DO SPATIALLY HOMOGENIZING AND HETEROGENIZING … · do spatially homogenizing and heterogenizing...

27
DO SPATIALLY HOMOGENIZING AND HETEROGENIZING PROCESSES AFFECT TRANSITIONS BETWEEN ALTERNATIVE STABLE STATES? THOMAS A. GROEN, CLAUDIUS. A.D.M. VAN DE VIJVER AND FRANK VAN LANGEVELDE

Transcript of DO SPATIALLY HOMOGENIZING AND HETEROGENIZING … · do spatially homogenizing and heterogenizing...

  • DO SPATIALLY HOMOGENIZING AND HETEROGENIZING PROCESSES AFFECT TRANSITIONS BETWEEN ALTERNATIVE STABLE STATES?

    THOMAS A. GROEN,

    CLAUDIUS. A.D.M. VAN DE VIJVER AND

    FRANK VAN LANGEVELDE

  • ALTERNATIVE STABLE STATES

    Critical condition

    e.g. grazing pressure

    Ecosyste

    m S

    tate

    e.g

    . am

    ount

    of gra

    ss b

    iom

    ass

    +

    +

    -

    -

  • EFFECT OF HETEROGENEITY ON THESE DYNAMICS

    HeterogeneousHomogeneous

  • IMPACT OF HOMOGENIZING PROCESSES

    No exchange Moderate exchange Strong exchange

    space

    bio

    mass

    Homonegizing processes

    e.g. diffusion

  • SPATIAL PROCESSES

    But what about heterogenizing processes?

    Heterogenizing processes Homogenizing processes

    Fires

    Grazing

    Facilitation

    Disturbances

    Dispersal(Intraspecific)

    Competition

  • WHAT HAPPENS WITH BOTH HETEROGENIZING AND HOMOGENIZING PROCESSES AT THE SAME TIME?

    Weak

    Hom

    ogenis

    ation

    Str

    ong

    Hom

    ogenis

    ation

    Strong

    Heterogenisation

    Weak

    Heterogenisation

    ?

    ?

  • EXAMPLE ECOSYSTEM: SAVANNAS

    Source: http://biology.unm.edu/litvak/Juniper%20Savanna/Juniper%20Savanna.html

  • EXAMPLE ECOSYSTEM: SAVANNAS

    Wide variety in physiognomy

    Mainly grass dominated (= homogeneous)

    Mixture of both (=heterogeneous)

    Mainly wood dominated (=homogeneous)

    Heterogenizing processes

    Fires

    Grazing

    Homogenizing process(es)

    Plant dispersal

  • SAMPLE ECOSYSTEM

    𝑑𝑊

    𝑑𝑡= 𝑟𝑊 𝑤𝑡

    𝑢𝑊

    𝐻 + 𝑢𝑊 + 𝑝𝑤𝑠+ 𝑤𝑠 −𝑑𝑤𝑊 − 𝑐𝑤𝐵𝑊 − 𝑘𝑤𝑛𝑎𝐻𝑊

    𝑑𝐻

    𝑑𝑡= 𝑟𝐻𝑤𝑡

    𝐻

    𝐻 + 𝑢𝑊 + 𝑝𝑤𝑠−𝑑𝐻 𝐻 − 𝑐𝐻𝐺𝐻 − 𝑘𝐻𝑛𝐻

    W = woody biomass

    H = Herbaceous biomass

    Growth Mortality Herbivory Fire

    -

    - +

    +

  • POSITIVE FEEDBACK

    Grass

    Biomass

    Fire

    Intensities

    Wood

    Biomass

  • NON-SPATIAL MODEL

    01

    00

    Grass biomass

    Index

    (g m

    2)

    Time

    03

    00

    Woody biomass

    Index

    (g m

    2)

    Time

    200 300 400 500

    05

    01

    00

    15

    02

    00

    Phase plane

    Woody biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • BI-STABILITY WHEN GRAZING INCREASES

    5 10 15 20 25

    05

    01

    50

    25

    03

    50

    Grazer biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • MAKE THE MODEL SPATIAL

    Discretize the fire

    n = [0,1] ↔ (0) V (1)

    Make fire occurrence function of available grass

    Add diffusion as representation of “ dispersion of grasses”

  • MAKE MODEL SPATIAL: DISCRETIZE FIRE

    Discretize fire process

    n = [0,1] ↔ (0) V (1)

    Fire frequency was set to 0.5

    Two implementations:

    Regular: 01010101010101010101010101 (avg=0.5)

    Random: 00111011100000111011001001 (avg=0.5)

    𝑑𝑊

    𝑑𝑡= 𝑟𝑊 𝑤𝑡

    𝑢𝑊

    𝐻 + 𝑢𝑊 + 𝑝𝑤𝑠+ 𝑤𝑠 −𝑑𝑤𝑊 − 𝑐𝑤𝐵𝑊 − 𝑘𝑤𝑛𝑎𝐻𝑊

    𝑑𝐻

    𝑑𝑡= 𝑟𝐻𝑤𝑡

    𝐻

    𝐻 + 𝑢𝑊 + 𝑝𝑤𝑠−𝑑𝐻 𝐻 − 𝑐𝐻𝐺𝐻 − 𝑘𝐻𝑛𝐻

  • DISCRETE FIRE: REGULAR PATTERN

    01

    00

    Grass biomass

    Index

    (g m

    2)

    Time

    03

    00

    Woody biomass

    Index

    (g m

    2)

    Time

    200 300 400 500

    05

    01

    00

    15

    02

    00

    Phase plane

    Woody biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • DISCRETE FIRE: RANDOM PATTERN

    01

    50

    Grass biomass

    Index

    (g m

    2)

    Time

    03

    00

    Woody biomass

    Index

    (g m

    2)

    Time

    100 200 300 400 500

    05

    01

    00

    15

    02

    00

    Phase plane

    Woody biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • MAKE MODEL SPATIAL:FIRE PATCHES AND GRASS DISPERSION

    Have fires of various

    patch sizes

    Ensure always 0.5 total fire

    chance

    [Locations with high grass

    biomass had higher chance to

    “ignite”]

    Dispersion of plant biomass

    simulated with simple diffusion

    approach

    Diffusion coefficient determines

    how fast dispersion goesspace

    bio

    mass

    Grass biomass

    Chance t

    o ignite

    Hete

    roge

    niz

    ing

    Hom

    og

    en

    izin

    g

  • EXAMPLE SIMULATION

  • dH

    = 0

    dH

    = 1

    e-0

    7d

    H =

    1e

    -06

    dH

    = 1

    e-0

    5d

    H =

    1e

    -04

    dH

    = 0

    .00

    1

    nr patches = 2 nr patches = 8 nr patches = 50 nr patches = 200 nr patches = 1250

    PATTERN IN THE LAST TIME STEP

    NNumber of patches

    Rate

    of d

    ispers

    ion

    2 8 50 200 1250

    1 1

    0-3

    1 1

    0-4

    1 1

    0-5

    1 1

    0-6

    1 1

    0-7

    0

  • DID THIS CHANGE THE HETEROGENEITY?

    dH

    = 0

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    7

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    6

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    5

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    4

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    dH

    = 0

    .001

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    010000

    Time

    me

    an

    + s

    d

    nr patches = 2 nr patches = 8 nr patches = 50 nr patches = 200 nr patches = 1250NNumber of patches

    2 8 50 200 1250

    Rate

    of dis

    pers

    ion

    1 1

    0-3

    1 1

    0-4

    1 1

    0-5

    1 1

    0-6

    1 1

    0-7

    0LagS

    em

    i V

    ariance

  • HOW DOES THIS RELATE TO OUR HYPOTHESISW

    eak

    Hom

    ogenis

    ation

    Str

    ong

    Hom

    ogenis

    ation

    Strong

    Heterogenisation

    Weak

    Heterogenisation

    ?

    ?

  • RESULTING DYNAMICS

    seq(0, 25, 0.5)

    media

    nN

    o d

    iffu

    sio

    n (d

    H=

    0)

    2 large patches

    Gra

    ss b

    iom

    ass (

    g m

    2)

    0100

    200

    300

    400

    0 5 10 15 20 25

    seq(0, 25, 0.5)

    media

    n

    0100

    200

    300

    400

    0 5 10 15 20 25

    1250 small patches

    seq(0, 25, 0.5)

    media

    nW

    ith d

    iffu

    sio

    n (d

    H=

    0.0

    01)

    0 5 10 15 20 25

    0100

    200

    300

    400

    Grazer density (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

    seq(0, 25, 0.5)

    media

    n

    0 5 10 15 20 25

    0100

    200

    300

    400

    Grazer density (g m2)

    5 10 15 20 25

    05

    01

    50

    25

    03

    50

    Grazer biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • CONCLUDING REMARKS

    In general “adding space” makes the

    transitions more gradual

    More complex responses than anticipated

    Small “crashes” (at level of a system) are still

    possible

    Questionable whether these can be “predicted”

    from first principles

    Perhaps need to test if “crashes” remain at

    n=0.25

  • THANK YOU

  • SIMULATIONS WOULD FIRST SETTLE PATTERNS, AND THEN CHANGE HERBIVORE DENSITY

    01

    00

    Grass biomass

    Index

    (g m

    2)

    Time

    03

    00

    Woody biomass

    Index

    (g m

    2)

    Time

    0 100 200 300 400 500

    05

    01

    00

    15

    02

    00

    Phase plane

    Woody biomass (g m2)

    Gra

    ss b

    iom

    ass (

    g m

    2)

  • dH

    = 0

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    7

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    6

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    5

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 1

    e-0

    4

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    dH

    = 0

    .001

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    040

    80

    Time

    me

    an

    + s

    d

    nr patches = 2 nr patches = 8 nr patches = 50 nr patches = 200 nr patches = 1250

    Lag over time

  • dH

    = 0

    200 300 400 500

    050

    100

    150

    200

    WH

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 1

    e-0

    7

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 1

    e-0

    6

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 1

    e-0

    5

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 1

    e-0

    4

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    dH

    = 0

    .001

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 500

    050

    100

    150

    200

    W

    H

    200 300 400 5000

    50

    100

    150

    200

    W

    H

    nr patches = 2 nr patches = 8 nr patches = 50 nr patches = 200 nr patches = 1250

    Phase planes of woody biomass (X-

    axis) and grass biomass (Y-axis)