Double Pipe Heat Exchanger Project #3 Calculations

download Double Pipe Heat Exchanger Project #3 Calculations

of 12

description

calculations for a double pipe heat exchanger

Transcript of Double Pipe Heat Exchanger Project #3 Calculations

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    1/12

    Design Requirements: Properties of Kerosene (In

    1) Heats 2.5 kg/s of kerosene from 25 C to 35 C m.k= 2.50

    2) Schedule 40 Steel Pipe .k = 730

    3) Water at 90 C available to heat the kerosene kf.k = 0.132

    4) Maximum pressure drop in each pipe is 70 kPa v.k = 5.47945E-07

    .k = 0.0004

    Schedule 40 Steel Pipe: Cp.k = 2470

    Acceptable Pipe Sizes Pr.k = 7.48

    ND.t = 2 ND.a = 3 .k = 7.32073E-08

    ID.t = 0.05252 m ID.a = 0.07792 m t1 = 25

    OD.t = 0.06034 m OD.a = 0.0889 m t2 = 35

    A.t = 0.002166 m A.a = 0.004769 m Rd= 0.0002

    Hydraulic Diameter, Dh= 0.01758 m .k = 7.32073E-08

    Effective Diameter, De = 0.040282 m Pr.k = 7.48

    Assumptions:

    1) The double pipe heat exchanger is operating in counterflow.

    2) The properties of Kerosense are taken from problem 43 on page 443 in the textbook

    3)

    q=(m.k)(Cp.k)(t2-t1)

    q = 61750 J/s

    Economic Velocity Range for Kerosene: 1.4 m/s 2.8 m/s

    Mass Flow Rates for Velocity Range: 2.214 kg/s 4.428 kg/s

    Economic Velocity Range for Water: 1.4 m/s 2.8 m/s

    Flow Areas

    At= 0.002166403 m

    Aa= 0.001908997 m

    Fluid Velocities

    Vt= 1.58 m/s

    Va= 2.20 m/s

    Reynolds Numbers

    Ret= 151518.4

    Rea= 269362.4

    Assuming we are operating under the assumption that there are no heat losses inside the heat exchanger, is

    warmer fluid must be equal to the heat gained by the cooler fluid?

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    2/12

    Nusselt Numbers

    Nut= 717.42

    Nua= 630.55

    Convection Coefficients

    hi= 1803.112 W/m*K

    ha= 10550.395 W/m*K

    ht= 1569.430 W/m*K

    Exchanger Coefficient

    U0= 1366.20 W/m*K

    Outlet Temperature Calculations

    R = 0.350

    A0= 1.148 m L = 6.06 m

    Ecounter= 0.848T2= 86.50 C T2=

    86.50 C

    t2= 35 C

    Log Mean Temperature Difference

    LMTD = 58.19 C t1= 55 C LMTD =

    t2= 61.50426 C

    Heat Balance

    qw= 61750

    qc= 61750

    q =

    U = 924.3

    Friction Factors

    = 0.000046 m

    /IDt= 0.000875857

    /Dh= 0.00261661

    Re.a = 117556.231

    ft= 0.021

    fa= 0.027

    Pressure Drop:

    pt= 2219.89 Pa 2.2 kPa

    pa= 24630.23 Pa 24.6 kPa

    Effectiveness

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    3/12

    N = 0.254

    C = 0.350

    E = 0.216

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    4/12

    Dh

    er Tube): Properties of Water (Annular Tube):

    kg/s m.w= 4.20 kg/s p.max = 70000 Pa

    kg/m .w = 1000 kg/m L = 6.056641 m

    W/m*K kf.w = 0.674 W/m*K L = 0.001

    m/s v.w = 3.29E-07 m/s

    N*s/m .w = 0.000329 N*s/m

    J/kg*K Cp.w = 4206 J/kg*K C = 0.349574

    Pr.w = 2.05

    m/s .w = 1.66E-07 m/s

    C T1 = 90 C

    C T2 = 86.50 C

    m*K/W Rd= 0.00015 m*K/W

    m/s .w = 1.6E-07 m/s

    Pr.w = 2.05

    it possible to assume that the that the heat lost by the

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    5/12

    58.19 C

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    6/12

    Design Requirements: Properties of Kerosene (In

    1) Heats 2.5 kg/s of kerosene from 25 C to 35 C m.k= 2.50

    2) Schedule 40 Steel Pipe .k = 730

    3) Water at 90 C available to heat the kerosene kf.k = 0.132

    4) Maximum pressure drop in each pipe is 70 kPa v.k = 5.47945E-07

    .k = 0.0004

    Schedule 40 Steel Pipe: Cp.k = 2470

    Acceptable Pipe Sizes Pr.k = 7.48

    ND.t = 1.25 ND.a = 2 .k = 7.32073E-08

    ID.t = 0.03504 m ID.a = 0.05252 m t1 = 25

    OD.t = 0.04216 m OD.a = 0.06034 m t2 = 35

    A.t = 0.0009643 m A.a = 0.002166 m Rd= 0.0002

    Hydraulic Diameter, Dh= 0.01036 m .k = 7.32073E-08

    Effective Diameter, De = 0.023266 m Pr.k = 7.48

    Assumptions:

    1) The double pipe heat exchanger is operating in counterflow.

    2) The properties of Kerosense are taken from problem 43 on page 443 in the textbook

    3)

    q=(m.k)(Cp.k)(t2-t1)

    q = 61750 J/s

    Economic Velocity Range for Kerosene: 1.4 m/s 2.8 m/s

    Mass Flow Rates for Velocity Range: 0.986 kg/s 1.971 kg/s

    Economic Velocity Range for Water: 1.4 m/s 2.8 m/s

    Flow Areas

    At= 0.000964313 m

    Aa= 0.000770385 m

    Fluid Velocities

    Vt= 3.55 m/s

    Va= 2.20 m/s

    Reynolds Numbers

    Ret= 227104.7

    Rea= 155576.6

    Assuming we are operating under the assumption that there are no heat losses inside the heat exchanger, is

    warmer fluid must be equal to the heat gained by the cooler fluid?

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    7/12

    Nusselt Numbers

    Nut= 991.70

    Nua= 406.45

    Convection Coefficients

    hi= 3735.870 W/m*K

    ha= 11774.630 W/m*K

    ht= 3104.954 W/m*K

    Exchanger Coefficient

    U0= 2457.04 W/m*K

    Outlet Temperature Calculations

    R = 0.866

    A0= 0.840 m L = 6.34 m

    Ecounter= 0.956T2= 81.34 C T2=

    81.34 C

    t2= 35 C

    Log Mean Temperature Difference

    LMTD = 55.67 C t1= 55 C LMTD =

    t2= 56.33762 C

    Heat Balance

    qw= 61750 J/s

    qc= 61750 J/s

    q = 61750 J/s

    U = 1321.0

    Friction Factors

    = 0.000046 m

    /IDt= 0.001312785

    /Dh= 0.004440154

    Re.a = 69276.59574

    ft= 0.022

    fa= 0.031

    Pressure Drop:

    pt= 18499.86 Pa 18.5 kPa

    pa= 48393.20 Pa 48.4 kPa

    Effectiveness

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    8/12

    N = 0.334

    C = 0.866

    E = 0.255

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    9/12

    Dh

    er Tube): Properties of Water (Annular Tube):

    kg/s m.w= 1.69 kg/s p.max = 70000 Pa

    kg/m .w = 1000 kg/m L = 6.339982 m

    W/m*K kf.w = 0.674 W/m*K L = 0.001

    m/s v.w = 3.29E-07 m/s

    N*s/m .w = 0.000329 N*s/m

    J/kg*K Cp.w = 4206 J/kg*K C = 0.866238

    Pr.w = 2.05

    m/s .w = 1.66E-07 m/s

    C T1 = 90 C

    C T2 = 81.34 C

    m*K/W Rd= 0.00015 m*K/W

    m/s .w = 1.6E-07 m/s

    Pr.w = 2.05

    it possible to assume that the that the heat lost by the

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    10/12

    55.67 C

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    11/12

    Property 3" x 2" units 1 2" x 1.25" units 2

    IDp 0.05252 m 0.03504 m

    ODp 0.06034 m 0.04216 m

    IDa 0.07792 m 0.05252 m

    L 6.06 m 6.34 m

    t1 25 C 25 C

    t2 35 C 35 C

    T1 90 C 90 C

    T2 86.50 C 81.34 C

    U0 1366.20 W/m*K 2457.04 W/m*K

    A0 1.148 m2

    0.840 m2

    pp 2.22 kPa 18.50 kPa

    pa 24.63 kPa 48.39 kPa

    E 0.216 0.255

    N 0.254 0.334

  • 5/26/2018 Double Pipe Heat Exchanger Project #3 Calculations

    12/12

    Nominal Diameter OD (cm) ID (cm) Area (cm) OD (m) ID (m) Area (m)

    0.125 1.029 0.683 0.3664 0.01029 0.00683 0.00003664

    0.25 1.372 0.924 0.6706 0.01372 0.00924 0.00006706

    0.375 1.714 1.252 1.233 0.01714 0.01252 0.0001233

    0.5 2.134 1.58 1.961 0.02134 0.0158 0.0001961

    0.75 2.667 2.093 3.441 0.02667 0.02093 0.00034411 3.34 2.664 5.574 0.0334 0.02664 0.0005574

    1.25 4.216 3.504 9.643 0.04216 0.03504 0.0009643

    1.5 4.826 4.09 13.13 0.04826 0.0409 0.001313

    2 6.034 5.252 21.66 0.06034 0.05252 0.002166

    2.5 7.303 6.271 30.89 0.07303 0.06271 0.003089

    3 8.89 7.792 47.69 0.0889 0.07792 0.004769

    3.5 10.16 9.012 63.79 0.1016 0.09012 0.006379

    4 11.43 10.23 82.19 0.1143 0.1023 0.008219

    5 14.13 12.82 129.1 0.1413 0.1282 0.01291

    6 16.83 15.41 186.5 0.1683 0.1541 0.01865

    8 21.91 20.27 322.7 0.2191 0.2027 0.03227

    10 27.31 25.46 509.1 0.2731 0.2546 0.05091

    12 32.39 30.33 722.5 0.3239 0.3033 0.07225