DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME …M. Aruvi, V. Piramanantham and R. Muruganandam...

40
JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866, ISSN (o) 2303-4947 www.imvibl.org /JOURNALS / JOURNAL J. Int. Math. Virtual Inst., Vol. 10(1)(2020), 1-40 DOI: 10.7251/JIMVI2001001A Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p) DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS M. Aruvi, V. Piramanantham and R. Muruganandam Abstract. The distance version of Hyper-Zagreb index of a graph is defined and exact values of this index have been found for some graph operations. 1. Introduction A topological index of a graph is a numerical quantity which is structural invariant, i.e. it is fixed under graph automorphism. The simplest topological indices are the number of vertices and edges of a graph. In chemistry, biochemistry and nanotechnology different topological indices are found to be useful in isomer discrimination, structure-property relationship, structure-activity relationship and pharmaceutical drug design. All graphs considered are simple and connected graphs. We denote the vertex and the edge set of a graph G by V (G) and E(G), respectively. d G (v) denotes the degree of a vertex v in G. The number of elements in the vertex set of a graph G is called the order of G and is denoted by v(G). The number of elements in the edge set of a graph G is called the size of G and is denoted by e(G). A graph with order n and size m is called a (n, m)-graph. For any u, v V (G), the distance between u and v in G, denoted by d G (u, v), is the length of a shortest (u, v)-path in G. The edge connecting the vertices u and v will be denoted by uv. The complement of a graph G is denoted by G. The join of graphs G 1 and G 2 is denoted by G 1 + G 2 , and it is the graph with vertex set V (G 1 ) V (G 2 ) and the edge set E(G 1 + G 2 )= E(G 1 ) E(G 2 ) ∪{u 1 u 2 |u 1 V (G 1 ),u 2 V (G 2 )}. 2010 Mathematics Subject Classification. 05C07, 05C35, 05C40. Key words and phrases. Topological indices, Vertex degree, Join, Disjunction, Composition, Symmetric Difference. 1

Transcript of DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME …M. Aruvi, V. Piramanantham and R. Muruganandam...

  • JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTEISSN (p) 2303-4866, ISSN (o) 2303-4947www.imvibl.org /JOURNALS / JOURNALJ. Int. Math. Virtual Inst., Vol. 10(1)(2020), 1-40

    DOI: 10.7251/JIMVI2001001A

    FormerBULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

    ISSN 0354-5792 (o), ISSN 1986-521X (p)

    DISTANCE VERSION OF HYPER ZAGREB INDEX

    OF SOME GRAPH OPERATIONS

    M. Aruvi, V. Piramanantham and R. Muruganandam

    Abstract. The distance version of Hyper-Zagreb index of a graph is definedand exact values of this index have been found for some graph operations.

    1. Introduction

    A topological index of a graph is a numerical quantity which is structuralinvariant, i.e. it is fixed under graph automorphism. The simplest topologicalindices are the number of vertices and edges of a graph. In chemistry, biochemistryand nanotechnology different topological indices are found to be useful in isomerdiscrimination, structure-property relationship, structure-activity relationship andpharmaceutical drug design.

    All graphs considered are simple and connected graphs. We denote the vertexand the edge set of a graph G by V (G) and E(G), respectively. dG(v) denotes thedegree of a vertex v in G. The number of elements in the vertex set of a graph G iscalled the order of G and is denoted by v(G). The number of elements in the edgeset of a graph G is called the size of G and is denoted by e(G). A graph with ordern and size m is called a (n,m)-graph. For any u, v ∈ V (G), the distance betweenu and v in G, denoted by dG(u, v), is the length of a shortest (u, v)-path in G. Theedge connecting the vertices u and v will be denoted by uv. The complement of agraph G is denoted by G.

    The join of graphs G1 and G2 is denoted by G1 +G2, and it is the graph withvertex set V (G1) ∪ V (G2) and the edge set

    E(G1 +G2) = E(G1) ∪ E(G2) ∪ {u1u2|u1 ∈ V (G1), u2 ∈ V (G2)}.

    2010 Mathematics Subject Classification. 05C07, 05C35, 05C40.Key words and phrases. Topological indices, Vertex degree, Join, Disjunction, Composition,

    Symmetric Difference.

    1

  • 2 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    The composition of graphs G1 and G2 is denoted by G1[G2], and it is the graphwith vertex set V (G1) × V (G2), and two vertices u = (u1, u2) and v = (v1, v2)are adjacent if ( u1 is adjacent to v1) or (u1 = v1 and u2 and v2 are adjacent).The disjunction of graphs G1 and G2 is denoted by G1 ∨ G2, and it is the graphwith vertex set V (G1) × V (G2) and E(G1 ∨ G2) = {(u1, u2)(v1, v2)|u1v1 ∈ E(G1)or u2v2 ∈ E(G2)}. The symmetric difference of graphs G1 and G2 is denotedby G1 ⊕ G2, and it is the graph with vertex set V (G1) × V (G2) and edge setE(G1 ⊕ G2) = {(u1, u2)(v1, v2)|u1v1 ∈ E(G1) or u2v2 ∈ E(G2) but not both }.The Cartesian product of G1 and G2, denoted by G1�G2, is the graph vertex setV (G1)× V (G2) and any two vertices (up, vs) and (uq, vs) are adjacent if and onlyif [up = uq and vrvs ∈ E(G2)] or [vr = vs and upuq ∈ E(G1)].

    Let G be a connected graph. The Wiener index W (G) of a graph G is definedas

    W (G) =∑

    {u,v}⊆V (G)

    dG(u, v) =1

    2

    ∑u,v∈V (G)

    dG(u, v).

    Dobrynin and Kochetova [7] and Gutman [9] independently proposed a vertexdegree-Weighted version of Wiener index called degree distance or Schultz moleculartopological index, which is defined for a connected graph G as

    DD(G) =∑

    {u,v}⊆V (G)

    dG(u, v)[dG(u)+ dG(v)] =1

    2

    ∑u,v∈V (G)

    dG(u, v)[dG(u)+ dG(v)].

    The Zagreb indices have been introduced more than thirty years ago by Gutmanand Trianjestic [10]. The first Zagreb index M1(G) of a graph G is defined as

    M1(G) =∑

    uv∈E(G)

    [dG(u) + dG(v)] =∑

    v∈V (G)

    d2G(v).

    The second Zagreb index M2(G) of a graph G is defined as

    M2(G) =∑

    uv∈E(G)

    dG(u)dG(v).

    The first Zagreb coindex M1(G) of a graph G is defined as

    M1(G) =∑

    uv/∈E(G)

    [dG(u) + dG(v)].

    The second Zagreb coindex M2(G) of a graph G is defined as

    M2(G) =∑

    uv/∈E(G)

    dG(u)dG(v).

    The Zagreb indices are found to have applications in QSPR and QSAR studiesas well, see [6].

    These indices were introduced in a paper 1972 [2], within a study of the struc-ture dependency of total Π-electron energy (ε). It was shown that ε depends onthe sum of squares of the vertex degrees of the molecular graph (later named firstzagreb index), and thus provides a measure of the branching of the carbon-atom

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 3

    skeleton. In the same paper, also the sum of cubes of degrees of vertices of themolecular graph was found to influence ε, but this topological index was neveragain investigated and was left to oblivion. However this index was not furtherstudied till then, except in a recent article by Furtula and Gutman [8] where theyreinvestigated this index and studied some basic properties of this index. Theyshowed that the predictive ability of this index is almost similar to that of first Za-greb index and for the entropy and acentric factor, both of them yield correlationcoefficients greater than 0.95. In [5], this index as “forgotten topological index” or“F-index”, which is defined for a graph G as

    F (G) =∑

    v∈V (G)

    dG(v)3 =

    ∑uv∈E(G)

    [dG(u)2 + dG(v)

    2].

    As we know that some chemically interesting graphs can be found by differentgraph operations on some general or particular graphs, it is important to studysuch graph operations in order to understand how it is related to the correspondingtopological indices of the original graphs. In [11], Khalifeh et. al, derived someexact formulae for computing first and second Zagreb indices under some graphoperations. In [4], Das et. al. derived some upper bounds for multiplicative Zagrebindices for different graph operations. There are several other results regardingvarious topological indices under different graph operations are available in theliterature. In [3], Azari and Iranmanesh presented explicit formulae for computingthe eccentric-distance sum of different graph operations.

    In [13], Shirdel et.al. found Hyper-Zagreb index HM(G) which is defined as

    HM(G) =∑

    uv∈E(G)

    [dG(u) + dG(v)]2.

    In this paper, we define a new index distance version of Hyper- Zagreb indexand denoted by DHM(G), so that

    DHM(G) =∑

    {u,v}⊆V (G)

    dG(u, v)[dG(u) + dG(v)]2

    =1

    2

    ∑u,v∈V (G)

    dG(u, v)[dG(u) + dG(v)]2.

    In this paper, we present some exact expressions for the distance version ofHyper-Zagreb index of different graph operations such as join, composition, dis-junction and symmetric difference of two graphs.

    2. Main Results and Discussions

    2.1. Basic Lemmas.

    Lemma 2.1 ([1]). Let G1 and G2 be two simple connected graphs. The numberof vertices and edges of graph Gi are denoted by ni and ei respectively for i = 1, 2.Then we have

  • 4 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    (i) dG1+G2(u, v) =

    1, uv ∈ E(G1) or uv ∈ E(G2)

    or (u ∈ V (G1) and v ∈ V (G2))2, otherwise.

    For a vertex u of G1,

    dG1+G2(u) = dG1(u) + n2,

    and for a vertex v of G2,

    dG1+G2(v) = dG2(v) + n1.

    (ii) dG1[G2]((u1, v1), (u2, v2)) =

    dG1(u1, u2), u1 ̸= u21, u1 = u2, v1v2 ∈ E(G2)2, otherwise

    dG1[G2](u, v) = n2dG1(u) + dG2(v).

    (iii) dG1∨G2((u1, v1), (u2, v2)) =

    {1, u1u2 ∈ E(G1) or v1v2 ∈ E(G2)2, otherwise

    dG1∨G2((u, v)) = n2dG1(u) + n1dG2(v)− dG1(u)dG2(v).

    (iv) dG1⊕G2((u1, v1), (u2, v2)) =

    1, u1u2 ∈ E(G1)

    or v1v2 ∈ E(G2) but not both2, otherwise

    dG1⊕G2((u, v)) = n2dG1(u) + n1dG2(v)− 2dG1(u)dG2(v).

    Remark 2.1. ([12]) For a graph G, let A(G) = {(x, y) ∈ V (G) × V (G) | xand y are adjacent in G} and let B(G) = {(x, y) ∈ V (G) × V (G) | x and y arenot adjacent in G}. For each x ∈ V (G), (x, x) ∈ B(G). Clearly, A(G) ∪ B(G) =V (G)× V (G). Let C(G) = {(x, x) |x ∈ V (G)} and D(G) = B(G)− C(G). ClearlyB(G) = C(G) ∪ D(G), C(G) ∩ D(G) = ∅. The summation

    ∑(x,y)∈A(G)

    runs over

    the ordered pairs of A(G). For simplicity, we write the summation∑

    (x,y)∈A(G)as∑

    xy∈G. Similarly, we write the summation

    ∑(x,y)∈B(G)

    as∑

    xy/∈G. Also the summation∑

    xy∈E(G)runs over the edges of G. We denote the summation

    ∑x,y∈V (G)

    by∑

    x,y∈G. The

    summation∑

    (x,y)∈D(G)eqivalent to

    ∑xy/∈G,x ̸=y

    and similarly the summation∑

    (x,y)∈C(G)equivalent to

    ∑xy/∈G,x=y

    .

    Lemma 2.2 ([12]). Let G be a graph. Then(i)

    ∑xy∈G

    1 = 2e(G)

    (ii)∑

    xy∈GdG(x) = M1(G)

    (iii)∑

    xy∈GdG(x)dG(y) = 2M2(G)

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 5

    (iv)∑

    xy/∈G1 = 2e(G) + v(G)

    (v)∑

    xy/∈GdG(x) = 2e(G)(v(G)− 1) + 2e(G)−M1(G)

    (vi)∑

    xy/∈GdG(x)dG(y) = 2M2(G) +M1(G)

    (vii)∑

    xy/∈G[dG(x) + dG(y)] = 2M1(G) + 4e(G)

    (viii)∑

    xy/∈G,x ̸=yd2G(x) = (v(G)− 1)M1(G)− F (G)

    (ix)∑

    xy/∈G,x ̸=ydG(x) = (v(G)− 1)2e(G)−M1(G)

    (x)∑

    xy/∈G,x ̸=y1 = (v(G)− 1)v(G)− 2e(G) and

    (xi)∑

    xy/∈Gd2G(x) = (v(G)− 1)M1(G)− F (G) +M1(G)

    Theorem 2.1. Let Gi, i = 1, 2, be a (ni,mi)- graph, put mi = e(Gi). Then

    2×DHM(G1 +G2) = 2HM(G1) + 8n22m1 + 8n2M1(G1)+ 4[M1(G1)(n1 − 1)− F (G1)]+ 8M2(G1) + 8n

    22[n1(n1 − 1)− 2m1]

    + 16n2[2m1(n1 − 1)−M1(G1)] + 2n2M1(G1) + 2n1n32+ 2n1M1(G2) + 2n2n

    31 + 8m1n

    22 + 16m1m2 + 8n1m1n2

    + 8n1m2n2 + 4n21n

    22 + 8n

    21m2 + 2HM(G2) + 8n

    21m2

    + 8n1M1(G2) + 4[M1(G2)(n2 − 1)− F (G2)] + 8M2(G2)+ 8n21[n2(n2 − 1)− 2m2] + 16n1[2m2(n2 − 1)−M1(G2)]

    Proof. Let G = G1 +G2. Then,

    2×DHM(G) =∑

    x∈V (G1+G2)

    ∑y∈V (G1+G2)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2=

    ∑x∈V (G1+G2)

    { ∑y∈V (G1)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2+

    ∑y∈V (G2)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2}2×DHM(G) =

    ∑x∈V (G1+G2)

    ∑y∈V (G1)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2+

    ∑x∈V (G1+G2)

    ∑y∈V (G2)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2=

    ∑x∈V (G1)

    ∑y∈V (G1)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2

  • 6 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    +∑

    x∈V (G2)

    ∑y∈V (G1)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2+

    ∑x∈V (G1)

    ∑y∈V (G2)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2+

    ∑x∈V (G2)

    ∑y∈V (G2)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2=

    ∑x∈V (G1)

    ∑y∈V (G1)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2+ 2

    ∑x∈V (G1)

    ∑y∈V (G2)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2+

    ∑x∈V (G2)

    ∑y∈V (G2)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2= S1 + 2S2 + S3,

    where S1, S2, S3 are terms of the above sums taken in order. Now we calculateS1, S2 and S3 separately.

    S1 =∑

    x∈V (G1)

    ∑y∈V (G1)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)]2

    =∑

    x,y∈V (G1)

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2=

    ∑xy∈G1

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2+

    ∑xy/∈G1,x ̸=y

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2+

    ∑xy/∈G1,x=y

    dG1+G2(x, y)[dG1+G2(x) + dG1+G2(y)

    ]2= 1.

    ∑xy∈G1

    [dG1+G2(x) + dG1+G2(y)

    ]2+ 2.

    ∑xy/∈G1,x ̸=y

    [dG1+G2(x) + dG1+G2(y)

    ]2+ 0.

    ∑xy/∈G1,x=y

    [dG1+G2(x) + dG1+G2(y)

    ]2S1 = S1,1 + 2S1,2

    where S1,1 and S1,2 are terms of the above sums taken in order which are computedas follows:

    S1,1 =∑

    xy∈G1

    [dG1+G2(x) + dG1+G2(y)]2

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 7

    =∑

    xy∈G1

    [(dG1(x) + n2) + (dG1(y) + n2)]2

    =∑

    xy∈G1

    [dG1(x) + dG1(y) + 2n2]2

    =∑

    xy∈G1

    [d2G1(x) + d

    2G1(y) + 4n

    22 + 2dG1(x)dG1(y) + 4n2[dG1(x) + dG1(y)]

    ]=

    ∑xy∈G1

    [dG1(x) + dG1(y)]2 + 4n22

    ∑xy∈G1

    1 + 4n2∑

    xy∈G1

    [dG1(x) + dG1(y)]

    = 2HM(G1) + 8n22m1 + 8n2M1(G1)

    S1,2 =∑

    xy/∈G1, x ̸=y

    [dG1+G2(x) + dG1+G2(y)]2

    =∑

    xy/∈G1, x ̸=y

    [(dG1(x) + n2) + (dG1(y) + n2)]2

    =∑

    xy/∈G1, x ̸=y

    [dG1(x) + dG1(y) + 2n2]2

    =∑

    xy/∈G1, x ̸=y

    [d2G1(x) + d

    2G1(y) + 4n

    22 + 2dG1(x)dG1(y)

    + 4n2[dG1(x) + dG1(y)]]

    =∑

    xy/∈G1, x ̸=y

    [dG1(x) + dG1(y)]2 + 4n22

    ∑xy/∈G1, x ̸=y

    1

    + 4n2∑

    xy/∈G1, x ̸=y

    [dG1(x) + dG1(y)]

    = 2[M1(G1)(n1 − 1)− F (G1)] + 4M2(G1) + 4n22[n1(n1 − 1)− 2m1]+ 8n2[2m1(n1 − 1)−M1(G1)]

    2S1,2 = 4[M1(G1)(n1 − 1)− F (G1)] + 8M2(G1) + 8n22[n1(n1 − 1)− 2m1]+ 16n2[2m1(n1 − 1)−M1(G1)]

    S2 =∑

    x∈V (G1)

    ∑y∈V (G2)

    [(dG1(x) + n2) + (dG2(y) + n1)]2

    =∑

    x∈V (G1)

    ∑y∈V (G2)

    [d2G1(x) + d

    2G2(y) + n

    22 + n

    21 + 2n2dG1(x)

    + 2dG1(x)dG2(y) + 2n1dG1(x) + 2n2dG2(y) + 2n1n2 + 2n1dG2(y)]

    =∑

    x∈V (G1)

    d2G1(x)∑

    y∈V (G2)

    1 +∑

    x∈V (G1)

    1∑

    y∈V (G1)

    d2G2)(y)

  • 8 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    + n22∑

    x∈V (G1)

    1∑

    y∈V (G1)

    1 + n21∑

    x∈V (G1)

    1∑

    y∈V (G2)

    1

    + 2n2∑

    x∈V (G1)

    dG1(x)∑

    y∈V (G2)

    1 + 2∑

    x∈V (G1)

    dG1(x)∑

    y∈V (G2)

    dG2(y)

    + 2n1∑

    x∈V (G1)

    dG1(x)∑

    y∈V (G2)

    1 + 2n2∑

    x∈V (G1)

    1∑

    y∈V (G2)

    dG2(y)

    + 2n1n2∑

    x∈V (G1)

    1∑

    y∈V (G2)

    1 + 2n1∑

    x∈V (G1)

    1∑

    y∈V (G2)

    dG2(y)]

    = n2M1(G1) + n1n32 + n1M1(G2) + n2n

    31 + 4m1n

    22 + 8m1m2 + 4n1m1n2

    + 4n1m2n2 + 2n21n

    22 + 4n

    21m2

    2S2 = 2n2M1(G1) + 2n1n32 + 2n1M1(G2) + 2n2n

    31 + 8m1n

    22 + 16m1m2

    + 8n1m1n2 + 8n1m2n2 + 4n21n

    22 + 8n

    21m2

    S3,1 =∑

    xy∈G2

    [dG1+G2(x) + dG1+G2(y)]2

    =∑

    xy∈G2

    [(dG2(x) + n1) + (dG2(y) + n1)]2

    =∑

    xy∈G2

    [dG2(x) + dG2(y) + 2n1]2

    =∑

    xy∈G2

    [d2G2(x) + d

    2G2(y) + 4n

    21 + 2dG2(x)dG2(y) + 4n1[dG2(x) + dG2(y)]

    ]=

    ∑xy∈G2

    [dG2(x) + dG2(y)]2 + 4n21

    ∑xy∈G2

    1 + 4n1∑

    xy∈G2

    [dG2(x) + dG2(y)]

    = 2HM(G2) + 8n21m2 + 8n1M1(G2)

    S3,2 =∑

    xy/∈G2, x ̸=y

    [dG1+G2(x) + dG1+G2(y)]2

    =∑

    xy/∈G2, x ̸=y

    [(dG2(x) + n1)) + (dG2(y) + n1)]2

    =∑

    xy/∈G2, x ̸=y

    [dG2(x) + dG2(y) + 2n1]2

    =∑

    xy/∈G2, x ̸=y

    [d2G2(x) + d

    2G2(y) + 4n

    21 + 2dG2(x)dG2(y)

    + 4n1[dG2(x) + dG2(y)]]

    =∑

    xy/∈G2, x ̸=y

    [dG2(x) + dG2(y)]2 + 4n21

    ∑xy/∈G2 x ̸=y

    1

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 9

    + 4n1∑

    xy/∈G2, x ̸=y

    [dG2(x) + dG2(y)]

    = 2[M1(G2)(n2 − 1)− F (G2)] + 4M2(G2) + 4n21[n2(n2 − 1)− 2m2]+ 8n1[2m2(n2 − 1)−M1(G2)]

    2S3,2 = 4[M1(G2)(n2 − 1)− F (G2)] + 8M2(G2) + 8n21[n2(n2 − 1)− 2m2]+ 16n1[2m2(n2 − 1)−M1(G2)]

    2×DHM(G1+G2) = S12S2+S3 = S1,1+2S1,2+2S2+S3,1+2S3,2. By substitutingS1,1, S1,2, S2, S3,1 and S3,2, we get the desired result. �

    Theorem 2.2. Let Gi, i = 1, 2, be a (ni,mi)- graph ,put mi = e(Gi). Then

    2×DHM(G1[G2]) = 4n22m2DHM(G1) + 4W (G1)F (G2) + 8n2DD(G1)M1(G2)+ 8W (G1)M2(G2) + 8n

    22M1(G1)[n2(n2 − 1)− 2m2]

    + 4n1[(n2 − 1)M1(G2)− F (G2)]+ 32n2m1[2m2(n2 − 1)−M1(G2)] + 8n1M2(G2)+ 8n22m2M1(G1) + 2n1F (G2) + 16n2m1M1(G2)

    + 4n1M2(G2) + 2n22DHM(G1)(2m2 + n2)

    + 4W (G1)[(n2 − 1)M1(G2)− F (G2) +M1(G2)

    ]+ 8n2DD(G1)

    [(n2 − 1)2m2 −M1(G2) + 2m2

    ]+ 4W (G1)[2M2(G2) +M1(G2)]

    Proof. Let G = G1[G2]. Then,

    2×[DHM(G1[G2])

    ]=

    ∑x,y∈V (G1)

    ∑u,v∈V (G2)

    dG1[G2]((x, u), (y, v))

    [dG1[G2](x, u) + dG1[G2](y, v)

    ]2=

    ∑x,y∈V (G1)

    { ∑uv∈G2

    [dG1[G2](x, u) + dG1[G2](y, v)

    ]2+

    ∑uv/∈G2

    [dG1[G2](x, u) + dG1[G2](y, v)

    ]2}=

    ∑x,y∈V (G1)

    ∑uv∈G2

    [dG1[G2]((x, u) + dG1[G2](y, v)

    ]2+

    ∑x,y∈V (G1)

    ∑uv/∈G2

    [dG1[G2]((x, u) + dG1[G2]((y, v)

    ]2=

    ∑x,y∈G1,x=y

    ∑uv∈G2

    [dG1[G2]((x, u) + dG1[G2]((y, v)

    ]2

  • 10 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    +∑

    x,y∈G1,x ̸=y

    ∑uv∈G2

    [dG1[G2]((x, u) + dG1[G2]((y, v)

    ]2

    +∑

    x,y∈G1,x=y

    ∑uv/∈G2

    [dG1[G2]((x, u) + dG1[G2]((y, v)

    ]2+

    ∑x,y∈G1,x ̸=y

    ∑uv/∈G2

    [dG1[G2]((x, u) + dG1[G2]((y, v)

    ]2= J3 + J1 + J2 + J4,

    where J3, J1, J2 and J4 are terms of the above sums taken in order. Now wecalculate J1, J2, J3 and J4 one by one.

    J1 =∑

    x,y∈G1, x ̸=y

    ∑uv∈G1

    dG1[G2]((x, u), (y, v)

    )[dG1[G2](x, u) + dG1[G2](y, v)]

    2

    =∑

    x,y∈G1, x ̸=y

    ∑uv∈G1

    dG1(x, y)[dG2(u) + n2dG1(x) + dG2(v) + n2dG1(y)]2

    =∑

    x,y∈G1, x ̸=y

    ∑uv∈G1

    dG1(x, y)[d2G2(u) + n

    22d

    2G1(x) + d

    2G2(v) + n

    22d

    2G1(y)

    + 2n2dG1(x)dG2(u) + 2dG2(u)dG2(v) + 2n2dG1(y)dG2(u) + 2n2dG1(x)dG2(v)

    + 2n22dG1(x)dG1(y) + 2n2dG1(y)dG2(v)]

    = n22∑

    x,y∈G1, x ̸=y

    dG1(x, y)[d2G2(u) + d

    2G1(y) + 2dG1(x)dG1(y)]

    ∑uv∈G1

    1

    +∑

    x,y∈G1, x ̸=y

    dG1(x, y)∑

    uv∈G1

    [d2G2(u) + d2G2(v)]

    + 2n2∑

    x,y∈G1, x ̸=y

    dG1(x, y)[dG1(x) + dG1(y)]∑

    uv∈G1

    dG2(u)

    + 2n2∑

    x,y∈G1, x ̸=y

    dG1(x, y)[dG1(x) + dG1(y)]∑

    uv∈G1

    dG2(v)

    + 2∑

    x,y∈G1, x ̸=y

    dG1(x, y)∑

    uv∈G1

    dG2(u)dG2(v)

    = n22(2m2)2DHM(G1) + 2W (G1)2F (G2) + 2n2(2DD(G1))∑

    u∈V (G2)

    d2G2(u)

    + 2n2(2DD(G1))∑

    v∈V (G2)

    d2G2(v) + 2(2W (G1))2M2(G2)

    = 4n22m2DHM(G1) + 4W (G1)F (G2) + 8n2DD(G1)M1(G2) + 8W (G1)M2(G2)

    J2 =∑

    x,y∈G1, x=y

    ∑uv/∈G2,u̸=v

    dG1[G2]((x, u), (y, v)

    )[dG1[G2](x, u) + dG1[G2](y, v)]

    2

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 11

    =∑

    x,y∈G1, x=y

    ∑uv/∈G2,u̸=v

    dG1(x, y)[dG2(u) + n2dG1(x) + dG2(v) + n2dG1(y)]2

    = 2∑

    x,y∈G1, x=y

    ∑uv/∈G2

    [d2G2(u) + n

    22d

    2G1(x) + d

    2G2(v)n

    22d

    2G1(y)

    + 2n2dG1(x)dG2(u) + 2dG2(u)dG2(v) + 2n2dG1(y) + dG2(u)

    + 2n2dG1(x)dG2(v) + 2n22dG1(x)dG1(y) + 2n2dG1(y)dG2(v)

    ]= 2

    { ∑x,y∈G1, x=y

    [d2G2(u) + d2G1(y) + 2dG1(x)dG1(y)]

    ∑uv/∈G2,u ̸=v

    1

    +∑

    x,y∈G1, x=y

    1∑

    uv/∈G2,u ̸=v

    [d2G2(u) + d2G2(v)]

    + 2n2∑

    x,y∈G1, x=y

    [dG1(x) + dG1(y)]∑

    uv/∈G2,u̸=v

    dG2(u)

    + 2n2∑

    x,y∈G1, x=y

    [dG1(x) + dG1(y)]∑

    uv/∈G2,u̸=v

    dG2(v)

    + 2∑

    x,y∈G1, x=y1

    ∑uv/∈G2,u̸=v

    dG2(u)dG2(v)}

    = 2[n224M1(G1)[n2(n2 − 1)− 2m2] + 2n1[(n2 − 1)M1(G2)− F (G2)]

    + 2n2(4m1)2[2m2(n2 − 1)−M1(G2)] + 2n12M2(G2)]

    = 8n22M1(G1)[n2(n2 − 1)− 2m2] + 4n1[(n2 − 1)M1(G2)− F (G2)]+ 32n2m1[2m2(n2 − 1)−M1(G2)] + 8n1M2(G2)

    J3 =∑

    x,y∈G1, x=y

    ∑uv∈G2

    dG1[G2]((x, u), (y, v)

    )[dG1[G2](x, u) + dG1[G2](y, v)]

    2

    =∑

    x,y∈G1, x=y

    ∑uv∈G2

    dG1(x, y)[dG2(u) + n2dG1(x) + dG2(v) + n2dG1(y)]2

    =∑

    x,y∈G1, x=y

    ∑uv∈G2

    [d2G2(u) + n

    22d

    2G1(x) + d

    2G2(v) + n

    22d

    2G1(y)

    + 2n2dG1(x)dG2(u) + 2dG2(u)dG2(v) + 2n2dG1(y)dG2(u)

    + 2n2dG1(x)dG2(v) + 2n22dG1(x)dG1(y) + 2n2dG1(y)dG2(v)

    ]= n22

    ∑x,y∈G1, x=y

    [d2G2(u) + d2G1(y) + 2dG1(x)dG1(y)]

    ∑uv∈G1

    1

    +∑

    x,y∈G1, x=y

    1∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

  • 12 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    + 2n2∑

    x,y∈G1, x=y[dG1(x) + dG1(y)]

    ∑uv∈G2

    dG2(u)

    + 2n2∑

    x,y∈G1, x=y[dG1(x) + dG1(y)]

    ∑uv∈G2

    dG2(v)

    + 2∑

    x,y∈G1, x=y

    1∑

    uv∈G2

    dG2(u)dG2(v)

    = n224M1(G1)2m2 + 2n1F (G2) + 2n24m1M1(G2) + 2n2(4m1)M1(G2)

    + 2n12M2(G2)

    = 8n22m2M1(G1) + 2n1F (G2) + 16n2m1M1(G2) + 4n1M2(G2)

    J4 =∑

    x,y∈G1, x ̸=y

    ∑uv/∈G2

    dG1[G2]((x, u), (y, v)

    )[dG1[G2](x, u) + dG1[G2](y, v)]

    2

    =∑

    x,y∈G1, x ̸=y

    ∑uv/∈G2

    dG1(x, y)[dG2(u) + n2dG1(x) + dG2(v) + n2dG1(y)]2

    =∑

    x,y∈G1, x ̸=y

    ∑uv/∈G2

    dG1(x, y)[d2G2(u) + n

    22d

    2G1(x) + d

    2G2(v) + n

    22d

    2G1(y)

    + n22d2G1(y) + 2n2dG1(x)dG2(u) + 2dG2(u)dG2(v) + 2n2dG1(y)dG2(u)

    + 2n2dG1(x)dG2(v) + 2n22dG1(x)dG1(y) + 2n2dG1(y)dG2(v)

    ]= n22

    ∑x,y∈G1, x ̸=y

    dG1(x, y)[d2G2(u) + d

    2G1(y) + 2dG1(x)dG1(y)]

    ∑uv/∈G2

    1

    +∑

    x,y∈G1, x ̸=y

    dG1(x, y)∑

    uv∈G1

    [d2G2(u) + d2G2(v)]

    + 2n2∑

    x,y∈G1, x ̸=y

    dG1(x, y)[dG1(x) + dG1(y)]∑

    uv/∈G2

    dG2(u)

    + 2n2∑

    x,y∈G1, x ̸=y

    dG1(x, y)[dG1(x) + dG1(y)]∑

    uv/∈G2

    dG2(v)

    + 2∑

    x,y∈G1, x ̸=y

    dG1(x, y)∑

    uv/∈G2

    dG2(u)dG2(v)

    = n222DHM(G1)(2m2 + n2) + 2W (G1)2[(n2 − 1)M1(G2)− F (G2) +M1(G2)

    ]+ 4n22DD(G1)

    [(n2 − 1)2m2 −M1(G2) + 2m2

    ]+ 2(2W (G1))[2M2(G2) +M1(G2)]

    = 2n22DHM(G1)(2m2 + n2) + 4W (G1)[(n2 − 1)M1(G2)− F (G2) +M1(G2)

    ]+ 8n2DD(G1)

    [(n2 − 1)2m2 −M1(G2) + 2m2

    ]+ 4W (G1)[2M2(G2) +M1(G2)]

    By adding J1, J2, J3 and J4 we get the required result. �

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 13

    Theorem 2.3. Let Gi, i = 1, 2, be a (ni,mi)- graph, put mi = e(Gi). Then2×DHM(G1 ∨G2)

    = [2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)][4m2n

    22 + 2F (G2)− 4n2M1(G2)]

    + [2m1(n1 − 1) + 2m1 −M1(G1)][8n1n2M1(G2)− 4n1F (G2)− 8n1M2(G2)]+ [2M2(G1) +M1(G1)][4m2n

    22 − 4n2M1(G2) + 4M2(G2)]

    + (2m1 + n1)[2n21F (G2) + 4n

    21M2(G2)]

    + [2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)][4m1n

    21 + 2F (G1)− 4n1M1(G1)]

    + [2m2(n2 − 1) + 2m2 −M1(G2)][8n2n2M1(G1)− 4n2F (G1)− 8n2M2(G1)]+ [2M2(G2) +M1(G2)][4m1n

    21 − 4n1M1(G1) + 4M2(G1)]

    + (2m2 + n2)[2n22F (G1) + 4n

    22M2(G1)]

    + 4n22F (G1)m2 + 4n21F (G2)m1 + 2F (G1)F (G2) + 4n1n2M1(G1)M1(G2)

    − 4n2F (G1)M1(G2)− 4n1M1(G1)F (G2) + 8n22M2(G1)2m2 + 8n21M2(G2)m1+ 4n1n2M1(G1)2M1(G2)− 8n2M2(G1)M1(G2)− 8n1M2(G2)M1(G1)+ 8M2(G1)M2(G2)

    + 4n22

    [(2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    )(2m2 + n2)

    ]+ 4n21

    [(2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    )(2m1 + n1)

    ]+ 2

    [2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2)) +M1(G2)

    ]+ 4n1n2

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n2

    [2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n1

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    ]+ 8n22[2M2(G1) +M1(G1)](2m2 + n2) + 2n

    21(2m1 + n1)[2M2(G2) +M1(G2)]

    + 4n1n2

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n2[2M2(G1) +M1(G1)]

    [2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n1

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2M2(G1) +M1(G1)]

  • 14 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    + 2[2M2(G1) +M1(G1)][2M2(G2) +M1(G2)] + 4n32M1(G1) + 4n

    31M1(G2)

    + 4M1(G1)M1(G2) + 32n1n2m1m2 − 16m2n2M1(G1)− 16n1m1M1(G2).

    Proof. Let G = G1 ∨G2. Then,

    2×DHM(G1 ∨G2)

    =∑

    x,y∈V (G1)

    ∑u,v∈V (G2)

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    =∑

    x,y∈V (G1)

    { ∑uv∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    uv/∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2}

    =∑

    x,y∈V (G1)

    ∑uv∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    x,y∈V (G1)

    ∑uv/∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    =∑

    xy∈G1

    ∑uv∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    xy/∈G1

    ∑uv∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    xy∈G1

    ∑uv/∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    xy/∈G1

    ∑uv/∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    = S3 + S1 + S2 + S4

    S1 =∑

    xy/∈G1

    ∑uv∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    =∑

    xy/∈G1

    ∑uv∈G2

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    =∑

    xy/∈G1

    ∑uv∈G2

    [d2G1∨G2(x, u) + d

    2G1∨G2(y, v) + 2dG1∨G2(x, u)dG1∨G2(y, v)

    ]=

    ∑xy/∈G1

    ∑uv∈G2

    [{n2dG1(x) + n1dG2(u)− dG1(x)dG2(u)}2

    + {n2dG1(y) + n1dG2(v)− dG1(y)dG2(v)}2

    + 2{n2dG1(x) + n1dG2(u)− dG1(x)dG2(u)}

    {n2dG1(y) + n1dG2(v)− dG1(y)dG2(v)}]

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 15

    =∑

    xy/∈G1

    ∑uv∈G2

    [n22d

    2G1(x) + n

    21d

    2G2(u) + d

    2G1(x)d

    2G2(u) + 2n1n2dG1(x)dG2(u)

    − 2n2d2G1(x)dG2(u)− 2n1d2G2(u)dG1(x) + n

    22d

    2G1(y) + n

    21d

    2G2(v)

    + d2G1(y)d2G2(v) + 2n1n2dG1(y)dG2(v)− 2n2d

    2G1(y)dG2(v)− 2n1d

    2G2(v)dG1(y)

    + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)− n2dG1(x)dG1(y)dG2(v)

    + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− n1dG2(u)dG1(y)dG2(v)

    − n2dG1(x)dG1(y)dG2(u)− n1dG1(x)dG2(u)dG2(v)

    + dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy/∈G1

    ∑uv∈G2

    [d2G1(x) + d2G1(y)] + n

    21

    ∑xy/∈G1

    ∑uv∈G2

    [d2G2(u) + d2G2(v)]

    +∑

    xy/∈G1

    ∑uv∈G2

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

    + 2n1n2∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 2n2∑

    xy/∈G1

    ∑uv∈G2

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 2n1∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)] + 2n21

    ∑xy/∈G1

    ∑uv∈G2

    [dG2(x)dG2(v)]

    + 2n1n2∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 2n2∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 2n1∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(u)dG2(v)]

    + 2∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)dG2(u)dG2(v)]

    = n22∑

    xy/∈G1

    [d2G1(x) + d2G1(y)]

    ∑uv∈G2

    1 + n21∑

    xy/∈G1

    1∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

    +∑

    xy/∈G1

    [d2G1(x) + d2G1(y)]

    ∑uv∈G2

    d2G2(u)

    + 2n1n2∑

    xy/∈G1

    [dG1(x) + dG1(y)]∑

    uv∈G2

    dG2(u)

  • 16 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    − 2n2∑

    xy/∈G1

    [d2G1(x) + d2G1(y)]

    ∑uv∈G2

    dG2(u)

    − 2n1∑

    xy/∈G1

    [dG1(x) + dG1(y)]∑

    uv∈G2

    d2G2(u)

    + 2n22∑

    xy/∈G1

    [dG1(x)dG1(y)]∑

    uv∈G2

    1 + 2n21∑

    xy/∈G1

    1∑

    uv∈G2

    [dG2(u)dG2(v)]

    + 2n1n2∑

    xy/∈G1

    [dG1(x) + dG1(y)]∑

    uv∈G2

    dG2(u)

    − 2n2∑

    xy/∈G1

    [dG1(x)dG1(y)]∑

    uv∈G2

    dG2(u)

    − 2n1∑

    xy/∈G1

    [dG1(x) + dG1(y)]∑

    uv∈G2

    dG2(v)dG2(u)

    + 2∑

    xy/∈G1

    dG1(x)dG1(y)∑

    uv∈G2

    dG2(u)dG2(v)

    = n222[2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)](2m2)+ n21(2m1 + n1)2F (G2) + 2[2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1)+M1(G1)]F (G2) + 2n1n2 × 2[2m1(n1 − 1) + 2m1 −M1(G1)]M1(G2)− 2n2 × 2[2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)]M1(G2)− 2n1 × 2[2m1(n1 − 1) + 2m1 −M1(G1)]F (G2) + 2n22[2M2(G1)+M1(G1)]2m2 + 2n

    21(2m1 + n1)(2M2(G2)) + 2n1n2 × 2[2m1(n1 − 1)

    + 2m1 −M1(G1)]M1(G2)− 2n2 × 2[2M2(G1) +M1(G1)]M1(G2)− 2n1 × 2[2m1(n1 − 1) + 2m1 −M1(G1)](2M2(G2)) + 2× 2[2M2(G1)+M1(G1)]2M2(G2)

    = [2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)][4m2n22 + 2F (G2)− 4n2M1(G2)] + [2m1(n1 − 1) + 2m1 −M1(G1)][8n1n2M1(G2)− 4n1F (G2)− 8n1M2(G2)] + [2M2(G1) +M1(G1)][4m2n22 − 4n2M1(G2) + 4M2(G2)]+ (2m1 + n1)[2n

    21F (G2) + 4n

    21M2(G2)]

    S2 =∑

    xy∈G1

    ∑uv/∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    =∑

    xy∈G1

    ∑uv/∈G2

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    =∑

    xy∈G1

    ∑uv/∈G2

    [{n2dG1(x) + n1dG2(u)− dG1(x)dG2(u)}2

    + {n2dG1(y) + n1dG2(v)− dG1(y)dG2(v)}2

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 17

    + 2{n2dG1(x) + n1dG2(u)− dG1(x)dG2(u)}

    {n2dG1(y) + n1dG2(v)− dG1(y)dG2(v)}]

    =∑

    xy∈G1

    ∑uv/∈G2

    [n22d

    2G1(x) + n

    21d

    2G2(u) + d

    2G1(x)d

    2G2(u) + 2n1n2dG1(x)dG2(u)

    − 2n2d2G1(x)dG2(u)− 2n1d2G2(u)dG2(u) + n

    22d

    2G1(y) + n

    21d

    2G2(v)

    + d2G1(y)d2G2(v) + 2n1n2dG1(y)dG2(v)− 2n2d

    2G1(y)dG2(v)− 2n1d

    2G2(v)dG1(y)

    + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)− n2dG1(x)dG1(y)dG2(v)

    + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− n1dG2(u)dG1(y)dG2(v)

    − n2dG1(x)dG1(y)dG2(u)− n1dG1(x)dG2(u)dG2(v)

    + dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy∈G1

    ∑uv/∈G2

    [d2G1(x) + d2G1(y)] + n

    21

    ∑xy∈G1

    ∑uv/∈G2

    [d2G2(u) + d2G2(v)]

    + 2n1n2∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 2n2∑

    xy∈G1

    ∑uv/∈G2

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 2n1∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)] + 2n21

    ∑xy∈G1

    ∑uv/∈G2

    [dG2(x)dG2(v)]

    + 2n1n2∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 2n2∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 2n1∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(u)dG2(v)]

    + 2∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)dG2(u)dG2(v)]

    = n22∑

    uv/∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    1 + n21∑

    uv/∈G2

    1∑

    xy∈G1

    [d2G2(u) + d2G2(v)]

    +∑

    uv/∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    d2G1(x)

    + 2n1n2∑

    uv/∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    dG1(x)

  • 18 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    − 2n2∑

    uv/∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    dG1(x)

    − 2n1∑

    uv/∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    d2G1(x)

    + 2n22∑

    uv/∈G2

    [dG2(u)dG2(v)]∑

    xy∈G1

    1 + 2n21∑

    uv/∈G2

    1∑

    xy∈G1

    [dG2(u)dG2(v)]

    + 2n1n2∑

    uv/∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    dG1(x)

    − 2n2∑

    uv/∈G2

    [dG2(u)dG2(v)]∑

    xy∈G1

    dG1(x)

    − 2n1∑

    uv/∈G2

    dG2(u)dG2(v)∑

    xy∈G1

    [dG1(x) + dG1(y)]

    + 2∑

    uv/∈G2

    dG2(u)dG2(v)∑

    xy∈G1

    dG1(x)dG1(y)

    = n222[2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)](2m1)+ n22(2m2 + n2)2F (G1) + 2[2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2)+M1(G2)]F (G1) + 2n2n2 × 2[2m2(n2 − 1) + 2m2 −M1(G2)]M1(G1)− 2n1 × 2[2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)]M1(G1)− 2n2 × 2[2m2(n2 − 1) + 2m2 −M1(G2)]F (G1) + 2n21[2M2(G2)+M1(G2)]2m1 + 2n

    22(2m2 + n2)(2M2(G1)) + 2n2n2 × 2[2m2(n2 − 1)

    + 2m2 −M1(G2)]M1(G1)− 2n1 × 2[2M2(G2) +M1(G2)]M1(G1)− 2n2 × 2[2m2(n2 − 1) + 2m2 −M1(G2)](2M2(G1))+ 2× 2[2M2(G2) +M1(G2)]2M2(G1)

    = [2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)][4m1n21 + 2F (G1)− 4n1M1(G1)] + [2m2(n2 − 1) + 2m2 −M1(G2)][8n2n2M1(G1)− 4n2F (G1)− 8n2M2(G1)] + [2M2(G2) +M1(G2)][4m1n21 − 4n1M1(G1) + 4M2(G1)]+ (2m2 + n2)[2n

    22F (G1) + 4n

    22M2(G1)]

    S3 =∑

    xy∈G1

    ∑uv∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    =∑

    xy∈G1

    ∑uv∈G2

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    =∑

    xy∈G1

    ∑uv∈G2

    [{n2dG1(x) + n1dG2(u)− dG1(x)dG2(u)}2

    + {n2dG1(y) + n1dG2(v)− dG1(y)dG2(v)}2

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 19

    + 2{n2dG1(x) + n1dG2(u)− dG1(x)dG2(u)}

    {n2dG1(y) + n1dG2(v)− dG1(y)dG2(v)}]

    =∑

    xy∈G1

    ∑uv∈G2

    [n22d

    2G1(x) + n

    21d

    2G2(u) + d

    2G1(x)d

    2G2(u) + 2n1n2dG1(x)dG2(u)

    − 2n2d2G1(x)dG2(u)− 2n1d2G2(u)dG2(u) + n

    22d

    2G1(y) + n

    21d

    2G2(v)

    + d2G1(y)d2G2(v) + 2n1n2dG1(y)dG2(v)− 2n2d

    2G1(y)dG2(v)− 2n1d

    2G2(v)dG1(y)

    + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)− n2dG1(x)dG1(y)dG2(v)

    + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− n1dG2(u)dG1(y)dG2(v)

    − n2dG1(x)dG1(y)dG2(u)− n1dG1(x)dG2(u)dG2(v)

    + dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy∈G1

    ∑uv∈G2

    [d2G1(x) + d2G1(y)] + n

    21

    ∑xy∈G1

    ∑uv∈G2

    [d2G2(u) + d2G2(v)]

    +∑

    xy∈G1

    ∑uv∈G2

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

    + 2n1n2∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 2n2∑

    xy∈G1

    ∑uv∈G2

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 2n1∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)] + 2n21

    ∑xy∈G1

    ∑uv∈G2

    [dG2(x)dG2(v)]

    + 2n1n2∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 2n2∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 2n1∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(u)dG2(v)]

    + 2∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)dG2(u)dG2(v)]

    = n22∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    1 + n21∑

    uv∈G2

    1∑

    xy∈G1

    [d2G2(u) + d2G2(v)]

    +∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    d2G1(x)

  • 20 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    + 2n1n2∑

    uv∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    dG1(x)

    − 2n2∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    dG1(x)

    − 2n1∑

    uv∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    d2G1(x)

    + 2n22∑

    uv∈G2

    [dG2(u)dG2(v)]∑

    xy∈G1

    1 + 2n21∑

    uv∈G2

    1∑

    xy∈G1

    [dG2(u)dG2(v)]

    + 2n1n2∑

    uv∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    dG1(x)

    − 2n2∑

    uv∈G2

    [dG2(u)dG2(v)]∑

    xy∈G1

    dG1(x)

    − 2n1∑

    uv∈G2

    dG2(u)dG2(v)∑

    xy∈G1

    [dG1(x) + dG1(y)]

    + 2∑

    uv∈G2

    dG2(u)dG2(v)∑

    xy∈G1

    dG1(x)dG1(y)

    = n222F (G1)(2m2) + n212F (G2)(2m1) + 2F (G1)F (G2) + 2n1n2M1(G1)2M1(G2)

    − 2n2F (G1)2M1(G2)− 2n1M1(G1)2F (G2) + 2n22(2M2(G1))(2m2)+ 2n21(2M2(G2))(2m1) + 2n1n2M1(G1)2M1(G2)− 2n2(2M2(G1))2M1(G2)− 2n1(2M2(G2))2M1(G1) + 2(2M2(G1))2M2(G2)

    = 4n22F (G1)m2 + 4n21F (G2)m1 + 2F (G1)F (G2) + 4n1n2M1(G1)M1(G2)

    − 4n2F (G1)M1(G2)− 4n1M1(G1)F (G2) + 8n22M2(G1)2m2 + 8n21M2(G2)m1+ 4n1n2M1(G1)2M1(G2)− 8n2M2(G1)M1(G2)− 8n1M2(G2)M1(G1)+ 8M2(G1)M2(G2)

    S4 =∑

    xy/∈G1

    ∑uv/∈G2

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    =∑

    xy/∈G1

    { ∑uv/∈G2 u̸=v

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    uv/∈G2 u=v

    dG1∨G2]((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2}

    =∑

    xy/∈G1

    ∑uv/∈G2 u̸=v

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    xy/∈G1

    ∑uv/∈G2 u=v

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    =∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u̸=v

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 21

    +∑

    xy/∈G1, x=y

    ∑uv/∈G2 u̸=v

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u=v

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    +∑

    xy/∈G1, x=y

    ∑uv/∈G2 u=v

    dG1∨G2((x, u), (y, v)

    )[dG1∨G2(x, u) + dG1∨G2(y, v)]

    2

    = 2∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u̸=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    + 2∑

    xy/∈G1, x=y

    ∑uv/∈G2 u̸=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    + 2∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    = 2∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u̸=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    + 2∑

    xy/∈G1, x=y

    ∑uv/∈G2 u̸=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    + 2∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    + 2∑

    xy/∈G1, x=y

    ∑uv/∈G2 u=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    − 2∑

    xy/∈G1, x=y

    ∑uv/∈G2 u=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    = 2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    − 2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    S4 = 2S5 − 2S6

    S5 =∑

    xy/∈G1

    ∑uv/∈G2

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    =∑

    xy/∈G1

    ∑uv/∈G2

    [{n2dG1(x) + n1dG2(u)− dG1(x)dG2(u)}2

    + {n2dG1(y) + n1dG2(v)− dG1(y)dG2(v)}2

    + 2{n2dG1(x) + n1dG2(u)− dG1(x)dG2(u)}

    {n2dG1(y) + n1dG2(v)− dG1(y)dG2(v)}]

    =∑

    xy/∈G1

    ∑uv/∈G2

    [n22d

    2G1(x) + n

    21d

    2G2(u) + d

    2G1(x)d

    2G2(u) + 2n1n2dG1(x)dG2(u)

  • 22 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    − 2n2d2G1(x)dG2(u)− 2n1d2G2(u)dG2(u) + n

    22d

    2G1(y) + n

    21d

    2G2(v)

    + d2G1(y)d2G2(v) + 2n1n2dG1(y)dG2(v)− 2n2d

    2G1(y)dG2(v)− 2n1d

    2G2(v)dG1(y)

    + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)− n2dG1(x)dG1(y)dG2(v)

    + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− n1dG2(u)dG1(y)dG2(v)

    − n2dG1(x)dG1(y)dG2(u)− n1dG1(x)dG2(u)dG2(v)

    + dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy/∈G1

    ∑uv/∈G2

    [d2G1(x) + d2G1(y)] + n

    21

    ∑xy/∈G1

    ∑uv/∈G2

    [d2G2(u) + d2G2(v)]

    +∑

    xy/∈G1

    ∑uv/∈G2

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

    + 2n1n2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 2n2∑

    xy/∈G1

    ∑uv/∈G2

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 2n1∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)] + 2n21

    ∑xy/∈G1

    ∑uv/∈G2

    [dG2(x)dG2(v)]

    + 2n1n2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 2n2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 2n1∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(u)dG2(v)]

    + 2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)dG2(u)dG2(v)]

    = n22∑

    xy/∈G1

    [d2G1(x) + d2G1(y)]

    ∑uv/∈G2

    1 + n21∑

    xy/∈G1

    1∑

    uv/∈G2

    [d2G2(u) + d2G2(v)]

    + 2∑

    xy/∈G1

    d2G1(x)∑

    uv/∈G2

    d2G2(u) + 2n1n2∑

    xy/∈G1

    dG1(x)∑

    uv/∈G2

    dG2(u)

    +∑

    xy/∈G1

    dG1(y)∑

    uv/∈G2

    dG2(v)− 2n2[ ∑xy/∈G1

    d2G1(x)∑

    uv/∈G2

    dG2(u)

    +∑

    xy/∈G1

    d2G1(y)∑

    uv/∈G2

    dG2(v)]− 2n1

    [ ∑xy/∈G1

    dG1(x)∑

    uv/∈G2

    d2G2(u)

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 23

    +∑

    xy/∈G1

    dG1(y)∑

    uv/∈G2

    d2G2(v)]+ 2n22

    ∑xy/∈G1

    [dG1(x)dG1(y)]∑

    uv/∈G2

    1

    + 2n21∑

    xy/∈G1

    1∑

    uv/∈G2

    [dG2(u)dG2(v)] + 2n1n2

    [ ∑xy/∈G1

    dG1(x)∑

    uv/∈G2

    dG2(v)

    +∑

    xy/∈G1

    dG1(y)∑

    uv/∈G2

    dG2(u)]− 2n2

    [ ∑xy/∈G1

    dG1(x)dG1(y)∑

    uv/∈G2

    dG2(u)

    +∑

    xy/∈G1

    dG1(x)dG1(y)∑

    uv/∈G2

    dG2(v)]

    − 2n1[ ∑xy/∈G1

    dG1(y)∑

    uv/∈G2

    dG2(u)dG2(v)

    +∑

    xy/∈G1

    dG1(x)∑

    uv/∈G2

    dG2(u)dG2(v)]

    + 2∑

    xy/∈G1

    dG1(x)dG1(y)∑

    uv/∈G2

    dG2(v)dG2(u)

    = n222[2(2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    )(2m2 + n2)

    ]+ n212

    [2(2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    )(2m1 + n1)

    ]+ 2

    [2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2)) +M1(G2)

    ]+ 2n1n2

    {2[2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]}− 2n2

    {2[2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1)

    + 2m2 −M1(G2)]}

    − 2n1{2[2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    ]}+ 2n22[2M2(G1) +M1(G1)](2m2 + n2) + 2n

    21(2m1 + n1)[2M2(G2) +M1(G2)]

    + 2n1n2

    {2[2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]}− 2n22[2M2(G1) +M1(G1)]

    [2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 2n12

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2M2(G1) +M1(G1)]

    + 2[2M2(G1) +M1(G1)][2M2(G2) +M1(G2)]

    = 4n22

    [(2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    )(2m2 + n2)

    ]+ 4n21

    [(2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    )(2m1 + n1)

    ]

  • 24 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    + 2[2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2)) +M1(G2)

    ]+ 4n1n2

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n2

    [2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n1

    [2m1(n1 − 1)

    + 2m1 −M1(G1)][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    ]+ 8n22[2M2(G1) +M1(G1)](2m2 + n2)

    + 2n21(2m1 + n1)[2M2(G2) +M1(G2)] + 4n1n2

    [2m1(n1 − 1) + 2m1

    −M1(G1)][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n2[2M2(G1)

    +M1(G1)][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n1

    [2m1(n1 − 1)

    + 2m1 −M1(G1)][2M2(G1) +M1(G1)]

    + 2[2M2(G1) +M1(G1)][2M2(G2) +M1(G2)]

    S6 = 2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1∨G2(x, u) + dG1∨G2(y, v)]2

    =∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [n22d

    2G1(x) + n

    21d

    2G2(u) + d

    2G1(x)d

    2G2(u)

    + 2n1n2dG1(x)dG2(u)− 2n2d2G1(x)dG2(u)− 2n1d2G2(u)dG2(u) + n

    22d

    2G1(y)

    + n21d2G2(v) + d

    2G1(y)d

    2G2(v) + 2n1n2dG1(y)dG2(v)− 2n2d

    2G1(y)dG2(v)

    − 2n1d2G2(v)dG1(y) + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)

    − n2dG1(x)dG1(y)dG2(v) + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− n1dG2(u)dG1(y)dG2(v)− n2dG1(x)dG1(y)dG2(u)− n1dG1(x)dG2(u)dG2(v)

    + dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [d2G1(x) + d2G1(y)]

    + n21∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [d2G2(u) + d2G2(v)]

    +∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 25

    + 2n1n2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 2n2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 2n1∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG1(y)]

    + 2n21∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG2(x)dG2(v)]

    + 2n1n2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 2n2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 2n1∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(u)dG2(v)]

    + 2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG1(y)dG2(u)dG2(v)]

    = n22∑

    xy/∈G1, x=y

    [d2G1(x) + d2G1(y)]

    ∑uv/∈G2,u=v

    1

    + n21∑

    xy/∈G1, x=y

    1∑

    uv/∈G2,u=v

    [d2G2(u) + d2G2(v)]

    + 2∑

    xy/∈G1, x=y

    d2G1(x)∑

    uv/∈G2,u=v

    d2G2(u)

    + 2n1n2∑

    xy/∈G1, x=y

    dG1(x)∑

    uv/∈G2,u=v

    dG2(u)

    +∑

    xy/∈G1, x=y

    dG1(y)∑

    uv/∈G2,u=v

    dG2(v)− 2n2[ ∑xy/∈G1, x=y

    d2G1(x)∑

    uv/∈G2,u=v

    dG2(u)

    +∑

    xy/∈G1, x=y

    d2G1(y)∑

    uv/∈G2,u=v

    dG2(v)]

    − 2n1[ ∑xy/∈G1, x=y

    dG1(x)∑

    uv/∈G2,u=v

    d2G2(u)

    +∑

    xy/∈G1, x=y

    dG1(y)∑

    uv/∈G2,u=v

    d2G2(v)]

    + 2n22∑

    xy/∈G1, x=y

    [dG1(x)dG1(y)]∑

    uv/∈G2,u=v

    1

  • 26 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    + 2n21∑

    xy/∈G1, x=y

    1∑

    uv/∈G2,u=v

    [dG2(u)dG2(v)]

    + 2n1n2

    [ ∑xy/∈G1, x=y

    dG1(x)∑

    uv/∈G2,u=v

    dG2(v)

    +∑

    xy/∈G1, x=y

    dG1(y)∑

    uv/∈G2,u=v

    dG2(u)]

    − 2n2[ ∑xy/∈G1, x=y

    dG1(x)dG1(y)∑

    uv/∈G2,u=v

    dG2(u)

    +∑

    xy/∈G1, x=y

    dG1(x)dG1(y)∑

    uv/∈G2,u=v

    dG2(v)]

    − 2n1[ ∑xy/∈G1, x=y

    dG1(y)∑

    uv/∈G2,u=v

    dG2(u)dG2(v)

    +∑

    xy/∈G1, x=y

    dG1(x)∑

    uv/∈G2,u=v

    dG2(u)dG2(v)]

    + 2∑

    xy/∈G1, x=y

    dG1(x)dG1(y)∑

    uv/∈G2,u=v

    dG2(v)dG2(u)

    = 2n32M1(G1) + 2n31M1(G2) + 4M1(G1)M1(G2) + 32n1n2m1m2 + 2n

    32M1(G1)

    + 2n31M1(G2)− 16m2n2M1(G1)− 16n1m1M1(G2)= 4n32M1(G1) + 4n

    31M1(G2) + 4M1(G1)M1(G2) + 32n1n2m1m2

    − 16m2n2M1(G1)− 16n1m1M1(G2).By substituting S1, S2 S3 S5 and S6, the desired result follows from the simplication.

    �Theorem 2.4. Let Gi, i = 1, 2, be a (ni,mi)- graph, put mi = e(Gi). Then

    2×DHM(G1 ⊕G2)= [2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)][4m2n22 + 8F (G2)− 8n2M1(G2)] + [2m1(n1 − 1) + 2m1 −M1(G1)][8n1n2M1(G2)− 8n1F (G2)+ 16n1M2(G2)] + [2M2(G1) +M1(G1)][4m2n

    22 − 8n2M1(G2) + 16M2(G2)]

    + (2m1 + n1)[2n21F (G2) + 4n

    21M2(G2)] + [2(n2 − 1)2m2 + F (G2)

    − 2(n2 − 1)M1(G2) +M1(G2)][4m1n21 + 8F (G1)− 8n1M1(G1)] + [2m2(n2 − 1)+ 2m2 −M1(G2)][8n1n2M1(G1)− 8n2F (G1)− 16n2M2(G1)] + [2M2(G2)+M1(G2)][4m1n

    21 − 8n1M1(G1) + 16M2(G1)] + (2m2 + n2)[2n22F (G1)

    + 4n22M2(G1)] + 4n22F (G1)m2 + 4n

    21F (G2)m1 + 8F (G1)F (G2)

    + 4n1n2M1(G1)M1(G2)− 8n2F (G1)M1(G2)− 8n1M1(G1)F (G2)+ 8n22M2(G1)2m2 + 8n

    21M2(G2)m1 + 4n1n2M1(G1)2M1(G2)

    − 16n2M2(G1)M1(G2)− 16n1M2(G2)M1(G1) + 32M2(G1)M2(G2)

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 27

    + 4n22

    [(2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    )(2m2 + n2)

    ]+ 4n21

    [(2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    )(2m1 + n1)

    ]+ 8

    [2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1)2

    + F (G2)− 2(n2 − 1)M1(G2)) +M1(G2)]+ 4n1n2

    [2m1(n1 − 1) + 2m1

    −M1(G1)][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 8n2

    [2m1(n1 − 1)2 + F (G1)

    − 2(n1 − 1)M1(G1) +M1(G1)][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 8n1

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1)2 + F (G2)

    − 2(n2 − 1)M1(G2) +M1(G2)]+ 2n22[2M2(G1) +M1(G1)](2m2 + n2)

    + 2n21(2m1 + n1)[2M2(G2) +M1(G2)] + 4n1n2

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 8n2[2M2(G1) +M1(G1)]

    [2m2(n2 − 1)

    + 2m2 −M1(G2)]− 8n1

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2M2(G1) +M1(G1)]

    + 16[2M2(G1) +M1(G1)][2M2(G2) +M1(G2)] + 4n32M1(G1) + 4n

    31M1(G2)

    + 16M1(G1)M1(G2) + 32n1n2m1m2 − 32m2n2M1(G1)− 32n1m1M1(G2)

    Proof. Let G = G1 ⊕G2. Then,

    2×DHM(G1 ⊕G2)

    =∑

    x,y∈V (G1)

    ∑u,v∈V (G2)

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    =∑

    x,y∈V (G1)

    { ∑uv∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    uv/∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2}

    =∑

    x,y∈V (G1)

    ∑uv∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    x,y∈V (G1)

    ∑uv/∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    =∑

    xy∈G1

    ∑uv∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    xy/∈G1

    ∑uv∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    xy∈G1

    ∑uv/∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

  • 28 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    +∑

    xy/∈G1

    ∑uv/∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    = B3 +B1 +B2 +B4

    B1 =∑

    xy/∈G1

    ∑uv∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    =∑

    xy/∈G1

    ∑uv∈G2

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    =∑

    xy/∈G1

    ∑uv∈G2

    [d2(x, u) + d2(y, v) + 2d(x, u)d(y, v)

    ]=

    ∑xy/∈G1

    ∑uv∈G2

    [{n2dG1(x) + n1dG2(u)− 2dG1(x)dG2(u)}2

    + {n2dG1(y) + n1dG2(v)− 2dG1(y)dG2(v)}2

    + 2{n2dG1(x) + n1dG2(u)− 2dG1(x)dG2(u)}

    {n2dG1(y) + n1dG2(v)− 2dG1(y)dG2(v)}]

    =∑

    xy/∈G1

    ∑uv∈G2

    [n22d

    2G1(x) + n

    21d

    2G2(u) + 4d

    2G1(x)d

    2G2(u) + 2n1n2dG1(x)dG2(u)

    − 4n2d2G1(x)dG2(u)− 4n1d2G2(u)dG2(u) + n

    22d

    2G1(y) + n

    21d

    2G2(v)

    + 4d2G1(y)d2G2(v) + 2n1n2dG1(y)dG2(v)− 4n2d

    2G1(y)dG2(v)

    − 4n1d2G2(v)dG1(y) + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)

    − 2n2dG1(x)dG1(y)dG2(v) + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− 2n1dG2(u)dG1(y)dG2(v)− 2n2dG1(x)dG1(y)dG2(u)

    − 2n1dG1(x)dG2(u)dG2(v) + 4dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy/∈G1

    ∑uv∈G2

    [d2G1(x) + d2G1(y)] + n

    21

    ∑xy/∈G1

    ∑uv∈G2

    [d2G2(u) + d2G2(v)]

    + 4∑

    xy/∈G1

    ∑uv∈G2

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

    + 2n1n2∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 4n2∑

    xy/∈G1

    ∑uv∈G2

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 4n1∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)] + 2n21

    ∑xy/∈G1

    ∑uv∈G2

    [dG2(x)dG2(v)]

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 29

    + 2n1n2∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 4n2∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 4n1∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(v)dG2(u)]

    + 8∑

    xy/∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)dG2(v)dG2(u)]

    = n22∑

    xy/∈G1

    [d2G1(x) + d2G1(y)]

    ∑uv∈G2

    1 + n21∑

    xy/∈G1

    1∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

    + 4∑

    xy/∈G1

    [d2G1(x) + d2G1(y)]

    ∑uv∈G2

    d2G2(u)

    + 2n1n2∑

    xy/∈G1

    [dG1(x) + dG1(y)]∑

    uv∈G2

    dG2(u)

    − 4n2∑

    xy/∈G1

    [d2G1(x) + d2G1(y)]

    ∑uv∈G2

    dG2(u)

    − 4n1∑

    xy/∈G1

    [dG1(x) + dG1(y)]∑

    uv∈G2

    d2G2(u)

    + 2n22∑

    xy/∈G1

    [dG1(x)dG1(y)]∑

    uv∈G2

    1 + 2n21∑

    xy/∈G1

    1∑

    uv∈G2

    [dG2(u)dG2(v)]

    + 2n1n2∑

    xy/∈G1

    [dG1(x) + dG1(y)]∑

    uv∈G2

    dG2(u)

    − 4n2∑

    xy/∈G1

    [dG1(x)dG1(y)]∑

    uv∈G2

    dG2(u)

    − 4n1∑

    xy/∈G1

    [dG1(x) + dG1(y)]∑

    uv∈G2

    dG2(v)dG2(u)

    + 8∑

    xy/∈G1

    dG1(x)dG1(y)∑

    uv∈G2

    dG2(v)dG2(u)

    = n222[2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)](2m2)+ n21(2m1 + n1)2F (G2) + 4× 2[2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1)+M1(G1)]F (G2) + 2n1n2 × 2[2m1(n1 − 1) + 2m1 −M1(G1)]M1(G2)− 4n2 × 2[2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)]M1(G2)− 4n1 × 2[2m1(n1 − 1) + 2m1 −M1(G1)]F (G2)+ 2n22[2M2(G1) +M1(G1)]2m2 + 2n

    21(2m1 + n1)(2M2(G2))

    + 2n1n2 × 2[2m1(n1 − 1) + 2m1 −M1(G1)]M1(G2)− 4n2 × 2[2M2(G1)+M1(G1)]M1(G2)− 4n1 × 2[2m1(n1 − 1) + 2m1 −M1(G1)](2M2(G2))

  • 30 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    + 8[2M2(G1) +M1(G1)]2M2(G2)

    = [2(n1 − 1)2m1 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)][4m2n22 + 8F (G2)− 8n2M1(G2)] + [2m1(n1 − 1) + 2m1 −M1(G1)][8n1n2M1(G2)− 8n1F (G2)+ 16n1M2(G2)] + [2M2(G1) +M1(G1)][4m2n

    22 − 8n2M1(G2) + 16M2(G2)]

    + (2m1 + n1)[2n21F (G2) + 4n

    21M2(G2)]

    B2 =∑

    xy∈G1

    ∑uv/∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    =∑

    xy∈G1

    ∑uv/∈G2

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    =∑

    xy∈G1

    ∑uv/∈G2

    [{n2dG1(x) + n1dG2(u)− 2dG1(x)dG2(u)}2

    + {n2dG1(y) + n1dG2(v)− 2dG1(y)dG2(v)}2

    + 2{n2dG1(x) + n1dG2(u)− 2dG1(x)dG2(u)}

    {n2dG1(y) + n1dG2(v)− 2dG1(y)dG2(v)}]

    =∑

    xy∈G1

    ∑uv/∈G2

    [n22d

    2G1(x) + n

    21d

    2G2(u) + 4d

    2G1(x)d

    2G2(u) + 2n1n2dG1(x)dG2(u)

    − 4n2d2G1(x)dG2(u)− 4n1d2G2(u)dG2(u) + n

    22d

    2G1(y) + n

    21d

    2G2(v)

    + 4d2G1(y)d2G2(v) + 2n1n2dG1(y)dG2(v)− 4n2d

    2G1(y)dG2(v)

    − 4n1d2G2(v)dG1(y) + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)

    − 2n2dG1(x)dG1(y)dG2(v) + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− 2n1dG2(u)dG1(y)dG2(v)− 2n2dG1(x)dG1(y)dG2(u)

    − 2n1dG1(x)dG2(u)dG2(v) + 4dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy∈G1

    ∑uv/∈G2

    [d2G1(x) + d2G1(y)] + n

    21

    ∑xy∈G1

    ∑uv/∈G2

    [d2G2(u) + d2G2(v)]

    + 4∑

    xy∈G1

    ∑uv/∈G2

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

    + 2n1n2∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 4n2∑

    xy∈G1

    ∑uv/∈G2

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 4n1∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)] + 2n21

    ∑xy∈G1

    ∑uv/∈G2

    [dG2(x)dG2(v)]

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 31

    + 2n1n2∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 4n2∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 4n1∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(v)dG2(u)]

    + 8∑

    xy∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)dG2(u)dG2(v)]

    = n22∑

    uv/∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    1 + n21∑

    uv/∈G2

    1∑

    xy∈G1

    [d2G2(u) + d2G2(v)]

    + 4∑

    uv/∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    d2G1(x)

    + 2n1n2∑

    uv/∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    dG1(x)

    − 4n2∑

    uv/∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    dG1(x)

    − 4n1∑

    uv/∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    d2G1(x)

    + 2n22∑

    uv/∈G2

    [dG2(u)dG2(v)]∑

    xy∈G1

    1 + 2n21∑

    uv/∈G2

    1∑

    xy∈G1

    [dG2(u)dG2(v)]

    + 2n1n2∑

    uv/∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    dG1(x)

    − 4n2∑

    uv/∈G2

    [dG2(u)dG2(v)]∑

    xy∈G1

    dG1(x)

    − 4n1∑

    uv/∈G2

    dG2(u)dG2(v)∑

    xy∈G1

    [dG1(x) + dG1(y)]

    + 8∑

    uv/∈G2

    dG2(u)dG2(v)∑

    xy∈G1

    dG1(x)dG1(y)

    = n222[2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)](2m1)+ n22(2m2 + n2)2F (G1) + 4× 2[2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2)+M1(G2)]F (G1) + 2n1n2 × 2[2m2(n2 − 1) + 2m2 −M1(G2)]M1(G1)− 4n2 × 2[2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)]M1(G1)− 24n1 × 2[2m2(n2 − 1) + 2m2 −M1(G2)]F (G1)+ 2n22[2M2(G2) +M1(G2)]2m1 + 2n

    21(2m2 + n2)(2M2(G1))

    + 2n1n2 × 2[2m2(n2 − 1) + 2m2 −M1(G2)]M1(G1)− 4n2 × 2[2M2(G2)+M1(G2)]M1(G1)− 4n1 × 2[2m2(n2 − 1) + 2m2 −M1(G2)](2M2(G1))

  • 32 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    + 8[2M2(G2) +M1(G2)]2M2(G1)

    = [2(n2 − 1)2m2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)][4m1n21 + 8F (G1)− 8n1M1(G1)] + [2m2(n2 − 1) + 2m2 −M1(G2)][8n1n2M1(G1)− 8n2F (G1)− 16n2M2(G1) + [2M2(G2) +M1(G2)][4m1n21 − 8n1M1(G1) + 16M2(G1)]+ (2m2 + n2)[2n

    22F (G1) + 4n

    22M2(G1)]

    B3 =∑

    xy∈G1

    ∑uv∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    =∑

    xy∈G1

    ∑uv∈G2

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    =∑

    xy∈G1

    ∑uv∈G2

    [{n2dG1(x) + n1dG2(u)− 2dG1(x)dG2(u)}2

    + {n2dG1(y) + n1dG2(v)− 2dG1(y)dG2(v)}2

    + 2{n2dG1(x) + n1dG2(u)− 2dG1(x)dG2(u)}

    {n2dG1(y) + n1dG2(v)− 2dG1(y)dG2(v)}]

    =∑

    xy∈G1

    ∑uv∈G2

    [n22d

    2G1(x) + n

    21d

    2G2(u) + 4d

    2G1(x)d

    2G2(u) + 2n1n2dG1(x)dG2(u)

    − 4n2d2G1(x)dG2(u)− 4n1d2G2(u)dG2(u) + n

    22d

    2G1(y) + n

    21d

    2G2(v)

    + 4d2G1(y)d2G2(v) + 2n1n2dG1(y)dG2(v)− 4n2d

    2G1(y)dG2(v)

    − 4n1d2G2(v)dG1(y) + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)

    − 2n2dG1(x)dG1(y)dG2(v) + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− 2n1dG2(u)dG1(y)dG2(v)− 2n2dG1(x)dG1(y)dG2(u)

    − 2n1dG1(x)dG2(u)dG2(v) + 4dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy∈G1

    ∑uv∈G2

    [d2G1(x) + d2G1(y)] + n

    21

    ∑xy∈G1

    ∑uv∈G2

    [d2G2(u) + d2G2(v)]

    + 4∑

    xy∈G1

    ∑uv∈G2

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

    + 2n1n2∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 4n2∑

    xy∈G1

    ∑uv∈G2

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 4n1∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)] + 2n21

    ∑xy∈G1

    ∑uv∈G2

    [dG2(x)dG2(v)]

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 33

    + 2n1n2∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 4n2∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 4n1∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(u)dG2(v)]

    + 8∑

    xy∈G1

    ∑uv∈G2

    [dG1(x)dG1(y)dG2(u)dG2(v)]

    = n22∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    1 + n21∑

    uv∈G2

    1∑

    xy∈G1

    [d2G2(u) + d2G2(v)]

    + 4∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    d2G1(x)

    + 2n1n2∑

    uv∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    dG1(x)

    − 4n2∑

    uv∈G2

    [d2G2(u) + d2G2(v)]

    ∑xy∈G1

    dG1(x)

    − 4n1∑

    uv∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    d2G1(x)

    + 2n22∑

    uv∈G2

    [dG2(u)dG2(v)]∑

    xy∈G1

    1 + 2n21∑

    uv∈G2

    1∑

    xy∈G1

    [dG2(u)dG2(v)]

    + 2n1n2∑

    uv∈G2

    [dG2(u) + dG2(v)]∑

    xy∈G1

    dG1(x)

    − 4n2∑

    uv∈G2

    [dG2(u)dG2(v)]∑

    xy∈G1

    dG1(x)

    − 4n1∑

    uv∈G2

    dG2(u)dG2(v)∑

    xy∈G1

    [dG1(x) + dG1(y)]

    + 8∑

    uv∈G2

    dG2(u)dG2(v)∑

    xy∈G1

    dG1(x)dG1(y)

    = n222F (G1)(2m2) + n212F (G2)(2m1) + 8F (G1)F (G2)

    + 2n1n2M1(G1)2M1(G2)− 4n2F (G1)2M1(G2)− 4n1M1(G1)2F (G2)+ 2n22(2M2(G1))(2m2) + 2n

    21(2M2(G2))(2m1 + 2n1n2M1(G1)2M1(G2)

    − 4n2(2M2(G1))2M1(G2)− 4n1(2M2(G2))2M1(G1) + 8(2M2(G1))2M2(G2)= 4n22F (G1)m2 + 4n

    21F (G2)m1 + 8F (G1)F (G2) + 4n1n2M1(G1)M1(G2)

    − 8n2F (G1)M1(G2)− 8n1M1(G1)F (G2) + 8n22M2(G1)2m2 + 8n21M2(G2)m1+ 4n1n2M1(G1)2M1(G2)− 16n2M2(G1)M1(G2)− 16n1M2(G2)M1(G1)+ 32M2(G1)M2(G2)

  • 34 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    B4 =∑

    xy/∈G1

    ∑uv/∈G2

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    =∑

    xy/∈G1

    { ∑uv/∈G2 u̸=v

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    uv/∈G2 u=v

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2}

    =∑

    xy/∈G1

    ∑uv/∈G2 u̸=v

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    xy/∈G1

    ∑uv/∈G2 u=v

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    =∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u̸=v

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    xy/∈G1, x=y

    ∑uv/∈G2 u̸=v

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u=v

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    +∑

    xy/∈G1, x=y

    ∑uv/∈G2 u=v

    dG1⊕G2((x, u), (y, v)

    )[dG1⊕G2(x, u) + dG1⊕G2(y, v)]

    2

    = 2∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u̸=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    + 2∑

    xy/∈G1, x=y

    ∑uv/∈G2 u̸=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    + 2∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2 + 0

    = 2∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u̸=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    + 2∑

    xy/∈G1, x=y

    ∑uv/∈G2 u̸=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    + 2∑

    xy/∈G1, x ̸=y

    ∑uv/∈G2 u=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    + 2∑

    xy/∈G1, x=y

    ∑uv/∈G2 u=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    − 2∑

    xy/∈G1, x=y

    ∑uv/∈G2 u=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    = 2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 35

    − 2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    B4 = 2B5 −BS6

    B5 =∑

    xy/∈G1

    ∑uv/∈G2

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

    =∑

    xy/∈G1

    ∑uv/∈G2

    [{n2dG1(x) + n1dG2(u)− 2dG1(x)dG2(u)}2

    + {n2dG1(y) + n1dG2(v)− 2dG1(y)dG2(v)}2

    + 2{n2dG1(x) + n1dG2(u)− 2dG1(x)dG2(u)}

    {n2dG1(y) + n1dG2(v)− 2dG1(y)dG2(v)}]

    =∑

    xy/∈G1

    ∑uv/∈G2

    [n22d

    2G1(x) + n

    21d

    2G2(u) + 4d

    2G1(x)d

    2G2(u) + 2n1n2dG1(x)dG2(u)

    − 4n2d2G1(x)dG2(u)− 4n1d2G2(u)dG2(u) + n

    22d

    2G1(y) + n

    21d

    2G2(v)

    + 4d2G1(y)d2G2(v) + 2n1n2dG1(y)dG2(v)− 4n2d

    2G1(y)dG2(v)

    − 4n1d2G2(v)dG1(y) + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)

    − 2n2dG1(x)dG1(y)dG2(v) + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− 2n1dG2(u)dG1(y)dG2(v)− 2n2dG1(x)dG1(y)dG2(u)

    − 2n1dG1(x)dG2(u)dG2(v) + 4dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy/∈G1

    ∑uv/∈G2

    [d2G1(x) + d2G1(y)] + n

    21

    ∑xy/∈G1

    ∑uv/∈G2

    [d2G2(u) + d2G2(v)]

    + 4∑

    xy/∈G1

    ∑uv/∈G2

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

    + 2n1n2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 4n2∑

    xy/∈G1

    ∑uv/∈G2

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 4n1∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)] + 2n21

    ∑xy/∈G1

    ∑uv/∈G2

    [dG2(x)dG2(v)]

    + 2n1n2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

  • 36 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    − 4n2∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 4n1∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(u)dG2(v)]

    + 8∑

    xy/∈G1

    ∑uv/∈G2

    [dG1(x)dG1(y)dG2(u)dG2(v)]

    = n22∑

    xy/∈G1

    [d2G1(x) + d2G1(y)]

    ∑uv/∈G2

    1 + n21∑

    xy/∈G1

    1∑

    uv/∈G2

    [d2G2(u) + d2G2(v)]

    + 4∑

    xy/∈G1

    d2G1(x)∑

    uv/∈G2

    d2G2(u)

    + 2n1n2∑

    xy/∈G1

    dG1(x)∑

    uv/∈G2

    dG2(u) +∑

    xy/∈G1

    dG1(y)∑

    uv/∈G2

    dG2(v)

    − 4n2[ ∑xy/∈G1

    d2G1(x)∑

    uv/∈G2

    dG2(u) +∑

    xy/∈G1

    d2G1(y)∑

    uv/∈G2

    dG2(v)]

    − 4n1[ ∑xy/∈G1

    dG1(x)∑

    uv/∈G2

    d2G2(u) +∑

    xy/∈G1

    dG1(y)∑

    uv/∈G2

    d2G2(v)]

    + 2n22∑

    xy/∈G1

    [dG1(x)dG1(y)]∑

    uv/∈G2

    1 + 2n21∑

    xy/∈G1

    1∑

    uv/∈G2

    [dG2(u)dG2(v)]

    + 2n1n2

    [ ∑xy/∈G1

    dG1(x)∑

    uv/∈G2

    dG2(v) +∑

    xy/∈G1

    dG1(y)∑

    uv/∈G2

    dG2(u)]

    − 4n2[ ∑xy/∈G1

    dG1(x)dG1(y)∑

    uv/∈G2

    dG2(u)

    +∑

    xy/∈G1

    dG1(x)dG1(y)∑

    uv/∈G2

    dG2(v)]

    − 4n1[ ∑xy/∈G1

    dG1(y)∑

    uv/∈G2

    dG2(u)dG2(v)

    +∑

    xy/∈G1

    dG1(x)∑

    uv/∈G2

    dG2(u)dG2(v)]

    + 8∑

    xy/∈G1

    dG1(x)dG1(y)∑

    uv/∈G2

    dG2(v)dG2(u)

    = n222[2(2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    )(2m2 + n2)

    ]+ n212

    [2(2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    )(2m1 + n1)

    ]+ 8

    [2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2)) +M1(G2)

    ]

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 37

    + 2n1n2

    {2[2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]}− 4n2

    {2[2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]}− 4n1

    {2[2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    ]}+ 2n22[2M2(G1) +M1(G1)](2m2 + n2) + 2n

    21(2m1 + n1)[2M2(G2) +M1(G2)]

    + 2n1n2

    {2[2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]}− 4n22[2M2(G1) +M1(G1)]

    [2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 4n12

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2M2(G1) +M1(G1)]

    + 16[2M2(G1) +M1(G1)][2M2(G2) +M1(G2)]

    = 4n22

    [(2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    )(2m2 + n2)

    ]+ 4n21

    [(2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    )(2m1 + n1)

    ]+ 8

    [2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2)) +M1(G2)

    ]+ 4n1n2

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 8n2

    [2m1(n1 − 1)2 + F (G1)− 2(n1 − 1)M1(G1) +M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 8n1

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1)2 + F (G2)− 2(n2 − 1)M1(G2) +M1(G2)

    ]+ 2n22[2M2(G1) +M1(G1)](2m2 + n2) + 2n

    21(2m1 + n1)[2M2(G2) +M1(G2)]

    + 4n1n2

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 8n2[2M2(G1) +M1(G1)]

    [2m2(n2 − 1) + 2m2 −M1(G2)

    ]− 8n1

    [2m1(n1 − 1) + 2m1 −M1(G1)

    ][2M2(G1) +M1(G1)]

    + 16[2M2(G1) +M1(G1)][2M2(G2) +M1(G2)]

    B6 = 2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1⊕G2(x, u) + dG1⊕G2(y, v)]2

  • 38 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    =∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [n22d

    2G1(x) + n

    21d

    2G2(u) + 4d

    2G1(x)d

    2G2(u)

    + 2n1n2dG1(x)dG2(u)− 4n2d2G1(x)dG2(u)− 4n1d2G2(u)dG2(u) + n

    22d

    2G1(y)

    + n21d2G2(v) + 4d

    2G1(y)d

    2G2(v) + 2n1n2dG1(y)dG2(v)− 4n2d

    2G1(y)dG2(v)

    − 4n1d2G2(v)dG1(y) + 2{n22dG1(x)dG1(y) + n1n2dG1(x)dG1(v)

    − 2n2dG1(x)dG1(y)dG2(v) + n1n2dG1(y)dG2(u) + n21dG2(u)dG2(v)− 2n1dG2(u)dG1(y)dG2(v)− 2n2dG1(x)dG1(y)dG2(u)

    − 2n1dG1(x)dG2(u)dG2(v) + 4dG1(x)dG1(y)dG2(u)dG2(v)}]

    = n22∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [d2G1(x) + d2G1(y)]

    + n21∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [d2G2(u) + d2G2(v)]

    + 4∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [d2G1(x)d2G2(u) + d

    2G1(y)d

    2G2(v)]

    + 2n1n2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG2(u) + dG1(y)dG2(v)]

    − 4n2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [d2G1(x)dG2(u) + d2G1(y)dG2(v)]

    − 4n1∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)d2G2(u) + dG1(y)d

    2G2(v)]

    + 2n22∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG1(y)]

    + 2n21∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG2(x)dG2(v)]

    + 2n1n2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG2(v) + dG1(y)dG2(u)]

    − 4n2∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG1(y)dG2(v) + dG1(x)dG1(y)dG2(u)]

    − 4n1∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG2(u)dG2(v) + dG1(y)dG2(u)dG2(v)]

    + 8∑

    xy/∈G1, x=y

    ∑uv/∈G2,u=v

    [dG1(x)dG1(y)dG2(v)dG2(u)]

    = n22∑

    xy/∈G1, x=y

    [d2G1(x) + d2G1(y)]

    ∑uv/∈G2,u=v

    1

  • DISTANCE VERSION OF HYPER ZAGREB INDEX OF SOME GRAPH OPERATIONS 39

    + n21∑

    xy/∈G1, x=y

    1∑

    uv/∈G2,u=v

    [d2G2(u) + d2G2(v)]

    + 4∑

    xy/∈G1, x=y

    d2G1(x)∑

    uv/∈G2,u=v

    d2G2(u)

    + 2n1n2∑

    xy/∈G1, x=y

    dG1(x)∑

    uv/∈G2,u=v

    dG2(u)

    +∑

    xy/∈G1, x=y

    dG1(y)∑

    uv/∈G2,u=v

    dG2(v)

    − 4n2[ ∑xy/∈G1, x=y

    d2G1(x)∑

    uv/∈G2,u=v

    dG2(u)

    +∑

    xy/∈G1, x=y

    d2G1(y)∑

    uv/∈G2,u=v

    dG2(v)]

    − 4n1[ ∑xy/∈G1, x=y

    dG1(x)∑

    uv/∈G2,u=v

    d2G2(u)

    +∑

    xy/∈G1, x=y

    dG1(y)∑

    uv/∈G2,u=v

    d2G2(v)]

    + 2n22∑

    xy/∈G1, x=y

    [dG1(x)dG1(y)]∑

    uv/∈G2,u=v

    1

    + 2n21∑

    xy/∈G1, x=y

    1∑

    uv/∈G2,u=v

    [dG2(u)dG2(v)]

    + 2n1n2

    [ ∑xy/∈G1, x=y

    dG1(x)∑

    uv/∈G2,u=v

    dG2(v)

    +∑

    xy/∈G1, x=y

    dG1(y)∑

    uv/∈G2,u=v

    dG2(u)]

    − 4n2[ ∑xy/∈G1, x=y

    dG1(x)dG1(y)∑

    uv/∈G2,u=v

    dG2(u)

    +∑

    xy/∈G1, x=y

    dG1(x)dG1(y)∑

    uv/∈G2,u=v

    dG2(v)]

    − 4n1[ ∑xy/∈G1, x=y

    dG1(y)∑

    uv/∈G2,u=v

    dG2(u)dG2(v)

    +∑

    xy/∈G1, x=y

    dG1(x)∑

    uv/∈G2,u=v

    dG2(u)dG2(v)]

    + 8∑

    xy/∈G1, x=y

    dG1(x)dG1(y)∑

    uv/∈G2,u=v

    dG2(v)dG2(u)

    = 2n32M1(G1) + 2n31M1(G2) + 8M1(G1)M1(G2) + 32n1n2m1m2 + 2n

    32M1(G1)

    + 2n31M1(G2)− 32m2n2M1(G1)− 32n1m1M1(G2) + 8M1(G1)M1(G2)

  • 40 M. ARUVI, V. PIRAMANANTHAM AND R. MURUGANANDAM

    = 4n32M1(G1) + 4n31M1(G2) + 16M1(G1)M1(G2) + 32n1n2m1m2

    − 32m2n2M1(G1)− 32n1m1M1(G2).2 × DHM(G1 ⊕ G2) = B1 + B2 + B3 + B4 = B1 + B2 + B3 + 2B5 − 2B6. Bysubstituting B1, B2, B3, B5 and B6, we get the desired result. �

    References

    [1] Y. Alizadeh, A. Iranmanesh and T. Došlić. Additively weighted Harary index of some com-posite graph. Discrete Math., 313(1)(2013), 26–34.

    [2] M. Azari. Sharp lower bounds on the NarumiKatayama index of graph operations. Appl.Math. Comput., 239(2014), 409–421.

    [3] M. Azari and A. Iranmanesh. Computing the eccentric-distance sum for graph operations.Discrete Appl. Math,. 161(18)(1013), 2827–2840.

    [4] K. C. Das, A. Yurttas , M. Togan, A. S. Cevik and I. N. Cangul. The multiplicative Zagrebindices of graph operations. J. Inequal. Appl, 2013(2013):90

    [5] N. De, Sk. Md. Abu Nayeem and A. Pal. F-index of some graph operations. Discrete Math.Alg. Appl., 8(2)(2016), ID: 1650025 (pp. 1-17).

    [6] J. Devillers and A. T. Balaban (Eds.). Topological indices and related descriptors in QSARand QSPR. Gordon and Breach, Amsterdam, The Netherlands, 1999.

    [7] A. A. Dobrynin and A. A. Kochetova. Degree distance of a graph: A degree analogue of theWiener index. J. Chem. Inf. Comput. Sci., 34(5)(1994), 1082–1086.

    [8] B. Furthula and I. Gutman. A forgotten topological index. J. Math. Chem., 53(4)(2015),1184–1190.

    [9] I. Gutman. Selected properties of the Schultz molecular topological index. J. Chem. Inf.Comput. Sci., 34(5)(1994), 1087–1089.

    [10] I. Gutman and N. Trinajstić. Graph theory and molecular orbitals . Total φ-electron energy

    of alternant hydrocarbons. Chemical Physics Letters, 17(4)(1972), 535–538.[11] M. H. Khalifeh, H. Yousefi Azari and A. R. Ashrafi. The first and second Zagreb indices of

    some graph operations. Discrete Appl. Math., 157(4)(2009), 804–811.[12] R. Muruganandam and R. S. Manikandan. Gutman index of some graph operations. Int. J.

    Appl. Graph Theory, 1(2)(2017), 1-29.[13] G. H. Shirdel, H. Rezapour and A. M. Sayadi. The Hyper-Zagreb index of graph operations.

    Iranian J. Math. Chem., 4(2)(2013), 213–220.

    Received by editors 30.04.2018; Revised version 13.05.2019; Available online 22.07.2019.

    M. Aruvi: Department of Mathematics, Anna University, Tiruchirappalli, IndiaE-mail address: [email protected]

    V. Piramanantham: Department of Mathematics, Bharathidasan University, Tiruc-hirappalli, India

    E-mail address: [email protected]

    R. Muruganandam: Department of Mathematics, Government Arts College, Tiruc-hirappalli, India

    E-mail address: [email protected]