Diverging Moments

25
Diverging Moments Paulo Gonçalvès INRIA Rhône-Alpes Rolf Riedi Rice University IST - ISR january 2004

description

Diverging Moments. Paulo Gonçalvès INRIA Rhône-Alpes Rolf Riedi Rice University. IST - ISR january 2004. Importance of multiscale analysis. General: LRD Self-similarity Multi-fractal, multiplicative structure Economics, Networking, Biology, Physics Turbulence K41 K62 Intermittency. - PowerPoint PPT Presentation

Transcript of Diverging Moments

Page 1: Diverging Moments

Diverging Moments

Paulo GonçalvèsINRIA Rhône-Alpes

Rolf RiediRice University

IST - ISR january 2004

Page 2: Diverging Moments

IST-ISR, January 2004

Importance of multiscale analysis

• General:– LRD– Self-similarity– Multi-fractal, multiplicative structure– Economics, Networking, Biology, Physics

• Turbulence– K41– K62– Intermittency

Page 3: Diverging Moments

IST-ISR, January 2004

The typical question

• Are these signals multifractal?

Page 4: Diverging Moments

IST-ISR, January 2004

Black box scaling analysis

• Easy…• Choose a wavelet: (t)• Compute wavelet decomposition:

– T(a,b) = < x , a,b >

• Compute partition sum: – S(a,q) = b | T(a,b) |q

• Compute partition function – log S(a,q) ~ (q) log a

• Compute Legendre transform: – f(a) = infq (qa- (q))

Page 5: Diverging Moments

IST-ISR, January 2004

The wavelet transform

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

Challenge: Choice of wavelet

Page 6: Diverging Moments

IST-ISR, January 2004

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

The Lines of Maxima

Challenge: Finding local maxima is difficult

Page 7: Diverging Moments

IST-ISR, January 2004

The Partition Sum

Challenges: All coefficients/only maxima? Which q’s?

0 1 2 3 4 5 6-15

-10

-5

0

5

10

00.5 11.5 22.5 33.5 44.5 5

0 1 2 3 4 5 6-50

-40

-30

-20

-10

0

10

20

00.5 11.5 22.5 33.5 44.5 5

S(a,q), q>0 S(a,q), q>0

0 1 2 3 4 5 60

5

10

15

20

25

30 -5-4.5 -4-3.5 -3-2.5 -2-1.5 -1-0.5 0

0 1 2 3 4 5 6-5

0

5

10

15

20

25

30

35

40 -5-4.5 -4-3.5 -3-2.5 -2-1.5 -1-0.5 0

S(a,q), q<0 S(a,q), q<0

Page 8: Diverging Moments

IST-ISR, January 2004

The Partition Function

Challenges: Range of scaling. Quality of scaling.

-5 -4 -3 -2 -1 0 1 2 3 4 5-6

-5

-4

-3

-2

-1

0

-5 -4 -3 -2 -1 0 1 2 3 4 5-6

-5

-4

-3

-2

-1

0

1

2

Page 9: Diverging Moments

IST-ISR, January 2004

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

The Legendre transform

Challenge: Interpretation.-0.2 0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Page 10: Diverging Moments

IST-ISR, January 2004

Black Box Scaling Analysis: Summary

• It could be easy, but it is not…• Choose a “good” wavelet

– How much regularity, localization

• Compute wavelet decomposition– Continuous or discrete?

• Compute partition sum– On all coefficients, or only along lines of maxima?– For which range of order q

• Compute partition function– Over which range of scales? – Is the scaling sufficiently close to a powerlaw

• Compute Legendre transform – Interpretation: is it a point or a curve?

Page 11: Diverging Moments

IST-ISR, January 2004

Waking up to Reality

• Most essential difficulty: – Interpretation of (q) and its Legendre transform

• To make the point: – One of the signals is “mono-fractal” with linear (q) – The other signal is multifractal with strictly convex

(q)

– We found no indication for linear (q)

• What went wrong?

Page 12: Diverging Moments

IST-ISR, January 2004

A Look into the Black Box

• All wavelets with sufficient regularity show the same• Scaling is satisfactory for the partition sum

– with all coefficients, (q > 0) – along the lines of maxima (q < 0)

• Indication for linear (q) in one signal– but only over a finite range of q.

• S(a,q) is an estimator for the q-th moment– Are we measuring the scaling of moments, or– rather the rate of convergence/divergence of the estimator

Page 13: Diverging Moments

Testing for Diverging Moments

All software freely available athttp://www.inrialpes.fr/is2/

(http://www.inria-rocq.fr/fractales)

Page 14: Diverging Moments

IST-ISR, January 2004

The Existence of Moments

• Random variable: X– Characteristic function: (f)= E[exp(ifX)]

• Intuitive (well-known): (n)(0)= in E[ X n ]

• Rigorous: For >0 equivalent conditions are– E[ |X|r ] < for all r<– P[|X| > u] = O(|u|-r) for all r< as (u )

– in the case <2:

|(f)| = O(|f|r) for all r<a s (f 0 )

Page 15: Diverging Moments

IST-ISR, January 2004

Estimating the Regularity of • Motivation: exact regularity of at zero provides

the cutoff value for finite moments (as long as smaller than 2)

• Measuring tool: Wavelets!• Simplified criterion:

If the wavelet has regularity larger and is maximal at 0 then the following are equivalent:

.|(f)-P(f)| = O(|f|r) for some polynomial P as (f 0 ) for all r<

.|T(a,0)| = O(|a|r) as (a 0 ) for all r<

Page 16: Diverging Moments

IST-ISR, January 2004

Wavelet Transform of

• Assume Fourier Transform is real.• Parseval:

T(a,b) = <,a,b> = <F,a,b> = E a,b(x)

• Corollary: |T(a,b)| <= |T(a,0)|, for all b

W(a) := T(a,0) = E a.x

Page 17: Diverging Moments

IST-ISR, January 2004

Extension to orders > 2• Consider fractional Wavelets: (x) = c |x| exp(-x2)• Parseval:

T(a,0) a- = a- (f)(f/a) df

= a- (ax) dFX(x)

= c |x| exp(-(ax)2) dFX(x)

c |x| dFX(x)

• Lemma: If either side exists then

Supa T(a,0) a-= c E[ |X| ]

Proof: Monotonous convergence (Beppo-Levy Thm)

Page 18: Diverging Moments

IST-ISR, January 2004

Bounding the range of finite moments• Hölder regularity of at zero: h• Theorem:

– Moments are finite at least up to order h– Moment of order h +1 is infinite.

• Proof 1: – Lemma implies moments up to h exist– Thus derivatives of exist up to order h

Implies non degenerated Taylor expansion of at zero (does not follow in general from wavelet analysis)

– Kawata criterion: moments up to order h exist.

• Proof 2: – If the moment of order h +1 was finite, then derivatives of

would exist up to order h +1, in contradiction to regularity h.

h is the largest integer <= h

Note that h+1 is strictly larger than h

Page 19: Diverging Moments

IST-ISR, January 2004

Numerical Implementation

The estimator of T(a,0) of is• Simple (Parseval):

T(a,0) = (f)(f/a) df = (ax) dFX(x) = E[(aX)]

estimator: (1/N) k (aXk)

• Unbiased– E[(1/N) k (aXk)] = E[(aX)] = T(a,0)

• Non-parametric!• Robust

Page 20: Diverging Moments

IST-ISR, January 2004

Practical Considerations

• Choose a wavelet– With high enough regularity– With real positive Fourier transform (ex: even derivatives of gaussian window)

• Cutoff scales– Shannon argument on max {xi} : lower

bound– Body / Tail frontier : upper bound

Page 21: Diverging Moments

IST-ISR, January 2004

Cutoff scales

-60 -50 -40 -30 -20 -10 0 10-60

-50

-40

-30

-20

-10

0

Lower Bound

Upper Bound

slope = slope = -

slope = N

Compound process:

• x ~ (), x < • E |x|r < Inf, r > -

• x ~ -stable (,=1), x >=

• E |x|r < Inf, r <

Log W(a)

Log a

Page 22: Diverging Moments

IST-ISR, January 2004

Application to fat tail estimation

--

Gamma Laws

Alpha-stable laws

Page 23: Diverging Moments

IST-ISR, January 2004

Application to Multifractal Analysis

We are now able to distinguish the mono- from the multi-fractal signal

-0.2 0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

H

-5 -4 -3 -2 -1 0 1 2 3 4 5-6

-5

-4

-3

-2

-1

0

(q)=Hq (q)=1-q(H-1/)

-10 -8 -6 -4 -2 0 2 4 6 8 10-10

-8

-6

-4

-2

0

2

4

+ +

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

Page 24: Diverging Moments

IST-ISR, January 2004

Summary: Light in the Black Box

• Run several wavelets of increasing regularity– You should see = min(+

, N)

• Partition sum over all / only maximal coefficients– Scaling should improve for negative q over maxima– Report the scaling region (should be same for all q)

• Compute error of (q) using several traces– To provide statistical significance

• Estimate the range of finite moments– Confine the Legendre transform to this range of q– Provides additional statistics on the process per se

• If desired test hypothesis of linear partition function

Page 25: Diverging Moments

IST-ISR, January 2004

Traité Information - Commande - Communication Hermès Science Publications, Paris

[ http://www.editions-hermes.fr/trait_ic2.htm ]

Lois d’Echelle, Fractales et Ondelettes – (vol. 1,2)(P. Abry, P. Gonçalvès, J. Lévy Véhel)

• Analyse multifractale et ondelettes (S. Jaffard) • Analyse Multifractale : développements mathématiques (R. Riedi)• Processus Auto-Similaires (J. Istas et A. Benassi) • Processus Localement Auto-Similaires (S. Cohen)• Calcul Fractionnaire (D. Matignon) • Analyse fractale et multifractale en traitement du signal (J. Lévy Véhel et C. Tricot)• Analyses en ondelettes et lois d'échelle (P. Flandrin, P. Abry et P. Gonçalvès) • Synthèse fractionnaire - Filtres fractals (L. Bel, G. Oppenheim, L. Robbiano, M-C. Viano) • IFS et applications en traitement d'images (J-.M. Chassery et F. Davoine) • IFS, IFS généralisés et applications en traitement du signal (K. Daoudi) • Lois d'échelles en télétrafic informatique (D. Veitch) • Analyse fractale d'images (A. Saucier) • Lois d'échelles en finance (C. Walter) • Relativité d'échelle, nondifférentiabilité et espace-temps fractal (L. Nottale)