Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with...

46
Domain Decomposition for Multiscale PDEs Robert Scheichl Bath Institute for Complex Systems Department of Mathematical Sciences University of Bath in collaboration with Clemens Pechstein (Linz, AUT), Ivan Graham & Jan Van lent (Bath), Eero Vainikko (Tartu, EST) Scaling Up & Modelling for Transport and Flow in Porous Media Dubrovnik, Wednesday, October 15th 2008 R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 1 / 24

Transcript of Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with...

Page 1: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Domain Decomposition forMultiscale PDEs

Robert Scheichl

Bath Institute for Complex SystemsDepartment of Mathematical Sciences

University of Bath

in collaboration with

Clemens Pechstein (Linz, AUT),

Ivan Graham & Jan Van lent (Bath), Eero Vainikko (Tartu, EST)

Scaling Up & Modelling for Transport and Flow in Porous Media

Dubrovnik, Wednesday, October 15th 2008

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 1 / 24

Page 2: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Motivation: Groundwater FlowSafety assessment for radioactive waste disposal at Sellafield c©NIREX UK Ltd.

QUATERNARY

MERCIA MUDSTONE

VN-S CALDER

FAULTED VN-S CALDER

N-S CALDER

FAULTED N-S CALDER

DEEP CALDER

FAULTED DEEP CALDER

VN-S ST BEES

FAULTED VN-S ST BEES

N-S ST BEES

FAULTED N-S ST BEES

DEEP ST BEES

FAULTED DEEP ST BEES

BOTTOM NHM

FAULTED BNHM

SHALES + EVAP

BROCKRAM

FAULTED BROCKRAM

COLLYHURST

FAULTED COLLYHURST

CARB LST

FAULTED CARB LST

N-S BVG

FAULTED N-S BVG

UNDIFF BVG

FAULTED UNDIFF BVG

F-H BVG

FAULTED F-H BVG

BLEAWATH BVG

FAULTED BLEAWATH BVG

TOP M-F BVG

FAULTED TOP M-F BVG

N-S LATTERBARROW

DEEP LATTERBARROW

N-S SKIDDAW

DEEP SKIDDAW

GRANITE

FAULTED GRANITE

WASTE VAULTS

CROWN SPACE

EDZ

Darcy’s Law: q + A(x)∇p = f

Incompressibility: ∇ · q = 0

+ Boundary Conditions

(More generally: Multiphase Flow in Porous Media, e.g.

Oil Reservoir Modelling or CO2 Sequestration)

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 2 / 24

Page 3: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Model Problem

Elliptic PDE in 2D or 3D bounded domain Ω

−∇ · (α∇u) = f + u = 0 on ∂Ω

Highly variable (discontinuous) coefficients α(x)

FE discretisation (p.w. linears V h) on mesh T h:

A u = b (n × n linear system)

Aim: Find efficient & robust preconditioner for A(i.e. independent of variations in h and in α(x))

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 3 / 24

Page 4: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Model Problem

Elliptic PDE in 2D or 3D bounded domain Ω

−∇ · (α∇u) = f + u = 0 on ∂Ω

Highly variable (discontinuous) coefficients α(x)

FE discretisation (p.w. linears V h) on mesh T h:

A u = b (n × n linear system)

Aim: Find efficient & robust preconditioner for A(i.e. independent of variations in h and in α(x))

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 3 / 24

Page 5: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Model Problem

Elliptic PDE in 2D or 3D bounded domain Ω

−∇ · (α∇u) = f + u = 0 on ∂Ω

Highly variable (discontinuous) coefficients α(x)

FE discretisation (p.w. linears V h) on mesh T h:

A u = b (n × n linear system)

Aim: Find efficient & robust preconditioner for A(i.e. independent of variations in h and in α(x))

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 3 / 24

Page 6: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Model Problem

Elliptic PDE in 2D or 3D bounded domain Ω

−∇ · (α∇u) = f + u = 0 on ∂Ω

Highly variable (discontinuous) coefficients α(x)

FE discretisation (p.w. linears V h) on mesh T h:

A u = b (n × n linear system)

Aim: Find efficient & robust preconditioner for A(i.e. independent of variations in h and in α(x))

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 3 / 24

Page 7: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Heterogeneous multiscale deterministic media

Society of Petroleum Engineers (SPE) Benchmark SPE10

Multiscale stochastic media (λ = 5h, 10h, 20h)

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 4 / 24

Page 8: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

DifficultiesRequires very fine mesh resolution: h diam(Ω)

A very large and very ill-conditioned, i.e.

κ(A) . maxτ,τ ′∈T h

(ατατ ′

)h−2

Variation of α(x) on many scales (often anisotropic)

Homogenisation or Scaling Up −→ “cell problem”in each cell: Cost ≥ O(n) (n = #DOFs on fine grid)

Alternative: Multilevel Iterative Solution on finegrid (directly!) −→ Cost ≈ O(n) as well!!

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 5 / 24

Page 9: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

DifficultiesRequires very fine mesh resolution: h diam(Ω)

A very large and very ill-conditioned, i.e.

κ(A) . maxτ,τ ′∈T h

(ατατ ′

)h−2

Variation of α(x) on many scales (often anisotropic)

Homogenisation or Scaling Up −→ “cell problem”in each cell: Cost ≥ O(n) (n = #DOFs on fine grid)

Alternative: Multilevel Iterative Solution on finegrid (directly!) −→ Cost ≈ O(n) as well!!

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 5 / 24

Page 10: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

DifficultiesRequires very fine mesh resolution: h diam(Ω)

A very large and very ill-conditioned, i.e.

κ(A) . maxτ,τ ′∈T h

(ατατ ′

)h−2

Variation of α(x) on many scales (often anisotropic)

Homogenisation or Scaling Up −→ “cell problem”in each cell: Cost ≥ O(n) (n = #DOFs on fine grid)

Alternative: Multilevel Iterative Solution on finegrid (directly!) −→ Cost ≈ O(n) as well!!

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 5 / 24

Page 11: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

DifficultiesRequires very fine mesh resolution: h diam(Ω)

A very large and very ill-conditioned, i.e.

κ(A) . maxτ,τ ′∈T h

(ατατ ′

)h−2

Variation of α(x) on many scales (often anisotropic)

Homogenisation or Scaling Up −→ “cell problem”in each cell: Cost ≥ O(n) (n = #DOFs on fine grid)

Alternative: Multilevel Iterative Solution on finegrid (directly!) −→ Cost ≈ O(n) as well!!

Meaning of .

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 5 / 24

Page 12: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

GoalsEfficient, scalable & parallelisable method,

I robust w.r.t. problem size n and mesh resolution hI robust w.r.t. coefficients α(x) !

with underpinning theory =⇒“handle” for choice of components

Possible Methods & Existing TheoryStandard Domain Decomposition and Multigridrobust if coarse grid(s) resolve(s) coefficients[Chan, Mathew, Acta Numerica, 94], [J. Xu, Zhu, Preprint, 07]

Otherwise: coefficient-dependent coarse spaces[Alcouffe, Brandt, Dendy et al, SISC, 81], [Sarkis, Num Math, 97]

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 6 / 24

Page 13: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

GoalsEfficient, scalable & parallelisable method,

I robust w.r.t. problem size n and mesh resolution hI robust w.r.t. coefficients α(x) !

with underpinning theory =⇒“handle” for choice of components

Possible Methods & Existing TheoryStandard Domain Decomposition and Multigridrobust if coarse grid(s) resolve(s) coefficients[Chan, Mathew, Acta Numerica, 94], [J. Xu, Zhu, Preprint, 07]

Otherwise: coefficient-dependent coarse spaces[Alcouffe, Brandt, Dendy et al, SISC, 81], [Sarkis, Num Math, 97]

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 6 / 24

Page 14: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Practically most successful: Algebraic MultigridNo theory explaining coefficient robustness for standard AMG!

First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08]

Two-Level Overlapping SchwarzI [Sarkis, Num Math, 97]I [Graham, Lechner, Sch., Num Math, 07]I [Sch., Vainikko, Computing, 07]I [Graham, Sch., Vainikko, NMPDE, 07]I [Van lent, Sch., Graham, submitted, 08]

Thm. κ(M−1A) . maxj δ2 ‖α|∇Ψj |2‖L∞(Ω) (1 + H/δ)

−→ low energy coarse spaces!

FETI (Finite Element Tearing & Interconnecting)

I [Pechstein, Sch., Num Math, 08] ←− Today!

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 7 / 24

Page 15: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Practically most successful: Algebraic MultigridNo theory explaining coefficient robustness for standard AMG!

First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08]

Two-Level Overlapping SchwarzI [Sarkis, Num Math, 97]I [Graham, Lechner, Sch., Num Math, 07]I [Sch., Vainikko, Computing, 07]I [Graham, Sch., Vainikko, NMPDE, 07]I [Van lent, Sch., Graham, submitted, 08]

Thm. κ(M−1A) . maxj δ2 ‖α|∇Ψj |2‖L∞(Ω) (1 + H/δ)

−→ low energy coarse spaces!

FETI (Finite Element Tearing & Interconnecting)

I [Pechstein, Sch., Num Math, 08] ←− Today!

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 7 / 24

Page 16: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Practically most successful: Algebraic MultigridNo theory explaining coefficient robustness for standard AMG!

First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08]

Two-Level Overlapping SchwarzI [Sarkis, Num Math, 97]I [Graham, Lechner, Sch., Num Math, 07]I [Sch., Vainikko, Computing, 07]I [Graham, Sch., Vainikko, NMPDE, 07]I [Van lent, Sch., Graham, submitted, 08]

Thm. κ(M−1A) . maxj δ2 ‖α|∇Ψj |2‖L∞(Ω) (1 + H/δ)

−→ low energy coarse spaces!

FETI (Finite Element Tearing & Interconnecting)

I [Pechstein, Sch., Num Math, 08] ←− Today!

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 7 / 24

Page 17: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Finite Element Tearing & Interconnecting(non-overlapping dual substructuring techniques)

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 8 / 24

Page 18: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

FETI methods – Idea

Domain decomposition

Ω =⋃N

i=1 Ωi

Γi := ∂Ωi

Hi := diam Ωi

Ω

Ω Ωi j

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

Page 19: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

FETI methods – Idea

Domain decomposition

Ω =⋃N

i=1 Ωi

Γi := ∂Ωi

Hi := diam Ωi

Conforming FE mesh on Ω(p.w. linear FEs)

Mesh size on subdomain Ωi : hi

Ω

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

Page 20: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

FETI methods – Idea

Domain decomposition

Ω =⋃N

i=1 Ωi

Γi := ∂Ωi

Hi := diam Ωi

Conforming FE mesh on Ω(p.w. linear FEs)

Mesh size on subdomain Ωi : hi

Subdomain stiffness matrix Ai(including boundary, i.e. Neumann)

Ω

Ωi

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

Page 21: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

FETI methods – Idea

Tearing: Introduce local soln ui ,i.e. >1 dofs per interface node

Interconnecting: Enforce conti-nuity by pointwise constraints:

ui (xh)− uj(xh) = 0, xh ∈ Γi ∩ Γj

or compactly written,

B u :=∑

i Bi ui = 0

where u := [u>1 u>2 . . . u>N ]>

Ω

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

Page 22: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

FETI methods – Idea

Tearing: Introduce local soln ui ,i.e. >1 dofs per interface node

Interconnecting: Enforce conti-nuity by pointwise constraints:

Introduce Lagrange multipliersto obtain the new global system:[

A B>

B 0

] [uλ

]=

[f0

]with A := diag (Ai ) & f := [f >1 . . . f >N ]>

Ω

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

Page 23: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

FETI methods – Idea

Tearing: Introduce local soln ui ,i.e. >1 dofs per interface node

Interconnecting: Enforce conti-nuity by pointwise constraints:

Eliminate u & solve dual problem

′′ B A−1B>λ = B A−1f ′′

with preconditioner ′′ ∑i Bi

[00

0Si

]B>i

′′ (Fully parallel!)

where Si := Ai ,ΓΓ − Ai ,ΓI A−1i ,II Ai ,I Γ (Schur complement).

Ω

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

Page 24: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Elimination of u (substructuring):A1 0 B>10 . . . ...

An B>nB1 . . . Bn 0

u1...

un

λ

=

f1...fn

0

If ∂Ωi ∩ ΓD 6= ∅ then Ai is SPD:

ui = A−1i [fi − B>i λ]

else (floating subdomains!)

ui = A†i [fi − B>i λ] + kernel correction

with compatibility condition on λ

Ω

floating subdomain

Dirichlet B.C.

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 10 / 24

Page 25: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

FETI methods – Variants“One-level” Methods[Farhat & Roux, ’91]

floating Dirichlet B.C.

use projection to deal with kernel

Dual-primal Methods[Farhat, Lesoinne, LeTallec et al, ’01]

Dirichlet B.C.primal dofs

use primal dofs to avoid kernel

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 11 / 24

Page 26: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

“One-level” FETI [Farhat & Roux, ’91]

Projected Dual Problem:

P>( =:F︷ ︸︸ ︷∑

i Bi A†i B>i

)λ = RHS

P = P(α) . . . α-dependent kernel projection

involving coarse solve

Ω

floating subdomain

Dirichlet B.C.

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 12 / 24

Page 27: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

“One-level” FETI [Farhat & Roux, ’91]

Projected Dual Problem:

P>( =:F︷ ︸︸ ︷∑

i Bi A†i B>i

)λ = RHS

P = P(α) . . . α-dependent kernel projection

involving coarse solve

Preconditioner: [Klawonn, Widlund, ’01]

P( =:M−1︷ ︸︸ ︷∑

i

Di Bi

[0

0

0

Si

]B>i D>i ]

)Di = Di(α) . . . α-weighted diagonal scaling

Ω

floating subdomain

Dirichlet B.C.

Ωkkα

αi+αk

αj+αk Ωi Ωjαi αjαj

αi + αj

values of di

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 12 / 24

Page 28: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

New Coefficient-Explicit FETI TheoryBoundary Layer: For ηi > 0 let

αηi

i ≤ α(x) ≤ αηi

i for all x ∈ Ωi ,ηi,

where Ωi ,ηi:= x : dist (x , Γi) < ηi

(boundary layer).

Arbitrary variation in remainder !

η i

Ωi,η i

Ωi

(boundary layer)

remainder

Theorem (Pechstein/Sch., ’08)

Using αηi

i as weights in Di and P: (in 2D and 3D!)

κ(PM−1P>F ) . maxj

(Hj

ηj

)2

maxi

αηi

i

αηi

i

(1 + log

(Hi

hi

))2

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 13 / 24

Page 29: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

New Coefficient-Explicit FETI Theory

Boundary Layer: For ηi > 0 let

αηi

i ≤ α(x) ≤ αηi

i for all x ∈ Ωi ,ηi,

where Ωi ,ηi:= x : dist (x , Γi) < ηi

(boundary layer).

Additional Assumption:αηi

i . α(x) for x ∈ Ω\Ωi ,ηi

η i

Ωi,η i

Ωi

(boundary layer)

remainder

Theorem (Pechstein/Sch., ’08)

Using αηi

i as weights in Di and P: (in 2D and 3D!)

κ(PM−1P>F ) . maxj

(Hj

ηj

)max

i

αηi

i

αηi

i

(1 + log

(Hi

hi

))2

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 13 / 24

Page 30: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Robustness possible even for large variation of αinside subdomains.

Previous theory only for resolved coefficients!

If αηi

i = O(αηi

i ) and ηi = O(Hi ), then

κ(PM−1P>F ) . maxi (1 + log (Hi/hi ))2

Numerically already observed before:

I [Rixen, Farhat, 1998 & 1999]I [Klawonn, Rheinbach, 2006]

Same theory for FETI-DP and other variants(e.g. Balancing Neumann-Neumann or BDDC)

New Poincare-Friedrichs-type inequalities

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 14 / 24

Page 31: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Robustness possible even for large variation of αinside subdomains.

Previous theory only for resolved coefficients!

If αηi

i = O(αηi

i ) and ηi = O(Hi ), then

κ(PM−1P>F ) . maxi (1 + log (Hi/hi ))2

Numerically already observed before:

I [Rixen, Farhat, 1998 & 1999]I [Klawonn, Rheinbach, 2006]

Same theory for FETI-DP and other variants(e.g. Balancing Neumann-Neumann or BDDC)

New Poincare-Friedrichs-type inequalities

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 14 / 24

Page 32: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Robustness possible even for large variation of αinside subdomains.

Previous theory only for resolved coefficients!

If αηi

i = O(αηi

i ) and ηi = O(Hi ), then

κ(PM−1P>F ) . maxi (1 + log (Hi/hi ))2

Numerically already observed before:

I [Rixen, Farhat, 1998 & 1999]I [Klawonn, Rheinbach, 2006]

Same theory for FETI-DP and other variants(e.g. Balancing Neumann-Neumann or BDDC)

New Poincare-Friedrichs-type inequalities

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 14 / 24

Page 33: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Robustness possible even for large variation of αinside subdomains.

Previous theory only for resolved coefficients!

If αηi

i = O(αηi

i ) and ηi = O(Hi ), then

κ(PM−1P>F ) . maxi (1 + log (Hi/hi ))2

Numerically already observed before:

I [Rixen, Farhat, 1998 & 1999]I [Klawonn, Rheinbach, 2006]

Same theory for FETI-DP and other variants(e.g. Balancing Neumann-Neumann or BDDC)

New Poincare-Friedrichs-type inequalities

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 14 / 24

Page 34: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Robustness possible even for large variation of αinside subdomains.

Previous theory only for resolved coefficients!

If αηi

i = O(αηi

i ) and ηi = O(Hi ), then

κ(PM−1P>F ) . maxi (1 + log (Hi/hi ))2

Numerically already observed before:

I [Rixen, Farhat, 1998 & 1999]I [Klawonn, Rheinbach, 2006]

Same theory for FETI-DP and other variants(e.g. Balancing Neumann-Neumann or BDDC)

New Poincare-Friedrichs-type inequalities

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 14 / 24

Page 35: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Robustness possible even for large variation of αinside subdomains.

Previous theory only for resolved coefficients!

If αηi

i = O(αηi

i ) and ηi = O(Hi ), then

κ(PM−1P>F ) . maxi (1 + log (Hi/hi ))2

Numerically already observed before:

I [Rixen, Farhat, 1998 & 1999]I [Klawonn, Rheinbach, 2006]

Same theory for FETI-DP and other variants(e.g. Balancing Neumann-Neumann or BDDC)

New Poincare-Friedrichs-type inequalities

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 14 / 24

Page 36: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Numerical Results – One Island (PCG Its)

H

ΓD

η

H

η αI = lognormal

Blue: αI ≥ 1 = αBL

Red: αI ≤ 1 = αBL

PCG Its Hh = 3 6 12 24 48 96 192 384

Hη = 3 10 10 12 12 13 13 15 15 15 17 18 18 18 19 19 20

6 – 12 12 13 14 15 16 17 18 18 19 18 20 29 2112 – – 14 15 16 17 17 19 18 21 19 21 29 2424 – – – 15 19 18 20 19 21 20 23 22 2548 – – – – 19 22 20 23 22 26 24 2896 – – – – – 23 26 24 28 25 30

192 – – – – – – 26 30 27 32384 – – – – – – – 31 34

η = 0 10 11 13 14 15 17 17 19 19 23 21 26 24 32 26 39αI ≡ 1 10 12 14 15 16 17 17 18

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 15 / 24

Page 37: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Numerical Results – Multiple Islands

αI = lognormal

Blue: αI ≥ 1 = αBL

Red: αI ≤ 1 = αBL

PCG Its Hh = 8 16 32 64 128 256 512

Hη = 8 15 16 17 19 20 21 21 23 23 25 25 26 27 28

16 — 18 26 20 24 22 28 24 29 27 31 27 3432 — — 21 28 24 31 25 47 28 36 30 3864 — — — 26 35 28 39 29 41 31 44

128 — — — — 31 43 33 54 35 51256 — — — — — 41 52 41 56512 — — — — — — 37 58

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 16 / 24

Page 38: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Condition Number Estimate (based on Ritz values)

αI = lognormal

Green: αI ≥ 1 = αBL

Orange: αI ≤ 1 = αBL

Hh = 8 16 32 64 128 256

Hη = 8 3.7 4.2 4.6 5.6 5.6 7.1 6.8 8.9 8.2 10.7 9.7 12.6

16 — 5.6 28.1 6.5 11.7 7.6 14.3 8.8 17.2 10.2 20.232 — — 9.3 18.1 10.1 22.1 11.1 85.2 12.2 32.564 — — — 16.3 33.2 17.1 41.3 18.0 49.4

128 — — — — 28.8 58.6 30.6 81.5256 — — — — — 55.5 93.4

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 17 / 24

Page 39: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

New Theory for Interface VariationPer subdomain Ωi , three materials are allowed:

Ω(1)i , Ω

(2)i connected regions with mild variation

(but possibly huge jumps between them!)

Ω(R)i away from the interface, arbitrary variation

Ω(R)i

Ω i(1)

Ω i(2)

Ω Ω(1)j

Ω(2)j

Ω(R)

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 18 / 24

Page 40: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Define nodal weights:

αi(x) := maxT∈Ti :x∈T

1

|T |

∫T

α(x) dx

i.e. maximum on patch ωx :=⋃

T :x∈T T

“Superlumping” [Rixen & Farhat, ’98]

3

Ω4

Ω1

Ω

Theorem (Pechstein/Sch., upcoming paper)Using αi(x) as weights in Di and P and all-floating FETI:

κ(PM−1P>F ) . maxi

(Hi

ηi

)β max

jmax

k

α(k)j

α(k)j

(1 + log(Hj/hj))2

where β depends on exponent in new weighted Poincare inequality.(For certain geometries we get β= 2, or if interior coefficient is larger, β= 1.)

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 19 / 24

Page 41: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Numerical Results – Edge Island

α

α

η

η

1

2

10

100

0.001 0.01

cond

ition

num

ber

distance eta

ref=5ref=6ref=7ref=8linear

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 20 / 24

Page 42: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Numerical Results – Cross Point Island

η

α2

10

100

0.001 0.01

cond

ition

num

ber

distance eta

ref=5ref=6ref=7ref=8linear

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 21 / 24

Page 43: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Conclusions

Small modifications of standard DD methods renderthem robust wrt. coefficient variation & meshrefinement

Rigorous theory even for non-resolved coefficients

Multilevel iterative solution on fine gridasymptotically as costly/cheap as numericalhomogenisation/upscaling

Excellent parallel efficiency – results to come!

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 22 / 24

Page 44: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Nonlinear magnetostatics

−∇ ·[ν(|∇u|)∇u

]= f in Ω

+ boundary conditions

+ interface conditions

Linearize via Newton

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 23 / 24

Page 45: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Nonlinear magnetostatics

−∇ ·[ν(|∇u|)∇u

]= f in Ω

+ boundary conditions

+ interface conditions

Linearize via Newton

Large variation of ν(∇u):

from material to material:O(105) (discontinuous)

within nonlinear material:O(103) (smooth)

reluctivity |∇u| 7→ ν(|∇u|)

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 23 / 24

Page 46: Domain Decomposition for Multiscale PDEs [-1ex]jurak/Dubrovnik08/... · 00B A 1B> = B A 1f 00 with preconditioner 00 P i B i h 0 0 0 S i i B> i 00 (Fully parallel!) where S i:= A

Strong variation along interface

One-level FETI with 16 subdomains:(εlin = 10−8, H = 1/4, h = 1/512, H/h = 128)

Problem α PCG Its Cond #homog. 1 13 8.26

pw. const. 1, 106 14 8.48

Case 1 ν(x) 18.8 8.45

Case 2 ν(x) 15.5 13.6

Variation of ν along interface in Case 2: ∼ 2000!

Contrary to common folklore:Not necessarily best to allign sub-domains with material interfaces!

Reluctivity ν(x) (Case 1)

Reluctivity ν(x) (Case 2)

R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 24 / 24