 -0.054341 2.746154-0.004309 0.555672 -0.003886 3.817019 -0.005439 0.59059 -0.015385 -0.900987 -0.005612 0.441037 -0.063635 2.161969-0.002255 0.498379 0.009458 3.178077 -0.004592 0.512658 0.004415 -1.62974 -0.004672 0.420526 -0.041483 1.876171-0.002284 0.450205 0.001696 3.43763 -0.002831 0.443368 -0.013661 -1.642061 -0.003771 0.399059 -0.066238 2.200357

    -0.00536 0.380964 0.001734 4.116251 -0.005673 0.375216 0.013982 -1.213964 -0.007901 0.385216 -0.059116 2.562888-0.00631 0.327007 -0.002304 4.064163 -0.006973 0.307194 0.010913 -1.314272 -0.00792 0.354105 -0.041445 2.38006690

    180

    270

    N

    )

    _

    20

    40

    61-5.9 -3.9 -2.0 0.0 2.0 3.9 5.9

    Displacement (in)

    s

    )

    _

    ISO-Tran

    90

    180

    270

    N

    )

    _

    20

    40

    61-5.9 -3.9 -2.0 0.0 2.0 3.9 5.9

    Displacement (in)

    s

    )

    _

    PT-Tran

    90

    180

    270

    N

    )

    _

    20

    40

    61-5.9 -3.9 -2.0 0.0 2.0 3.9 5.9

    Displacement (in)

    s

    )

    _

    SMA-Tran

    -0.002542 0.255519 0.011713 3.210237 -0.004875 0.26075 -0.014744 -2.335628 -0.005579 0.361645 -0.057894 2.220864-0.003401 0.18957 -0.020418 2.764259 -0.003674 0.170225 -0.008774 -3.072832 -0.006109 0.366582 -0.058105 1.486596-0.003875 0.145475 -0.003307 3.386832 -0.003951 0.135649 0.015739 -2.304135 -0.00334 0.306122 -0.043571 2.0564130.003464 0.100396 0.045801 5.553605 0.002122 0.144638 0.025109 0.278988 0.003695 0.309267 -0.050686 4.5959030.000858 0.026611 0.007578 5.521578 -0.000939 0.120493 -0.035601 -0.945781 0.000132 0.303747 -0.078275 3.997795

    -0.005074 -0.045585 0.031016 1.96429 -0.007773 0.101642 0.015959 -4.855679 -0.007481 0.285122 -0.064366 0.669947-0 003675 -0 086958 0 008957 -1 99356 -0 005914 0 072279 0 016253 -8 448063 -0 003756 0 288356 -0 065108 -2 974437-270

    -180

    -90

    0

    90

    F

    o

    r

    c

    e

    (

    k

    N

    -61

    -40

    -20

    0

    20

    F

    o

    r

    c

    e

    (

    k

    i

    p

    -270

    -180

    -90

    0

    90

    F

    o

    r

    c

    e

    (

    k

    N

    -61

    -40

    -20

    0

    20

    F

    o

    r

    c

    e

    (

    k

    i

    p

    -270

    -180

    -90

    0

    90

    F

    o

    r

    c

    e

    (

    k

    N

    -61

    -40

    -20

    0

    20

    F

    o

    r

    c

    e

    (

    k

    i

    p

    0.003675 0.086958 0.008957 1.99356 0.005914 0.072279 0.016253 8.448063 0.003756 0.288356 0.065108 2.9744370.001822 -0.157654 -0.00339 -1.032254 0.001786 0.090557 -0.032918 -6.046023 0.00198 0.264651 -0.068212 -0.865891-0.00316 -0.187301 0.022473 5.776461 -0.00327 0.04319 -0.009754 0.382596 -0.005625 0.250617 -0.077437 5.20442

    -150 -100 -50 0 50 100 150Displacement (mm)

    -150 -100 -50 0 50 100 150Displacement (mm)

    -150 -100 -50 0 50 100 150Displacement (mm)

    5.86% 5.06% 4.96%

  • Force-Displacement Envelopes & M d D tilitiMeasured Ductilities59.67476 137.5257 51.29784 227.1707 56.84266 135.8665 42.19956 185.1128 56.18226 135.8665 43.2308 144.482798.17862 151.4175 60.55106 236.6855 94.37878 131.147 61.18606 193.3554 90.5764 131.147 63.92672 158.4146

    105.9815 276.6127 91.11996 198.0215 89.95918 145.9062107.1931 246.218 92.50426 197.9459 90.62212 145.9062

    200

    250

    N

    )

    _ 45

    56

    0.0 0.8 1.6 2.4 3.1 3.9 4.7Displacement (in)

    p

    s

    )

    _

    PT-Long (measured)Bilinear idealization

    R n 5200

    250

    N

    )

    _ 45

    56

    0.0 0.8 1.6 2.4 3.1 3.9 4.7Displacement (in)

    p

    s

    )

    _

    ISO-Long (measured)Bilinear idealization

    200

    250

    N

    )

    _ 45

    56

    0.0 0.8 1.6 2.4 3.1 3.9 4.7Displacement (in)

    p

    s

    )

    _

    SMA-Long (measured)Bilinear idealization

    Run 5Run 4Run 3Run 2Run 1

    0

    50

    100

    150

    0 20 40 60 80 100 120

    F

    o

    r

    c

    e

    (

    k

    N

    0

    11

    22

    34

    F

    o

    r

    c

    e

    (

    k

    i

    p

    Run 1Run 2

    Run 3

    Run 4 Run 5

    0

    50

    100

    150

    0 20 40 60 80 100 120

    F

    o

    r

    c

    e

    (

    k

    N

    0

    11

    22

    34

    F

    o

    r

    c

    e

    (

    k

    i

    p

    Run 1Run 2

    Run 3

    Run 4Run 5

    0

    50

    100

    150

    0 20 40 60 80 100 120

    F

    o

    r

    c

    e

    (

    k

    N

    0

    11

    22

    34

    F

    o

    r

    c

    e

    (

    k

    i

    p

    0 20 40 60 80 100 120Displacement (mm)

    0 20 40 60 80 100 120Displacement (mm)

    0 20 40 60 80 100 120Displacement (mm)

    R 5

    Run 6250

    30056

    0.0 0.8 1.6 2.4 3.1 3.9 4.7Displacement (in)

    _

    Run 6250 56

    0.0 0.8 1.6 2.4 3.1 3.9 4.7Displacement (in)

    _

    250 56

    0.0 0.8 1.6 2.4 3.1 3.9 4.7Displacement (in)

    _

    SMA-Tran (measured)Bilinear idealization

    Run 1Run 2

    Run 3

    Run 4Run 5 Run 7

    0

    50

    100

    150

    200

    F

    o

    r

    c

    e

    (

    k

    N

    )

    _

    0

    11

    22

    34

    45

    F

    o

    r

    c

    e

    (

    k

    i

    p

    s

    )

    _

    ISO-Tran (measured)Bilinear idealization

    Run 6Run 7Run 5Run 4

    Run 3

    Run 2Run 1

    0

    50

    100

    150

    200

    F

    o

    r

    c

    e

    (

    k

    N

    )

    _

    0

    11

    22

    34

    45

    F

    o

    r

    c

    e

    (

    k

    i

    p

    s

    )

    _

    PT-Tran (measured)Bilinear idealization

    Run 1Run 2

    Run 3Run 4 Run 5

    Run 7

    Run 6

    0

    50

    100

    150

    200

    F

    o

    r

    c

    e

    (

    k

    N

    )

    _

    0

    11

    22

    34

    45

    F

    o

    r

    c

    e

    (

    k

    i

    p

    s

    )

    _

    00 20 40 60 80 100 120

    Displacement (mm)

    0 00 20 40 60 80 100 120

    Displacement (mm)

    0 00 20 40 60 80 100 120

    Displacement (mm)

    0

    Longitudinal TransverseD tilit D tilit

    BentDuctility Ductility

    ISO 5.3 6.9PT 8.1 8.6

    SMA 7.1 9.6

    Bent failure

  • Strains Longitudinal Reinforcement52 41321 3 779788 223 0105 3 779788 69 20283 1 506123 69 18652 1 506123 6 55889 0 074192 144 2284 0 074192 52.41321 -3.779788 -223.0105 3.779788 -69.20283 1.506123 -69.18652 1.506123 6.55889 -0.074192 -144.2284 -0.07419272.06813 -3.840773 -236.1288 3.840773 -69.20283 1.575649 -69.18652 1.575649 13.1178 -0.057996 -170.4518 -0.05799665.51649 -3.972129 -242.6879 3.972129 -55.36225 1.612836 -62.26788 1.612836 26.23564 -0.046662 -150.7843 -0.04666252.41321 -4.121278 -229.5696 4.121278 -76.12312 1.594243 -62.26788 1.594243 19.67672 -0.037176 -163.8959 -0.03717645.86156 -4.22679 -236.1288 4.22679 -62.28254 1.541531 -76.10516 1.541531 13.1178 -0.0273 -163.8959 -0.027365.51649 -4.283415 -229.5696 4.283415 -69.20283 1.489976 -76.10516 1.489976 6.55889 -0.022556 -150.7843 -0.02255658.96485 -4.310816 -236.1288 4.310816 -69.20283 1.458928 -76.10516 1.458928 6.55889 -0.016219 -150.7843 -0.016219

    0

    90

    180

    270

    r

    c

    e

    (

    k

    N

    )

    _

    0

    20

    40

    61

    c

    e

    (

    k

    i

    p

    s

    )

    _

    0

    90

    180

    270

    r

    c

    e

    (

    k

    N

    )

    _

    0

    20

    40

    61

    c

    e

    (

    k

    i

    p

    s

    )

    _

    0

    90

    180

    270

    r

    c

    e

    (

    k

    N

    )

    _

    0

    20

    40

    61

    c

    e

    (

    k

    i

    p

    s

    )

    _

    45.86156 -4.296315 -229.5696 4.296315 -76.12312 1.455636 -62.26788 1.455636 13.1178 -0.014539 -144.2284 -0.01453958.96485 -4.269403 -223.0105 4.269403 -62.28254 1.468536 -69.18652 1.468536 13.1178 -0.017817 -150.7843 -0.01781752.41321 -4.287997 -236.1288 4.287997 -69.20283 1.500519 -76.10516 1.500519 19.67672 0.01053 -150.7843 0.0105352.41321 -4.354587 -229.5696 4.354587 -69.20283 1.557723 -76.10516 1.557723 -2.51E-05 0.032816 -150.7843 0.03281652.41321 -4.449112 -229.5696 4.449112 -69.20283 1.612925 -76.10516 1.612925 19.67672 0.050901 -157.3401 0.05090152.41321 -4.534962 -223.0105 4.534962 -76.12312 1.589172 -55.34923 1.589172 6.55889 0.044998 -157.3401 0.04499852 41321 -4 579 -236 1288 4 579 -55 36225 1 46431 -62 26788 1 46431 -6 55894 0 030033 -157 3401 0 030033

    -270

    -180

    -90

    -10000 10000 30000 50000Strain (S)

    F

    o

    r

    -61

    -40

    -20

    F

    o

    r

    c

    ISO-Top

    -270

    -180

    -90

    -10000 10000 30000 50000Strain (S)

    F

    o

    r

    -61

    -40

    -20

    F

    o

    r

    c

    PT-Top

    -270

    -180

    -90

    -10000 10000 30000 50000Strain (S)

    F

    o

    r

    -61

    -40

    -20

    F

    o

    r

    c

    SMA-TopSteel (RC) Steel (RC) Steel (RC)

    52.41321 -4.579 -236.1288 4.579 -55.36225 1.46431 -62.26788 1.46431 -6.55894 0.030033 -157.3401 0.03003352.41321 -4.560317 -236.1288 4.560317 -76.12312 1.342295 -69.18652 1.342295 -2.51E-05 0.039633 -150.7843 0.03963358.96485 -4.504714 -229.5696 4.504714 -62.28254 1.328195 -76.10516 1.328195 -6.55894 0.077586 -163.8959 0.07758652.41321 -4.466905 -223.0105 4.466905 -76.12312 1.404704 -69.18652 1.404704 19.67672 0.088021 -163.8959 0.08802145.86156 -4.47847 -236.1288 4.47847 -62.28254 1.457193 -76.10516 1.457193 19.67672 0.074005 -150.7843 0.07400545.86156 -4.532293 -223.0105 4.532293 -76.12312 1.383886 -55.34923 1.383886 6.55889 0.091282 -157.3401 0.09128252.41321 -4.587451 -249.247 4.587451 -62.28254 1.167703 -69.18652 1.167703 13.1178 0.100917 -144.2284 0.1009170

    90

    180

    270

    e

    (

    k

    N

    )

    _

    0

    20

    40

    61

    (

    k

    i

    p

    s

    )

    _

    0

    90

    180

    270e

    (

    k

    N

    )

    _

    0

    20

    40

    61

    (

    k

    i

    p

    s

    )

    _

    0

    90

    180

    270

    e

    (

    k

    N

    )

    _

    0

    20

    40

    61

    (

    k

    i

    p

    s

    )

    _

    58.96485 -4.600351 -223.0105 4.600351 -69.20283 0.891691 -69.18652 0.891691 19.67672 0.102096 -144.2284 0.10209645.86156 -4.577665 -236.1288 4.577665 -69.20283 0.717943 -62.26788 0.717943 -2.51E-05 0.099671 -157.3401 0.09967165.51649 -4.562541 -236.1288 4.562541 -55.36225 0.720701 -76.10516 0.720701 6.55889 0.111321 -144.2284 0.11132158.96485 -4.596793 -229.5696 4.596793 -55.36225 0.770877 -62.26788 0.770877 -2.51E-05 0.070384 -157.3401 0.07038452.41321 -4.665295 -242.6879 4.665295 -76.12312 0.728441 -76.10516 0.728441 -2.51E-05 0.010736 -157.3401 0.01073658.96485 -4.730684 -236.1288 4.730684 -69.20283 0.59059 -76.10516 0.59059 -2.51E-05 -0.006252 -157.3401 -0.00625245 86156 -4 772497 -249 247 4 772497 -76 12312 0 48757 -69 18652 0 48757 6 55889 0 029012 -157 3401 0 029012

    -270

    -180

    -90

    0

    -10000 10000 30000 50000

    F

    o

    r

    c

    e

    -61

    -40

    -20

    0

    F

    o

    r

    c

    e

    ISO-Bot

    -270

    -180

    -90

    0

    -10000 10000 30000 50000

    F

    o

    r

    c

    e

    -61

    -40

    -20

    0

    F

    o

    r

    c

    e

    PT-Bot

    -270

    -180

    -90

    0

    -10000 10000 30000 50000

    F

    o

    r

    c

    e

    -61

    -40

    -20

    0

    F

    o

    r

    c

    e

    SMA-Bot

    Steel(Elastomeric

    pad) Steel (RC) SMA /ECC

    45.86156 4.772497 249.247 4.772497 76.12312 0.48757 69.18652 0.48757 6.55889 0.029012 157.3401 0.02901252.41321 -4.798742 -242.6879 4.798742 -62.28254 0.491929 -62.26788 0.491929 26.23564 0.080655 -157.3401 0.080655Strain (S) Strain (S) Strain (S)

  • Analytical Studies: Near-Fault EQ Rinaldi (Northridge, 1994)( g , )

    100% Rinaldi - RC Bridge

    4.05.06.0

    (

    i

    n

    ) 102127152

    m

    m

    )

    All Bents

    100% Rinaldi - PT bridge

    4.0

    5.0

    6.0

    i

    n

    ) 102

    127

    152

    m

    m

    )

    All B t

    1 00.01.02.03.0

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    250255176

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    m

    All Bents

    0 0

    1.0

    2.0

    3.0

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    i

    0

    25

    51

    76

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    m

    All Bents

    Residual driftRatio= 3%

    -3.0-2.0-1.0

    0 2 4 6 8 10 12 14 16 18 20Time (sec)

    D

    -76-51-25

    D

    i

    -2.0

    -1.0

    0.0

    0 2 4 6 8 10 12 14 16 18 20Time (sec)

    D

    i

    -51

    -25

    0

    D

    i

    sRatio= 3%

    e (sec) Time (sec)

    100% Rinaldi - SMA Bridge

    2 03.04.05.06.0

    n

    t

    (

    i

    n

    )

    5176102127152

    t

    (

    m

    m

    )

    100% Rinaldi - ISO bridge

    2 0

    3.0

    4.0

    5.0

    n

    t

    (

    i

    n

    )

    51

    76

    102

    127

    t

    (

    m

    m

    )

    -2.0-1.00.01.02.0

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    -51-2502551

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    All Bents-1.0

    0.0

    1.0

    2.0

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    -25

    0

    25

    51

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    All Bents

    -4.0-3.0

    0 2 4 6 8 10 12 14 16 18 20Time (sec)

    -102-76

    All Bents

    -3.0

    -2.0

    0 2 4 6 8 10 12 14 16 18 20Time (sec)

    -76

    -51All Bents

  • Observations All three details effective in minimizing residual

    displacementsdisplacements Only minor damage in SMA/ECC plastic hinges

    O l i d i l t i l ti hi Only minor damage in elstomeric plastic hinges Severe damage and failure of steel bars in post-

    tensioned columnstensioned columns Significant energy dissipation due to abutment

    impactimpact

  • Pipe pins4 New Details

  • Four InnovationsFour Innovations

    1- Cast-in-place concrete-filled GFRP tube1- Cast-in-place concrete-filled GFRP tube (CFT) columns FIU research, NSF-NEES

    2 Precast CFT columnsUNR research 2- Precast CFT columns UNR research, Caltrans3 S l CFRP d l UNR 3- Segmental CFRP-wrapped columns UNR research, Caltrans

    4- Pipe-pin connections and precast cap beams UNR research, Caltrans

  • Best performance:CFT with GFRPCFT with GFRP

    / 55+/- 55fibers

  • Cast-in-Place Pier

  • Precast Pier

  • Segmental Pier

    Monolithicconnection

  • Segmental Pier Construction

  • Telescopic Pipe-Pin Connections Developed by Caltrans for cast-in-placeDeveloped by Caltrans for cast in place

    construction Steel pipe, steel can, hinge throat, p p , , g ,inner spiral, studs

  • ABC in Superstructure & Abutment Seats

  • 9.1% Drift

  • After Final Run- Precast CFT Columns

  • Precast vs CIP Column DamagePrecast vs. CIP Column Damage

  • Precast Cap Beam Steel CanPrecast Cap Beam Steel Can

  • D ft 5% D ift (M C dibl EQ)Damage after 5% Drift (Max Credible EQ)

  • Conclusions Concrete-filled FRP tube (CFT) columns performed as a

    ductile, reliable structural member

    Precast CFT column performance was similar to CIP CFT column performancecolumn performance.

    The column embedment length in footing was sufficient f t f i f ll l ti tfor transferring full plastic moment.

    No damage in pipe pin hinges; they are promising connections for ABC in seismic areas.

    Segmental column performance was excellent; damage in cap beam was repairable.