Double Integrals in Polar Coordinates - MATH 311,...

15
3.36pt

Transcript of Double Integrals in Polar Coordinates - MATH 311,...

Page 1: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

3.36pt

Page 2: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Double Integrals in Polar CoordinatesMATH 311, Calculus III

J. Robert Buchanan

Department of Mathematics

Spring 2019

Page 3: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Area Elements

For the Riemann sum, development of the double integral useda rectangular area element with area

∆A = (∆x)(∆y)

and in differential form we write this as

dA = dx dy = dy dx .

Whenever a function f or region R exhibits a circular symmetryit may be more convenient to evaluate a double integral in polarcoordinates.

Question: what is the area element in polar coordinates?

Page 4: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Polar Area Element (1 of 2)

θ=θ1

θ=θ2

r=r2

r=r1

Δθ

x

y

Page 5: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Polar Area Element (1 of 2)

∆A =12

(∆θ)r22 −

12

(∆θ)r21

=12

(r22 − r2

1 )(∆θ)

=12

(r2 + r1)(r2 − r1)(∆θ)

=12

(r2 + r1)(∆r)(∆θ)

= r(∆r)(∆θ)

where r is the average radius of the area element.

In differential form then dA = r dr dθ.

Page 6: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Polar Area Element (1 of 2)

∆A =12

(∆θ)r22 −

12

(∆θ)r21

=12

(r22 − r2

1 )(∆θ)

=12

(r2 + r1)(r2 − r1)(∆θ)

=12

(r2 + r1)(∆r)(∆θ)

= r(∆r)(∆θ)

where r is the average radius of the area element.

In differential form then dA = r dr dθ.

Page 7: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Fubini’s Theorem

Theorem (Fubini’s Theorem)Suppose that f (r , θ) is continuous on the regionR = {(r , θ) |α ≤ θ ≤ β, g1(θ) ≤ r ≤ g2(θ)}, where g1(θ) ≤ g2(θ)for all θ in [α, β]. Then∫∫

Rf (r , θ) dA =

∫ β

α

∫ g2(θ)

g1(θ)f (r , θ)r dr dθ.

Page 8: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

ExampleFind the area enclosed by one leaf of the 4-leafed roser = cos(2θ).

-1.0 -0.5 0.5 1.0x

-1.0

-0.5

0.5

1.0

y

Page 9: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

SolutionThe leaf pointing east is formed by the curve r = cos(2θ)between two angles for which r = 0.

0 = cos(2θ) =⇒ 2θ = ±π2⇐⇒ θ = ±π

4Thus the area of the leaf is

A =

∫∫R

1 dA

=

∫ π/4

−π/4

∫ cos(2θ)

0r dr dθ

=

∫ π/4

−π/4

12

cos2(2θ) dθ

=

∫ π/4

−π/4

14

(1 + cos(4θ)) dθ

4+

116

sin(4θ)

∣∣∣∣π/4

−π/4=π

8

Page 10: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Changing a Cartesian Double Integral to Polar

Find the volume of the solid region below the paraboloidz = 1− x2 − y2 and above the z = 0 plane.

Page 11: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Converting from Cartesian to Polar

V =

∫∫R

(1− x2 − y2) dA

=

∫ 1

−1

∫ √1−x2

−√

1−x2(1− x2 − y2) dy dx

=

∫ 2π

0

∫ 1

0(1− r2)r dr dθ

= 2π∫ 1

0(r − r3) dr

= 2π(

12

r2 − 14

r4)∣∣∣∣1

0

2

Page 12: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Finding Volume Using Polar Coordinates (1 of 3)

Find the volume of the solid that lies under the paraboloidz = x2 + y2, above the z = 0 plane, and inside the cylinderx2 + y2 = 2x .

0.5 1.0 1.5 2.0x

-1.0

-0.5

0.5

1.0

y

Page 13: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Finding Volume Using Polar Coordinates (2 of 3)

If z = x2 + y2, then z = r2. The boundary of the cylinder isgiven in polar coordinates by

2x = x2 + y2

2r cos θ = r2

2 cos θ = r ,

for −π/2 ≤ θ ≤ π/2.

Page 14: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Finding Volume Using Polar Coordinates (3 of 3)

Thus the desired volume is

V =

∫∫R

z dA =

∫ π/2

−π/2

∫ 2 cos θ

0r2r dr dθ

=

∫ π/2

−π/2

14

(2 cos θ)4 dθ

=

∫ π/2

−π/2(1 + cos(2θ))2 dθ

= π +

∫ π/2

−π/2cos2(2θ) dθ

= π +12

∫ π/2

−π/2(1 + cos 4θ) dθ

=3π2

Page 15: Double Integrals in Polar Coordinates - MATH 311, …banach.millersville.edu/~bob/math311/Polar/main.pdfDouble Integrals in Polar Coordinates MATH 311, Calculus III J. Robert Buchanan

Homework

I Read Section 13.3.I Exercises: 1–45 odd