DNA-based methods for bioaerosol analysis

64
Molecular BiologyBased Bioaerosol Analysis Jordan Peccia Yale University Chemical and Environmental Engineering [email protected] 1

description

Information for producing phylogenetic/taxonomic libraries of airborne bacteria and fungi. Includes fundamental background information, approaches for sequencing and data analysis, two case studies, and a review of sampling methods

Transcript of DNA-based methods for bioaerosol analysis

Page 1: DNA-based methods for bioaerosol analysis

Molecular  Biology-­‐Based  Bioaerosol  Analysis  

                                 Jordan  Peccia  

Yale  University  Chemical  and    

Environmental  Engineering  [email protected]  

1  

Page 2: DNA-based methods for bioaerosol analysis

General  Outline:  

Overview  of  geneDcs      

The  new  world  of  DNA  sequencing      

Molecular  methods  for  idenDficaDon      

Molecular  methods  for  quanDficaDon      

PhylogeneDcs  overview      

Aerosol  sampling  for  molecular  analysis      

2  

Page 3: DNA-based methods for bioaerosol analysis

Review  of  GeneDcs  

3  

Page 4: DNA-based methods for bioaerosol analysis

GeneDcs  DefiniDons:  

Genome:  The  complete  set  of  geneDc  material  (DNA)  of  an  organism  or  a  virus.      

Gene:  A  segment  of  DNA  specifying  a  parDcular    protein,  or  other  funcDonal  molecule  (tRNA  or  rRNA).      

Transcriptome:  The  complement  of  mRNAs  produced  in  an  organism  under  a  specific  set  of  condiDons.      

Metagenome:  The  total  geneDc  complement  of  all  the  cells  present  in  a  parDcular  environment.      

Proteome:  The  total  set  of  proteins  encoded  by  a  genome        

4  

Page 5: DNA-based methods for bioaerosol analysis

Central  Dogma  of  Biology:  

DNA   RNA   Protein  

Genomic  DNA  is  blueprint  set  of  instruc8ons  

Messenger  RNAs  (mRNAs)  are  the  specific,  short-­‐lived,  gene  transcripts  

Proteins  perform  structural  and  cataly8c  func8ons  

transcrip8on  a.k.a.  “gene  expression”  

Transla8on  occurs  in  ribosomes:    (1)  mRNA  aNaches  to  ribosome,  (2)  polypep8des  are  produced,  polypep8des  are  folded  in  to  proteins  

5  

Page 6: DNA-based methods for bioaerosol analysis

GeneDc  Code:  

Gene8c  Code:  Correspondence  between  nucleic  acids  and  amino  acids  (monomers  of  protein)  

DNA  bases:    Adenine  (A)        Thymine  (T)        Cytosine  (C)        Guanine  (G)    

RNA  bases:    Adenine  (A)        Uracil          (U)        Cytosine  (C)        Guanine  (G)    

DNA:    GTTGCGGGATATTTATCTTAG  

Amino  acid:  Val-­‐Ala-­‐Gly-­‐Tyr-­‐Leu-­‐Ser-­‐STOP  6  

Page 7: DNA-based methods for bioaerosol analysis

Genome  Size  (base  pairs):  

viruses  

bacteria  

Fungi/molds  

mammals  

plants  

103   104   105   106   107   108   109   1010   1011  

7  

Page 8: DNA-based methods for bioaerosol analysis

DNA  Sequencing  

8  

Page 9: DNA-based methods for bioaerosol analysis

Cost  of  DNA  Sequencing:  

!"#$

#$

#!$

#!!$

#!!!$

#!!!!$

%!!#$ %!!&$ %!!'$ %!!($ %!!)$ %!##$

!"#$%$"

%#&'(

&)*&%+

,--,")%./

0%12

#&#%345% Moore’s  law  

TradiDonal  method  is  Sanger  sequencing:  

 -­‐advantage:  longer    (up  to  800  bp  long    sequences)    -­‐disadvantage:  slow    and  costly  

Next  generaDon  sequencing:  

 -­‐advantage:  low    cost  and  rapid    -­‐disadvantage:    sequences  are    short  (75  to  400    bp)  

9  

Page 10: DNA-based methods for bioaerosol analysis

(A) DNA  is  fragmented  into  pieces  ~500  bp  long  and  made  single  stranded;  

(B)  Adaptors  are  added  to  single  strands  and  1  strand  is  aNached  to  1  microbead;  

(C)  PCR  is  performed  and  mul8ple  copies  of  the  strand  are  produced;  

Next  GeneraDon  Sequencing  Example  (454  Pyrosequencing):  

A B

C

10  

Page 11: DNA-based methods for bioaerosol analysis

D

(D) Beads  are  placed  into  wells  (1.5  x  106  wells  per  plate);  

(E)  The  seconds  strand  is  synthesized  and  added  bases  are  recorded.  

Next  GeneraDon  Sequencing  Example  (454  Pyrosequencing)  ConDnued:  

E  

11  

Page 12: DNA-based methods for bioaerosol analysis

Some  DNA  Sequencing  OpDons  (as  of  2012):  

Illumina  HiSeq  technology        -­‐one  lane  produces  ~50  million  reads      -­‐reads  are  ~100  nucleoDdes  long      -­‐cost  is  ~$2,000  per  lane  

454  Pyrosequencing        -­‐one  gasket  produces  150,000  reads      -­‐reads  are  ~500  nucleoDdes  long      -­‐cost  is  ~$2,000  per  gasket  

Lab  “personal”sequencers      -­‐Ion  Torrent:  60-­‐80  millions  reads,  200  nt  long      -­‐MiSeq:  15  million  reads,  up  to  250  nt  long  

12  

Page 13: DNA-based methods for bioaerosol analysis

PhylogeneDcs  

13  

Page 14: DNA-based methods for bioaerosol analysis

PhylogeneDcs:  

Phylogeny:  The  evoluDonary  history  of  organisms      

PhylogeneDcs:  A  framework  for  idenDficaDon  and  quanDficaDon  of  microbial  communiDes.      

Habitat      Culturability  (%)  Seawater                0.001-­‐0.1  Freshwater      0.25  Mesotrophic  lake    0.1-­‐1  Estuarine  waters    0.1-­‐3  Ac8vated  sludge    1-­‐15  Sediments      0.25  Soil          0.3  Air          ~1  

The  great  plate  count  anomaly  (see  Amann  et  al.  (1995),  Microbiol.  Rev.  v59,  p143.)      

14  

Page 15: DNA-based methods for bioaerosol analysis

16S  rRNA    is  the  EvoluDonary  Chronometer  

 ~1500  nucleoDdes  long    a  structural  porDon  of  the    ribosome  

 present  in  all  organisms  

 evolved  slowly  and  includes  conserved,    variable  and    hypervariable    

15  

Page 16: DNA-based methods for bioaerosol analysis

Structure  for  Ribosomal  RNA:    

       Eukaryotes      Bacteria  

Total      80S  size        70S  size  

LSU        60S          50S  

SSU        40S          30S  

LSU  rRNA      5.8S,  28S        5S,  23S  

SSU  rRNA    18S          16S                

5.8S                      28S            18S            ITS1            ITS2  

         transcribed  intragenic  spacer  regions  (important  for  fungi)  

16  

Page 17: DNA-based methods for bioaerosol analysis

variable   conserved  

Hyper-­‐variable  

Some  Important  Regions  of  the  16S  rRNA:    

17  

Page 18: DNA-based methods for bioaerosol analysis

Variable  Regions  of  the  16S  rRNA:    

potenDal  PCR  primer  sites    

18  

Page 19: DNA-based methods for bioaerosol analysis

For  IdenDficaDon:  

1)  Sequences  derived  from  one  or  many  microorganism  in  an  aerosol  sample  can  be  produced    

ACGTATAGGACGATACCATG……………  

2)  Using  a  search  algorithm,  the  sequence  is  matched  against  a  databases  of  rDNA  gene  sequences  from  known  organisms.      

3)  IdenDficaDon  at  the  highest  taxonomic  level  that  can  be  confidently  assigned  is  provided.  eg.  assignment  of  E.  coli  to  genus  level  would  yield:  

Bacteria  Proteobacteria    gammaProteobacteria      Enterobacteriales  Enterobacteraceae    Escherichia  

domain      phylum      class        order      family      genus      

19  

Page 20: DNA-based methods for bioaerosol analysis

SSU  rRNA  Alignment  Forms  the  Tree  of  Life  and  a  Basis  for  IdenDficaDon  

   rRNA-­‐based  Taxonomy:  

 Domain  

 Phylum  

 Class  

 Order  

 Family  

 Genus  

 Species    

Pace,  1997,  Science  v276,  p734  20  

Page 21: DNA-based methods for bioaerosol analysis

Molecular  Methods  for  QuanDficaDon  

21  

Page 22: DNA-based methods for bioaerosol analysis

Why  Not  QuanDfy  by  Culturability?  

Habitat      Culturability  (%)  Seawater                0.001-­‐0.1  Freshwater      0.25  Mesotrophic  lake    0.1-­‐1  Estuarine  waters    0.1-­‐3  Ac8vated  sludge    1-­‐15  Sediments      0.25  Soil          0.3  Air          ~1  

The  great  plate  count  anomaly:      

22  

Page 23: DNA-based methods for bioaerosol analysis

Viable Spore

Dead Spore

Spore that can not grow on media

Unidentifiable

Culturing  Cannot  Capture  Fungal  Diversity:  

Other fungal fragments

23  

Page 24: DNA-based methods for bioaerosol analysis

Methods  for  QuanDficaDon:  

QuanDtaDve  polymerase  chain  reacDon      

Direct  microscopy  and  staining  

Immuno-­‐based  methods  and  proteomics        

24  

Page 25: DNA-based methods for bioaerosol analysis

First:  Polymerase  Chain  ReacDon  (PCR)      

1)  Reagents:  forward  and  reverse  primers,  dNTP  mix  (A,T,C,G),  water  and  Mg2+,  template,  DNA  polymerase  

2)  Thermal  cycler:  runs  temperature  program  for  Denatura8on  (~95oC),  primer  annealing  (40-­‐60oC),  extension  (72oC).  Typically  20  to  30  cycle  is  adequate,  don’t  go  above  45  cycles.    

PCR  performs  two  funcDons:  (1)  it  selects  a  gene  or  segment  of  DNA  from  a  background  of  total  extracted  DNA,  and  (2)  it  makes  many  copies  of  the  selected  DNA  (amplicons)  

25  

Page 26: DNA-based methods for bioaerosol analysis

PCR  is  Confirmed  by  Gel  Electrophoresis:  

1000  bp  

500  bp  

100  bp  

Ladder  

-­‐  control  

sample  

+  control  

26  

Page 27: DNA-based methods for bioaerosol analysis

PCR  for  Aerosol  Samples  is  Challenging!  

27  

Page 28: DNA-based methods for bioaerosol analysis

QuanDtaDve  (PCR),  a.k.a  Real-­‐Time  PCR      

(a)  PCR  reagents  include  a  fluorescent  dye  that  increases  in  emissions  as  amplicon  number  increases  each  cycle  

(b)  Thermal  cycler  blocks  are  equipped  with  fluorometers  to  detect  changes  in  emission,  thus  track  amplicon  number  as  cycles  progress    

Rela8ve  fluorescence  

Increase  in  sample  concentra8on  

28  

Page 29: DNA-based methods for bioaerosol analysis

How  is  Amplicon  Number  Converted  to  Fluorescent  Signal?  

Method  1:  TaqMan®   Method  2:  SYBR  green  

SYBR  is  a  DNA  intercala8ng  agent  that  fluoresces  only  when  bound  to  double  stranded  DNA.  As  more  amplicons  are  produced,  more  SYBR  green  binds  and  fluoresces.    

29  

Page 30: DNA-based methods for bioaerosol analysis

qPCR  QuanDficaDon  Methods  –CalibraDon  

CT  (cycle  threshold  value  set  in  linear  region  

Replicate  samples,  known  concentraDon  of  cells  or  amplicon  targets  

101  105   104   103   102  

30  

Page 31: DNA-based methods for bioaerosol analysis

qPCR  QuanDficaDon  Methods  Cont…  CalibraDon    

!"#"$%&'()*+","%%&'(-"./"#"0&))(-"

0&00"

1&00"

20&00"

21&00"

-0&00"

-1&00"

%0&00"

%1&00"

'0&00"

$-" 0" -" '" *" ("

!"#$%&'(

#

)*+,-(&&./#

CT  Value

 

31  

Page 32: DNA-based methods for bioaerosol analysis

Reproducibility and Repeatability Reproducibility and Repeatability Reproducibility Near Detection Level limit

~103  cells   ~104  cells  

Copyright  ©  American  Society  for  Microbiology,  [doi:  10.1128/�AEM.01240-­‐10  Appl.  Environ.  Microbiol.  November  2010  vol.  76  no.  21  7004-­‐701]   32  

Page 33: DNA-based methods for bioaerosol analysis

Reproducibility and Repeatability

Coefficient of variation, n=7

Reproducibility ~103 , ~104

Coefficient of variation, n=7

Repeatability ~103 , ~104

True difference 95% confidence n=7

E. coli Quartz 78%, 60% 36%, 44% 3.2 times

PCTE 79%, 70% 11%, 26%

B. atrophaeus Quartz 64%, 47% 57%, 41% 2.4 times

PCTE 60%, 57% 58%, 51%

A. fumigatus Quartz 61%, 67% 17%, 61% 2.5 times

PCTE 28%, 49% 15%, 21 % 33  

Page 34: DNA-based methods for bioaerosol analysis

Molecular  Methods  for  IdenDficaDon  

34  

Page 35: DNA-based methods for bioaerosol analysis

Methods  for  IdenDficaDon  

PhylogeneDc  libraries:  a  library  of  of  all  SSU  rDNA  sequences  that  exist  in  an  environmental  sample.  

Microbial  diversity  methods  and  tools  

35  

Page 36: DNA-based methods for bioaerosol analysis

§  For  bacterial  libraries:  PCR  primers  typically  target  the  16S  rRNA  encoding  gene  variable  regions;  

§  For  fungal  libraries:  PCR  primers  typically  target  genes  encoding  the  ITS  region  of  ribosomal  RNA;    

PhylogeneDc  Libraries  for  Bacteria,  Fungi,  and  Viruses:  

36  

Page 37: DNA-based methods for bioaerosol analysis

§  GS-­‐FLX  454  sequencing  planorm;  

§  Primers  targe8ng  16SrDNA  regions  crea8ng  ~500  basepair  long  amplicons;  

§  Data  analysis  pipeline  called  QIIME  (quan8ta8ve  insights  into  molecular  biology).  

Isolate DNA Produce amplicons

DNA clean-up

Ampure clean-up

Pool DNA

Scheme  for  CreaDng  PhylogeneDc  Libraries:  

Send to sequencer

37  

Page 38: DNA-based methods for bioaerosol analysis

Pyrosequencing  Detail  for  PhylogeneDc  Libraries  Primers  ConstrucDon:  

!"#!"#$"#

$"#

%$%#&'&()*+#

%$%#&'&()*+#

,&+-*'.#

,&+-*'.# /01230#4#

/01230#0#

+056#7.8.#

9%::#,(#&;(<=-*8#>=)?#-@++.8)#[email protected]=87#).-?8*<*7C#

38  

Page 39: DNA-based methods for bioaerosol analysis

§  SorDng  sequences  in  to  sample  bins  and  trimming  primers  and  adaptors;  

§  Producing  a  phylogeneDc  placement  or  idenDficaDon  for  each  sequence;  

§  Determining  relaDve  abundances  of  taxa  for  each  sequence  (alpha  diversity);  

§  Use  phylogeneDcs  to  compare  one  sample  populaDon  with  other  populaDons  (beta  diversity).  

Sequence  Data  Analysis  Includes:  

39  

Page 40: DNA-based methods for bioaerosol analysis

SorDng/Trimming/Denoising:  

1)  Raw  sequencer  files  are  input  into  sopware  that  recognizes  the  barcodes  and  sorts  sequences  into  their  original  sample  bin.    

2)  Primers  are  recognized  and  primer,  and  adaptors  are  removed  

3)  454  sequencing  is  suscep8ble  to  mistakes  due  to  homopolymers  (AAAAAA).  Denoising  “fixes”  these  errors  

40  

Page 41: DNA-based methods for bioaerosol analysis

PhylogeneDc  Placement  or  IdenDficaDon:  

1)  Sequences  derived  from  one  or  many  microorganisms  in  an  aerosol  sample  are  first  produced    

ACGTATAGGACGATACCATG……………  

2)  Using  search  algorithms,  the  sequenced  is  matched  against  a  databases  of  rDNA  gene  sequences  from  known  organisms.      

3)  IdenDficaDon  at  the  highest  taxonomic  level  that  can  be  confidently  assigned  is  provided.  eg.  Assignment  of  an  E.  coli    sequence  to  a  genus  level  would  yield  the  result:  

Bacteria  Proteobacteria    gammaProteobacteria      Enterobacteriales  Enterobacteraceae    Escherichia  

domain      phylum      class        order      family      genus      

41  

Page 42: DNA-based methods for bioaerosol analysis

PhylogeneDc  Placement  or  IdenDficaDon:  

For  Bacteria:  Sequences  are  placed  into  a  MASTER  phylogene8c  tree  (Greengenes  tree).  The  are  then  iden8fied  based  on  their  placement.  

97%  similarity  in  sequence  is  generally  accepted  as  the  same  species  (also  called  phylotype  or  opera8onal  taxonomic  unit  (OTU))  

Pace,  1997,  Science  v276,  p734   42  

Page 43: DNA-based methods for bioaerosol analysis

PhylogeneDc  Placement  or  IdenDficaDon:  

For  Fungi:  Sequences  are  compared  against  a  database  of  known  ITS  fungal  sequences  (by  BLAST  (Basic  Local  Alignment  Search  Tool)),  and  “best  matches”  are  determined  

TGCGGAAGGATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTCTATCGTACCTTGTTGCTTCGGCGGGCCCGCCGTTTCGACGGCCGCCGGGGAGGCCTTGCGCCCCCGGGCCCGCGCCCGCCGAAGACCCCAACATGAACGCTGTTCTGAAAGTATGCAGTCTGAGTTGATTATCGTAATCAGTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCACGGCTTGTGTGTTGGGCCCCCGTCCCCCTCTCCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCTGCTCTGTAGGCCCGGCCGGCGCCAGCCGACACCCAACTTTATTTTTCTAAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGGCGGA  

BLAST  nucleo8de  search  

43  

Page 44: DNA-based methods for bioaerosol analysis

n  What  are  the  origins  of  this  material  that  is  associated  with  human  occupancy?   shedding

resuspension resuspension

Case  Study  #1:  

occupied vs. vacant

44  

Page 45: DNA-based methods for bioaerosol analysis

Hospodsky  D,  Qian  J,  Nazaroff  WW,  Yamamoto  N,  et  al.  (2012)  Human  Occupancy  as  a  Source  of  Indoor  Airborne  Bacteria.  PLoS  ONE  7(4):  e34867.  doi:10.1371/journal.pone.0034867  hNp://www.plosone.org/ar8cle/info:doi/10.1371/journal.pone.0034867  

Case  Study  #1:  RarefacDon  Curves,  the  First  Step  in  alpha  Diversity  Analysis:  

45  

Page 46: DNA-based methods for bioaerosol analysis

Case  Study  #1:  RelaDve  Abundances  of  Bacterial  Taxa:  

Hospodsky  D,  Qian  J,  Nazaroff  WW,  Yamamoto  N,  et  al.  (2012)  Human  Occupancy  as  a  Source  of  Indoor  Airborne  Bacteria.  PLoS  ONE  7(4):  e34867.  doi:10.1371/journal.pone.0034867  hNp://www.plosone.org/ar8cle/info:doi/10.1371/journal.pone.0034867  

46  

Page 47: DNA-based methods for bioaerosol analysis

Hospodsky  D,  Qian  J,  Nazaroff  WW,  Yamamoto  N,  et  al.  (2012)  Human  Occupancy  as  a  Source  of  Indoor  Airborne  Bacteria.  PLoS  ONE  7(4):  e34867.  doi:10.1371/journal.pone.0034867  hNp://www.plosone.org/ar8cle/info:doi/10.1371/journal.pone.0034867  

Case  Study  #1:  Beta  Diversity,  Comparing  Aerosol  PopulaDons  with  PotenDal  Source  PopulaDons:  

47  

Page 48: DNA-based methods for bioaerosol analysis

Case  Study  #2:  Microbial  Ecology  of  Public  Restroom  Surfaces  

48  

Page 49: DNA-based methods for bioaerosol analysis

Flores  GE,  Bates  ST,  Knights  D,  Lauber  CL,  et  al.  (2011)  Microbial  Biogeography  of  Public  Restroom  Surfaces.  PLoS  ONE  6(11):  e28132.  doi:10.1371/journal.pone.0028132  hNp://www.plosone.org/ar8cle/info:doi/10.1371/journal.pone.0028132  

Case  Study  #2:  Taxonomic  ComposiDon  of  Public  Restroom  Surfaces:  

49  

Page 50: DNA-based methods for bioaerosol analysis

Flores  GE,  Bates  ST,  Knights  D,  Lauber  CL,  et  al.  (2011)  Microbial  Biogeography  of  Public  Restroom  Surfaces.  PLoS  ONE  6(11):  e28132.  doi:10.1371/journal.pone.0028132  hNp://www.plosone.org/ar8cle/info:doi/10.1371/journal.pone.0028132  

Case  Study  #2:  Beta  diversity-­‐  Comparison  Among  Different  Surface  Samples  

50  

Page 51: DNA-based methods for bioaerosol analysis

Flores  GE,  Bates  ST,  Knights  D,  Lauber  CL,  et  al.  (2011)  Microbial  Biogeography  of  Public  Restroom  Surfaces.  PLoS  ONE  6(11):  e28132.  doi:10.1371/journal.pone.0028132  hNp://www.plosone.org/ar8cle/info:doi/10.1371/journal.pone.0028132  

Case  Study  #2:  Beta  diversity-­‐Source  Tracker  Program  in  QIIME  

51  

Page 52: DNA-based methods for bioaerosol analysis

Aerosol  Sampling  for  Molecular  Biology  

52  

Page 53: DNA-based methods for bioaerosol analysis

Aerosol  Sampling  Concept:  ImpacDon  

Impaction: The inertia of a particle causes drift across bending fluid streamlines.

53  

Page 54: DNA-based methods for bioaerosol analysis

Aerosol  Sampling  Concept:  Impingement  

Impingement: entrapment of particles in liquid.

54  

Page 55: DNA-based methods for bioaerosol analysis

Aerosol  Sampling  Concept:  FiltraDon  

Filtration: Straining, interception, impaction, diffusion.

55  

Page 56: DNA-based methods for bioaerosol analysis

Sampler  CharacterisDcs:    Impactors  

Sampling rate

Size resolved sampling

Viability Sample suitable for molecular methods

Advantages/disadvantages

Cascade impactors Mechanism: The sampling air stream makes a sharp bend and particles are stripped based on their aerodynamic diameter. Typical models: -Anderson Cascade Impactor; -MOUDI cascade impactor; -BGI 900 L/min high volume cascade impactor.

Typically 10 to 28 L/min. Some samplers allow for > 500 L/min.

Provides the best size distribution information. Different models offer between 1 and 12 stages for collecting aerosols with aerodynamic diameters from 10 nm to >18 µm.

Only at 28 L/min collection rates and requires direct sampling onto agar plates.

Stages can be covered with filters, membranes, or plates and samples can then be extracted from these materials. The panel did not recommend use of foam as a sampling medium due to the low efficiencies associate with cell and DNA extraction.

Advantages: -Best ability to define particle size distributions; -Models available to perform culturing;\. Disadvantages: -High cost per sampler, especially for high volume samplers; -Sampling inefficiencies due to particle bounce; -Not sensitive as total sampled mass is divided among multiple stages.

!

Sampling Size resolved Viability Sample Suitable for Advantages/disadvantages dfddd rate sampling molecular methods

56  

Page 57: DNA-based methods for bioaerosol analysis

Common  Impactors:  

Andersen multistage impactor

Micro-Orifice Uniform-Deposit Impactor

BGI High Vol Impactor

57  

Page 58: DNA-based methods for bioaerosol analysis

Available  Sampler  CharacterisDcs:  Impingement  

Liquid impingement Mechanism: Sampled air is passed through a small opening and captured into a liquid medium. Typical Models: -SKC swirl impingers; -Omni 3000 high volume impinge.

14 L/min for glass impingers, new high volume models are capable of >100 liters per minute.

Very limited information on the size ranges that are collected. Efficiency drops in low volume glass impingers below aerodynamic diameters of 1 µm. High volume samplers have not been characterized for sampling efficiencies as a function of particle sizes.

Impingers are flexible since organisms are impinged into liquid media or buffer and can be used for culturing or molecular analysis.

Samples are impinged into 10 to 20 ml of liquid, which may required concentration by filtration.

Advantages: -Sample is collected into liquid and does not require extraction from a solid collection medium; -Low cost of low flow glass impingers. Disadvantages: -Limited information on efficiencies, and the particle sizes that are sampled; -High volume impingers are high cost; -Glass impingers suffer from low sampling rate and limited sampling times due to evaporation; -High volume impingers have complex systems for collecting the sample and rewetting surfaces, and there is large concern about effectively decontaminating the equipment.

!

Sampling Size resolved Viability Sample Suitable for Advantages/disadvantages dfddd rate sampling molecular methods

58  

Page 59: DNA-based methods for bioaerosol analysis

Common  Liquid  Impinger  Samplers:  

SKC BioSampler

Omni 3000 Hi Vol. Impinger

59  

Page 60: DNA-based methods for bioaerosol analysis

Aerosol  Sampler  CharacterisDcs:  FiltraDon  

Filtration Mechanism: Aerosols are captured on filters by impaction or diffusional forces. Typical Models: -Anderson High volume PM samplers; -SKC IMPACT samplers.

Ranges from 4 L/min and up to 1,000 L/min.

Filtration samplers typically have size selective inlets that allow for sampling 10 µm and below (PM10) and 2.5 µm and below (PM2.5) size fractons. Because of high diffusional forces, filters are efficient at sampling sizes down to the 20 nm range of viruses and microbial fragments

Not recommended for viability due to high stresses from impaction and desiccation.

Requires extraction from filter material, often Teflon or polycarbonate membranes, quartz fiber filters, or gelatin filters.

Advantages: -High sampling rates available; -Most common and robust form of high volume sampling; -Very small particles can be sampled, most efficient way to sample viruses; -Can be used as personal samplers; -low cost compared to impingers and impactors; -Preferred method for sampling PM for regulatory compliance. Disadvantages: -No possibility for viable determination; -High volume samples are not suitable for sampling in most occupied environments; -Limited ability to produce particle size distributions.

!

Sampling Size resolved Viability Sample Suitable for Advantages/disadvantages dfddd rate sampling molecular methods

60  

Page 61: DNA-based methods for bioaerosol analysis

Common  Filter  Samplers:  

SKC Personal Environmental Monitor

Andersen Hi Vol PM10 sampler

61  

Page 62: DNA-based methods for bioaerosol analysis

Important  Resources  

62  

Page 63: DNA-based methods for bioaerosol analysis

Tools  for  Sequence  Analysis:  Some  useful  basic  tools  for  gexng  started  with  bacterial  and  fungal  phylogene8c  analysis:  

             RDP  Pyrosequencing  pipeline:  Easy  to  use  pipeline  for  viewing  histograms  of  raw        sequences  and  sor8ng  data  based  on  barcodes.    hNp://pyro.cme.msu.edu/  

 UniFrac:  Beta  diversity  measurements  including  PCoA  plots  of  microbial  popula8ons.    hNp://bmf2.colorado.edu/fastunifrac/  

 FHiTINGS:  Automa8cally  selects  best  BLAST  hit  for  fungal  iden8fica8on,  assigns    taxonomy,  and  parses  data  into  tables.        hNp://sourceforge.net/projects/yi8ngs/  

All  in  One  tool  boxes,  that  contain  a  variety  of  programs  for  complete  sequence  analysis:  

QIIME:  Quan8ta8ve  Insights  Into  Microbial  Ecology:  hNp://qiime.sourceforge.net/  

VAMPS:  Visualiza8on  and  Analysis  for  Microbial  Popula8on  Structure:  hNp://vamps.mbl.edu/index.php  

MOTHUR:  hNp://www.mothur.org/  63  

Page 64: DNA-based methods for bioaerosol analysis

To  learn  more:  

Procedures  for  phylogeneDc  sequencing  using  Illumina-­‐based  DNA  sequencing:  Caporaso  et  al.  (2012)”  Ultra-­‐high-­‐throughput  microbial  community  analysis  on  the  Illumina  HiSeq  and  MiSeq  planorms.  ISME  J  6:  1621-­‐1624.”  

Reviews  on  aerosol  science  and  molecular  biology:  Peccia  et  al.,  (2011)  "New  Direc8ons:  A  revolu8on  in  DNA  sequencing  …”,  Atm.  Environ.,  45:  1896-­‐1897.  AND    Peccia,  J.,  Hernandez,  M.  (2006)  "Incorpora8ng  Polymerase  chain  reac8on-­‐based  iden8fica8on  …",  Atm  Environ.,  40:  3941-­‐3961.  

Good  fungal  aerosol  next  gen  sequencing  paper.  Adams  et  al.(2013)  Dispersal  in  microbes:  fungi  in  indoor  air  are  dominated  by  outdoor  air  and  show  dispersal  limita8on  at  short  distances.  ISME  J.  doi.org/10.1038/ismej.2013.28  

Brocks  Biology  of  Microorganisms  (11th  ediDon  or  higher):  easy  to  understand  textbook  that  covers  microbial  gene8cs  and  phylogene8cs  

64  

Good  viral  aerosol/qPCR  paper.  Yang  et  al.,  (2011).  “Concentra8ons  and  size  distribu8ons  of  airborne  influenza  A  viruses  measured  indoors  at  a  health  centre…”  Journal  of  the  Royal  Society  Interface,  8,  1176-­‐1184.