Dr. Muanmai Apintanapong Email: [email protected] [email protected] Tel: 081-844-0799.

45
Dr. Muanmai Apintanapong Dr. Muanmai Apintanapong Email: Email: [email protected] Tel: 081-844-0799 Tel: 081-844-0799

Transcript of Dr. Muanmai Apintanapong Email: [email protected] [email protected] Tel: 081-844-0799.

Page 1: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Dr. Muanmai ApintanapongDr. Muanmai Apintanapong

Email: Email: [email protected]

Tel: 081-844-0799 Tel: 081-844-0799

Page 2: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Engineer Units

Parameter Symbol NameUnit Symb

ol

length l. metre m

mass m kilogram kg

time t second s

electric current I ampere A

thermodynamictemperature

T kelvin K

amount of substance n mole mol

luminous intensity Iv candela cd

SI Base Units

The name Système International d'Unités (International System of Units) with the international abbreviation SI is a single international language of science and technology first introduced in 1960

Page 3: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Density

Density =Mass ( kg)

Volume ( m ) 3

Mass = Density x Volume

The density of food sample is defined as its mass per unit volume and is expressed as kg /m3

The density is influenced by temperature

Page 4: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Volumetric Flow rate Mass Flow rate Q = Volumetric flow rate

m = mass flow rateo

m = Density x Volume flow rateo

A1V1

A2V2

A1V1

A2V2Q = = m /sec3

m =o

Q Kg /sec

Page 5: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 1.Example 1. Determine volumetric and mass flow rate of water ( density = 1000 kg /m^3) , the diameter of pipe is 10 cm.

v = 20 m/s

A = 4

D2 =

4 0.1

2= 0.0078 m

2

Q = A V = 20 x 0.0078 = 0.156 m / sec3

m = Q = 1000 x 0.156 = 156 kg / sec

Page 6: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Temperature

The Kelvin and Celsius scales are related by following function

T ( K ) o T ( C ) o + 273.15=

The Fahrenheit and Celsius scales are related by following function

T ( F ) o [ T ( C ) – 32 ] o 5

9=

Page 7: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

PressurePressure is the force on an object that is spread over a surface area. The

equation for pressure is the force divided by the area where the force is applied.

Although this measurement is straightforward when a solid is pushing on a

solid, the case of a solid pushing on a liquid or gas requires that the fluid be

confined in a container. The force can also be created by the weight of an

object.

FA

Pressure =

Page 8: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example2. How much 350 Kelvin degrees would be in Fahrenheit degrees

Example 3. How much 60 Fahrenheit degrees would be in Kelvin degrees

Solution = 288.7 K

Solution = 170.3 F

Page 9: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

System

System

Open system

Volumetric flow rate

Mass flow rate

System

Close system

Volume

Mass

surroundings

Page 10: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Moisture ContentMoisture Content expresses the amount of water present

in a moist sample.Two bases are widely used to express moisture content

Moisture content dry basis

MCdb

Moisture content wet basis

MCwb

Page 11: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Moisture content dry basis

MCdb

Moisture content wet basis

MCwb

MCdb

MCdb1 +

MCwb =

MCwb

MCwb1 -

MCdb =

Page 12: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 4.Example 4. Covert a moisture content of 85 % wet basis to moisture content dry basis

MCwb

MCwb1 -

MCdb =

0.851 -MC

db =0.85

MCdb = 5.67

= 567 % db

MCwb = 0.85

From equation

Page 13: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 5.Example 5. A food is initially at moisture content of 90 % dry basis . Calculate the moisture content in wet basis

MCdb

MCdb1 +

MCwb =

0.901 +MC

wb =0.90

MCwb = 0.4736

= 47.36 % wb

MCdb = 0.90

Page 14: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Food Sample =

Mass of product = Mass of water in food + Mass of dry solids

+ Food Liquid Food Solids

Mass of dry solid

Food Sample

Mass of water in food

Page 15: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Moisture Content , dry basis

kg water

kg dry solids

mass of water

mass of dry solids% Dry basis =

Page 16: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Moisture Content , wet basis

mass of water

mass of water +mass of dry solids

kg water

kg product

% Wet basis =

mass of water

mass of product=

Page 17: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 6.Example 6. The 10 kg of food sample at a moisture contents of 75 % wet basis

10 kg of product = 7.5 kg water + 2.5 kg dry solids

mass of water

mass of water +mass of dry solids% Wet basis =

0.75

1.00=

Page 18: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

= 7.5 kg water + 2.5 kg dry solids10 kg of productat 75 % wet basis

25 % of total Solids 75 % of total water

% Dry basis = (75/25)*100 = 300%

Page 19: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Material BalanceThe principle of conservation of mass states

that

Mass can be neither created nor destroyed. However, its composition can altered from one from to another

Antoine Laurent Lavoisier (1743-1794)

Rate of mass entering through the boundary of system

Rate of mass exiting through the boundary of system

Rate of mass Accumulation through the boundary of system

=-

Page 20: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Unit Operation

Wastes

Mass in – Mass Out = Accumulation

F – (W+P) = Accumulation

Assumption: the accumulation = 0

F = W + P

Feed in raw product Product

Page 21: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Unit Operation

Wastes 20 kg/hr

Assumption : the accumulation = 0

Feed 100 Kg /hr Product

F = W + P

100 = 20 + P

P = 100 - 20

P = 80 Kg / hr

Example 10.Example 10.

Page 22: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 7. 10 kg of food at a moisture content of 80 % wet basis is dried to 30 % wet basis. The final product weight is 5 kg. Calculate the amount of water removed.

F = 10 kg of raw product

(80 % w.b.)

Product = 2.86 kg

(30 % w.b.)

Water removed

Drying process

20 % of total Solids 80 % of total water

0.8 x 10 = 8 kg water 0.2 x 10 = 2 kg solid

30 % of total water

0.3 x 2.86 = 0.86 kg water

Page 23: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Mass of water of

raw product

= 8 kg water

Water removed

Drying process

Mass of water of

final product

= 0.86 kg water

8 = P + W

8 = 0.86 +W

W = 7.14 kg water

Page 24: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 8.Example 8. The 20 kg of food at a moisture content of 80 % wet basis is dried to 50 % wet basis. Calculate the amount of water removed

F = 20 kg of raw product

(80 % w.b.)

Product

(50 % w.b.)

Water removed

Drying process

Page 25: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Water = 20 kg product x 0.8 = 16 kg water

Solid = 20 kg product x 0.2 = 4 kg dry solid

20 % of total Solids 80 % of total water

80 % w.b.80 % w.b.

Page 26: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

F = 20 kg of

product (80 % w.b.)

Product

(50 % w.b.)

Water removed

Drying process

16 kg water

4 kg dry solid

A kg water

4 kg dry solid

50 % w.b. = A

A + 4 kg dry solids

0.5 = A

A + 4 kg dry solids

0.5 A +(4 x 0.5) = A

0.5 A + 2 = A

Page 27: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

0.5 A = 2

A = 20.5

= 4 kg water

F = 20 kg P = 8 kg

Water removed

Drying process

Total mass of product = 4 +4 = 8 kg

F = P + W

20 = 8 +W

W = 12 kg water

Page 28: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 9.Example 9. The 10 kg of food at a moisture content of 320 % dry basis is dried to 50 % wet basis. Calculate the amount of water removed

F = 10 kg of raw product

(320 % d.b.)

Product

(50 % w.b.)

Water removed

Drying process

% d.b. change to % w.b.MC

db

MCdb1 +

MCwb =

3.201 +=

3.20= 0.7619

= 76.19 % w.b.

Page 29: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

F = 10 kg of raw product

(76.2 % w.b.)Product

(50 % w.b.)

Water removed

Drying process

23.8 % of total Solids = 2.38 kg

76.2 % of total water = 7.62 kg Mass of total product

= A kg water + 2.38 kg

0.5 = A

A + 2.38

A = 2.38 kg water

F = P + W

7.62 = 2.38 + W

W = 7.62 -2.38 = 5.24 kg water

P = 4.76 kg

Page 30: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Unit Operation

Wastes0.5 % Total solid

Assumption: the accumulation = 0

Feed 100 kg /hr

10 % Total solid

Product

30 % Total solid

F = W + P

100 = W + P

P = 100 - W

Equation 1

Step 1 Total mass Balances

Example 11.Example 11.

F (0.1) = W(0.005) + P (0.3)

100 kg /hr (0.1) = W(0.005) + P (0.3)

10 kg/hr = 0.005W + 0.3 P

P = 10 – 0.005 W

0.3

Step 2 Total Solid Balances

Equation 2

Page 31: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Equation 1 = Equation 2

= 10 – 0.005 W

0.3

100 - W

(0.3)(100) – 0.3 W = 10 – 0.005 W

30 - 10 = 0.3 W – 0.005W

20 = 0.295 W

W = 20 / 0.295 = 67.8 kg /hr

Step 3 Determine Product rate

Step 4 Determine W

P = 100 - W P = 100 – 67.8

P = 32.2 kg / hr

Page 32: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 12Example 12. A membrane separation system is used to concentrate the liquid food from 10 % to 30 % total solid (TS). The product is accomplished in two stages, in the first stage, a low total solid liquid stream is obtained. In the second stage, there are two streams, the first one is final product stream with 30% TS and the second is recycled to the first stage. Determine the magnitude of the recycle stream when the recycle contains 2 % TS , the waste stream from first stage contains 0.5 % TS and the stream between stages 1 and 2 contains 25 % TS . The

final product is 100 kg/min with 30 % TS. Feed

10 % TS

B

25 % TS

R

2 % TS

100 kg/ min of

product

30 % TS

W , 0.5 % TS

first stage Second stage

Page 33: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Feed

10 % TS

100 kg/ min of

product

30 % TS

W , 0.5 % TS

first stage Second stage

F = P + W

0.1 F = 100 (0.3) + 0.005 W

0.1 ( 100+ W ) = 30 + 0.005 W

10 + 0.1 W = 30 + 0.005 W

W = 210 .5 kg / min and F = 310.5 kg/min

Total product balance

Page 34: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Feed

10 % TS

B

25 % TS

R

2 % TS

W , 0.5 % TS

F +R = W +B

310.5 + R = 210.5 + B

B = 100 +R

0.1 F + 0.02 R = 0.005 W + 0.25 B

0.1 (310.5) + 0.02 R = 0.005 (210.5) + 0.25 B

31.05 + 0.02 R = 1.0525 + 0.25 (100+R)

R = 21.73 kg / min

Page 35: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Energy Balance

Total energy entering the system

Total energy leaving the system

Change in the total energy of system

=

The first law of thermodynamic states that energy can be neither created nor destroyed.

Page 36: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Sensible Heat

CP = Specific Heat at Constant pressure kJ/ kg K

Close System Open System

Q = m C P T m C P To

=

Latent HeatQ = m L

L = latent heat

Page 37: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Relationship between sensible Heat and latent Heat

Page 38: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Relationship between Sensible Heat and Latent Heat

ICE at -50 C ICE at 0 C

water at 0 Cwater at

100 C

vapor at

100 C

vapor at

150 C

Q1 = sensible heat

Q3 = sensible heat

Q5 = sensible heat

Q2 = Latent heat

Of Fusion

Q 4 = Latent heat

Of vaporization

Page 39: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Overall View of an Engineering Process

Using a material balance and an energy balance, a food engineeringprocess can be viewed overall or as a series of units. Each unit is aunit operation.

Raw

materials

Unit Operation

Further Unit Operation

Previous Unit Operation

By-products By-products

Product Product

WastesWastes

EnergyEnergy

Wastes Energy

Capital

Energy

Labor

Control

Page 40: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Example 13Example 13 . Steam is used for peeling of potatoes in a semi-continuous operation . Steam is supplied at the rate of 4 kg per 100 kg of unpeeled potatoes. The unpeeled potatoes enter system with a temperature of 17 C and the peeled potatoes leave at 35 C . A waste stream from the system leaves at 60 C . The specific heats of unpeeled potato, waste stream and peeled potatoes are 3.7 , 4.2 and 3.5 kJ/ (kg K ) , respectively. If the heat content of steam is 2750 kJ /kg , determine the quantities of the waste stream and the peeled

potatoes from the process

P = ?

T = 35 CP

F = 100 kg

T = 17 CF

o

W = ?

T = 60 CF

o

H = 2750 kJ/kg

S = 4 kg

s

Page 41: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Solution Select 100 kg of unpeeled potatoes as basis

Mass balance

F + S = W + P

100 + 4 = W + P

W = 104 - P

Page 42: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Energy balance

= 4 kg x 2750 kJ /kgQ s = S Hs= 11000 kJ

Q P = F C (T – 0 )P P

= P (3.5 kJ/kg K)( 35 -0)

= 122.5 P kJ

Q w = F C ( T – 0 )P w

= W (4.2 kJ/kg K)( 60 -0)

= 252 W kJ

Q F = F C (T – 0 )P F

= 100 (3.7 kJ/kg K)( 17 -0)

= 6290 kJ

Page 43: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Energy balance

Energy in from System = Energy out from system

Q wQ p +Q sQ F + =

6290 + 11000 = 122.5 P + 252 W

17290 = 122.5 P + 252 W

Page 44: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

W = 104 - P Equation of mass balance

17290 = 122.5 P + 252 W Equation of energy balance

17290 = 122.5 P + 252 ( 104 –P )

17291 = 122.5 P + 26208 – 252 P

P = 68. 87 kg

W = 104 – 68.87

= 35.14 kg

Page 45: Dr. Muanmai Apintanapong Email: mmeang@gmail.com mmeang@gmail.com Tel: 081-844-0799.

Reference: