(Distance Learning) Fall 2016 Engineering Design for a ...€¦ · sustainable performance in the...

19
Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016 Bill Wallace 1 Proposed Course Syllabus (Distance Learning) Fall 2016 Engineering Design for a Sustainable Future William A. Wallace

Transcript of (Distance Learning) Fall 2016 Engineering Design for a ...€¦ · sustainable performance in the...

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

1

 Proposed Course Syllabus 

(Distance Learning) Fall 2016 

Engineering Design for a Sustainable Future 

 

William A. Wallace    

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

2

 Proposed Distance Learning Course 

ENGINEERING DESIGN FOR A SUSTAINABLE FUTURE  Instructor:WilliamA.Wallace 1400OverlookDriveSteamboatSprings,CO80487PHONE:(970)879‐1122 MOBILE:(970)819‐2188EMAIL:[email protected]:Emailmeorcall(8:00AMto5:00PMMT)

OVERVIEW Whytakethiscourse?Hereismycourse“BHAG,”theacronymforwhatmanagementauthorsJimCollinsandJerryPorrasdefinedastheBigHairyAudaciousGoal.i

When you complete this course, youwill be able to confidently present anddiscuss the issuesof sustainability in thebuiltenvironmentwithyour clients,customers,bossesand friends,and identifyopportunitiesandrisks theyneverimaginedtheyhad.

This course offers a comprehensive look at sustainable engineering design forbuildings and infrastructure, taking into account the changes taking place inenvironmentaloperatingconditions.Today’schallengeisnotonlyhowtoimprovesustainableperformance in thebuiltenvironment,butalsohowtodealeffectivelywiththeseriousconsequencesofnon‐sustainablebehavior.

A fundamental premise in the design of projects for the built environment isstationarity,thatis,thestatisticalpropertiesofengineeringdesignparameters(e.g.,ambient temperature, sea levels, storm intensity, extent of droughts, heat waves,floodlevels)willbethesameinthefutureastheyhavebeeninthepast.However,aftermany,manydecadesofunsustainablepractices,thatpremiseisnolongervalid.Excessive consumption of natural resources and degradation of ecosystems havealtered significantly the environmental conditions under which infrastructureprojectsareexpectedtooperate.

Consequently, non‐stationarity has become the “new normal” for the builtenvironment. Resource availability and environmental operating conditions arechanging and will continue to change substantially in ways that are not readilypredictable. Importantly, these changing conditions are undermining the veryfoundationofcivilengineering,thebodyofknowledgeuponwhichcivilengineeringpracticesarebased.Moreimportantly,notaccountingforthesechangesinprojectsforthebuiltenvironmenthasserioussocietalandeconomicimpacts.Unknowingly,engineersareaddingsignificantrisktopublicsafety,healthandwell‐being.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

3

Aimedatupper‐levelundergraduateandentry‐levelgraduatestudents,thecourseisdesigned to help students understand how to incorporate the principles ofsustainabilityintoengineeringdesignpractices.Theoverallgoalofthecourseistoreachahighlevelofunderstandingofwhatitwillreallytaketobecomeasustainablesociety and the role engineers need to play in achieving the requisite conditions.Achievingsustainabilitywillbealongjourney,requiringcloseattentionnotonlytoimprovingsustainableperformancebuttothechosentechnologicalpathways.Thiscourse is geared tohelp studentsnavigate a rationalpath through that confusion,guidingthemtotheappropriatedesigncriteriaandtoolsneededtocreatethenewandmoresustainableproducts,facilities,processesandinfrastructure.

The effects and consequences of non‐sustainable behavior on nations (developed,developing, and underdeveloped) are also presented along with their respectivechallengesandconsiderationsinengineeringdesign.Howindustryandgovernmentsectors have responded will also be addressed, as these institutions have andcontinuetodrivechangesinengineeringdesignandperformancecriteriaassociateswith sustainability. Their responses and accomplishmentswill be presented in abusiness context, showing how these changes relate to competitiveness andimprovedeconomicperformance.

Toolssuchassustainabilitymetrics,lifecycleassessment,sustainabilityauditingandcarbon footprintingwill be demonstrated. Finally, new techniques for deliveringprojectsthatmaximizecontributionstosustainableperformancewillbeintroducedalongwithmethodologiesforwholesystemsdesign.

OBJECTIVES OF THIS COURSE:  Introduce the concepts of sustainable development and sustainability in its

properform,separatingthemfromthepopularizedandlargelyinaccuratenotionsaboutbeing“green”toonesthathaveascientificandengineeringbasis.

Convey an understanding of what is really required to achieve conditionssustainability throughprinciples such asTheNatural Step, andHermanDaly’sthermodynamic definitions of sustainability. Introduce the production‐consumptionflowmodelandtheFiveCapitalsmodelasawayofthinkingaboutsustainability.

Learn about the trends and forces shaping our world instigated by our non‐sustainableeconomicmodelforgrowthanddevelopment.Offeraviewthesalienteventsinthedevelopmentofourcurrentconceptsofsustainability.

Learn about the causes, effects, consequences and controversies surroundingglobal climate change. Understand the mechanisms that are causing globalwarming.Learnaboutapproachesforaddressingclimatechange:mitigationandadaptation.Learnaboutsomeofthesolutionsbeingproposed,includingtheonescategorizedasgeoengineering.

See the effects of non‐sustainability on the developed, developing andunderdevelopednationsand learnabout theengineeringchallengesspecific toeach.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

4

Characterizethetrendsanddriversthatareshapingindustryandgovernmentalresponsestotheconsequencesofnon‐sustainability.

Learnaboutthedegreetowhichvariousindustryandgovernmentsectors,citiesand communities understand the issues and consequences of non‐sustainablebehaviorandhowtheyareresponding.

Defineandexploretheprinciplesof industrialecologyandby‐productsynergyandseehowtheyarebeingapplied.

Surveythecurrentlaws,regulationsandstandardsthatarebeingconceivedandputinplacetoaddressthevariousdimensionsofsustainability.

Learn and place in context the various systems for measuring sustainableperformance.

Gainexperienceinusingthevarioustoolsandtechniquesavailablefordesigningand implementing energy conservation measures, conducting life cycleassessments,calculatingcarbonfootprints,andmore.

Learnanewparadigmforachievingimprovementsinsustainableperformance,i.e., the importanceofaddressingbothperformancecontribution (doing thingsright) and pathway contribution (doing the right thing) for moving societytowardsconditionsofsustainability.Tolearnhowtoincreaseopportunitiesforperformance improvement. To understand the importance of settingperformanceobjectivesthatarerestorative,notjust“lessbad.”

Learn how industries in various sectors are incorporating sustainabilityprinciplesintotheirstrategiesandoperations.

Applywholesystemsdesignmethodologiestosustainableengineeringprojects.

WHAT YOU ARE EXPECTED TO KNOW COMING INTO THIS CLASS Thiscoursewillbetaughtatalevelthatwillrequireamodestlevelofunderstandingoftheconceptsandissuessurroundingsustainabledevelopment.Iwillpresentthefactsandfiguresthatmakeacasethatourcurrentmodelofeconomicdevelopmentisnotsustainableinitscurrentform.Manychartsandgraphsofvaryingcomplexitieswillbeusedtoillustratethesepoints,sobasicmathskillsarerequired.

I will also be presenting a business case for sustainable development throughdiscussionsofhowincorporatingsustainabilitypoliciesandpracticescan improveperformance, reduce costs and otherwise make organizations more competitive.Therefore some understanding of how business and governmental organizationsoperatewillbehelpful.

Incorporatingtheprinciplesofsustainability intoengineeringdesignisaprinciplefocus of this course. Therefore students will benefit from having a basicunderstandingoftheengineeringdesignprocess.

Thatsaid,thereissignificantleewayinachievingsuccessinthiscourse.Recognizingthatsustainabilityisarelativelynewfieldandstudentswillcomefromawidevarietyofdisciplines, theproject topicswillbedesignedtoaccommodateanequallywide

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

5

varietyofinterests,rangingfrompublicandcorporatepolicyandstrategytoprojectplanninganddesign.

Ifyouareunsureifyourqualificationswillenableyoutobesuccessfulinthiscourse,feelfreetocontactmetodiscuss.Telephone:(970)879‐1122;Mobile:(970)819‐2188;email:[email protected]

TEXTBOOK FOR THE CLASS At thepresent time, there is no textbook for the class. I continue to search for acompaniontextbook,butnonehasbeenpublishedthatmeetstudentneeds.Thisfieldisrapidlychanging,andexistingtextbooksareoutofdate.Alternatively,Iprovidestudentswithrelevantmaterialssuchaspapers,articlesandreports.

COURSE DELIVERY The course will be delivered as a series of 75 short, prerecorded modulesaveraging30minuteseach.Iintendtomakeall75modulesavailableforviewingatthebeginningofthesemester.

Studentsshouldplantoviewthecoursemodulesatapacethatwillenablethemtocompletethecoursewithinthesemestertimeframe.Ascheduleshowingasuggestedpaceforviewingthecourselecturemoduleswillbeprovided.

COURSE FORMAT Ihavecreatedhandoutsofthemodulepresentationsin“PDF”formatsothatstudentscanprintoutthehandoutstotakenoteswithouthavingtocopyinformationfromtheslides.Yes,thismeansthatpaperwillbeused.However,yournegativeimpactsontheenvironmentwillbenegligiblecomparedtothelearningbenefits.Ifyoufindthatyoustillhavepangsofguiltafterprintingthehandouts,feelfreetoplantoneormoretreesascompensation.

Thesefileswillbeavailableon<tobedetermined>.Ifyouusethesehandouts,makesureyou’reusingthelatestversionofAdobeReaderorasuitable“PDF”filereader.

INSTRUCTOR AVAILABILITY Ifyouhavequestionsorneedhelpregardingthecourseoranyoftheassignments,pleasecontactme.Emailispreferable,buttelephonecallsarealsowelcome.Iwillprovideyoufeedbackassoonaspossible.Pleaseavoiddoingthisjustbeforeprojectreportduedates!

Studentsareencouragedtoaskquestionsatanytime.Astudent’sgoalshouldbetolearnthecoursematerialandtotakeadvantageofeveryopportunitytodoso.Ifyouhavequestionsorjustwanttodiscussthecourse,pleasecall(8AM–5PMMT)orsend me an email. Telephone: (970) 879‐1122; email: [email protected] [email protected]

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

6

EXAMS Therearenoexaminationsforthiscourse.Yourfinalgradewillbebasedonyourdeliveryandachievementsonthreepapers(75%)andthehomeworkassignments(25%).Theyarejudgedonthequalityofthecontentandtimelinessofdelivery.

HOMEWORK  Asahomeworkassignmentafterviewingalecture,Iwillaskyoutoansweraspecificquestionassociatedwiththe lecture. Theseanswersshouldbea fewsentences inlength,50‐100words,andshouldtakelessthan5minutestocomplete.

Thepurposeof thishomework task is to convey tomeyourunderstandingof thelectureaswellastoprovideyouwithsomefoodforthoughtrelatedtothelecturecontent.

Homework requirements and grading criteria Homeworksubmissionswillbegradedonascaleof0to10basedonareasonableresponsetothequestionposed.

It is not necessary to spend a lot of time completing the homework assignments.Bottomline:Ifyousubmitananswertoahomeworkquestionthatiscoherentandrespondsreasonablytothequestion,youwillgetthefullcreditof10pointsonthatassignment.

PAPERS Once the course starts, the studentswill be asked toprepare three (3)papers onsubjectsselectedbythestudentfromthePaperTopicsList.Thetopicsaredesignedto test thestudent’sgraspof thesubjectmatterandhis/herability toextend thatlearningintorelatedareasandprovideadditionaldetail.ThePaperTopicsListisfound in <tobedetermined>. A list and description of topics for these reports isprovidedonthecoursewebsite.Thereareabout60topicsbrokenoutintothree(3)groups,witheachgroupreflectingthelevelofprogressthroughthecourse.

Ifastudenthasaspecificinterestinaparticularsustainability‐relatedtopic,whichrelatestothecoursematerialbutdoesnotappearonthetopiclist,he/shecancreatetheir own topic and submit a short description of that topic to me for approval.Studentsshouldnotbeginworkontheirself‐designedtopicswithoutmyapproval,since the absence of my approval disqualifies the student’s paper from beingconsideredinhis/hercoursegrade.Astandardreportformatisalsoprovidedwhichcanbeusedasatemplateforyourpapers.

Paper requirements and grading criteria Guidance for preparing project papers are presented in a document calledPaperPreparationGuidelineslocatedonthecourseE‐Learningwebsite.Thisdocumentcontains a detailed description of what I expect to see in your project reportsubmissionsandcriteriaforhowtheywillbegraded.Eachreportshouldbeatleast5000words,notincludingreferences.Paperscontaininglessthan5000wordswillbedowngradedaccordingly.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

7

Paper Grading Criteria Grade Criteria A

Researchedthetopicextensively.Paperiswellorganizedandwritten,aswellasinterestingandthought‐provoking.Newknowledgeandideasoffered.Moreorlessreadyforsubmissiontoapopulartradejournalorpresentedatameetingorconference.Nospellingorgrammaticalerrors.A+(100‐97)A(96‐93)A‐(92‐90)

B Got the work done and met the specifications for the report. Goodwriting.Readableandsomewhatinteresting.Contentisreasonablyconvincing,backed up by good material. Organization of the paper could use someimprovement.Hardtofollowthelogic.Minorspellingandgrammaticalerrors.B+(98‐86)B(85‐82)B‐(81‐78)

C Wroteonthetopicspecifiedbutmissedthespecificationsforthepaper.Barelysufficient research tosupport theargumentsandconclusions. Writingstyle isawkward and hard to follow. Organizationally OK but frequently hard todeterminewhatpointsarebeingmade. Argumentsareweak. Proof isslimtonone.Somespellingandgrammaticalerrors.C+(77‐74)C(73‐70)C‐(69‐66)

D Whatiswrittenisgenerallynotonpoint.Hardtodeterminewhatthepersoniswritingabout.Contentismarginal.Mostlystream‐of‐consciousnesswriting.Notwell researched. Doesnotmeet the5000wordminimum. Manyspellingandgrammaticalerrors.D+(65‐62)D(61‐58)D‐(57‐56)

E Missedthepointofthetopic.Contenthasmultipleinaccuracies.Statementsnotsupported.Organizationofthereportishardtofollow.Conclusionsdon’tfollowthecontent. Poorlyedited.Doesnotmeetthe5000wordminimum. Spellingandgrammaticalerrorsabound.E(≤55)

Paperswillbegradedbasedonthequalityofthecontentandtimelinessofdelivery.Theduedatesforthesepapersarelistedintheclassschedule.

ACADEMIC HONESTY AllstudentsareexpectedtoexhibitacademichonestyandabidebytheUniversity’sHonor Code. All papers must represent a student’s own individual work unlessotherwise directed by the instructor. Plagiarism in writing assignments is notacceptableandviolatestheHonorCode.

Pleasenote that I havebeenprovidedwith software thatdoes a verygood job inuncoveringinstancesofplagiarism.Ihaveusedthesoftwareinpreviouscoursesandhave penalized students upon discovery that they had copied thework of otherswithoutpropercitation.

DUES DATES FOR HOMEWORK AND PAPERS All homework assignments and reports are due on or before the date and timespecifiedintheAssignmentssectioninthe<tobedetermined>system.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

8

COURSE GRADING Thefinalgradewillbedeterminedbyanabsolutemethodofgradingtoallowyoutoobtainagradebasedonyourindividualperformancewithouthavingtocompetewitheachother.UnderthisschemeitispossibleforthewholeclasstogetanAgradeor,intheextremecase,forthewholeclasstogetafailinggrade.I,ofcourse,hopethatyouwillworkhardtoearnanA.

COURSE CONTENT #  Mod  Description

M1.  INTRODUCTION 1

M1.1 CourseIntroductionandOverview

WhatcanyoulearnandusefromthiscourseWhatthiscourseisabout.Coursegoals.Storiesfromanon‐sustainableworld.Stationarityvs.non‐stationarity.Gamechangingimplicationsofnon‐stationarityoninfrastructureprojects.

2 M1.2 CourseOrganizationandStructureWhatthiscoursecontainsandhowitwillbedeliveredCourseoutlineandcontentsummary.Howthecoursewillberun.Accesstothecourseinstructor(me).Howtogetthemostoutofthiscourse.Howtobesuccessfulinthiscourse.Storiesfromthebuiltenvironment.

3 M1.3 TheRoleandImportanceofInfrastructureInfrastructureisessentialtoourqualityoflife,butisalsocontributingtoitsdegradationTheroleofinfrastructure.Infrastructureandnationalcompetitiveness.Criticalinfrastructure.Relationshipofinfrastructuretosustainability.Changingoperationconditionsandrisk.Thechallengesahead.

4 M1.4 HowDidWeGetHere?AnIndustrialRevolutionRetrospectiveAshorthistoryoftheIndustrialRevolution.Pre‐industrialsociety.Theagriculturalrevolution.ThefirstandsecondIndustrialRevolutionsandtheirconsequences.TheIndustrialRevolutionasaretroactivedesignassignment.

5 M1.5 TheEngineers’RoleinSociety’sWell‐BeingWedidgood…butatapriceInfrastructureandtheroleofengineers.Theevolutionofengineering.Thegreenrevolution.Technicaladvanceshaveimprovedourstandardofliving,butnowweareapproachingacriticaltippingpoint.Needed:newengineeringbreakthroughs.

6 M1.6 TheEngineers’DilemmaAddressingnon‐stationarityinaworldthatthinksstationarityisagivenWhymakingchangesinengineeringstandardsandpracticesisdifficult.Theperilsofinnovation.Thethreelevelsofprojectdesignanddelivery.Keystakeholdersthatcaninfluencetheprocess.

M2.  UNDERSTANDING SUSTAINABLE SYSTEMS 7 M2.1 BasicConceptsinSustainability

Understandingthelanguageofsustainableengineeringdesign,constructionandoperationTheecosystemservicesframework.Naturalresourcesterminology.Carryingcapacity.Sustainabledevelopment,sustainability:otherdefinitionsandviews.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

9

#  Mod  Description8 M2.2 AreWeSustainable?

Whatdoesitmeantobesustainable?Importantconceptsinsustainability.Whatmakesourdevelopmentsustainable.Definitionsofsustainability.Eco‐efficiencyvs.eco‐effectiveness.TheNaturalStep.Conditionsforsustainability:HermanE.Daly’secologicaldefinition.Puttingitalltogether:theFiveCapitalsModel.

9 M2.3 VisualizingSustainableandUnsustainableSystemsTheProduction‐ConsumptionModelOriginandpurposeofthemodel.Themodelconstruct.Carryingcapacityandresourcelimitations.ApplicationoftheTake‐Make‐Wastemodel.ApplyingTheNaturalStep,theFiveCapitalsmodels.Awoodharvestingexample.

10 M2.4 QuantifyingtheSustainabilityofNationsTheSustainabilityQuadrantVisualizingthesustainabilityofnations,culturesandgenerations.TheHumanDevelopmentIndex(HDI).HDIclassificationofnations.EcologicalFootprint(EF).TheSustainabilityQuadrant:countrybycountryplot.Changes:1961vs.today.

M3.  WHAT IS THE SITUATION? 11 M3.1 ABriefHistoryofOil

Aharbingerofthingstocome?Birthofthemodernoilindustry.U.S.oilproduction.Hubbert’sPeak.Whoproduces/usesoil.Oilsupplyasastrategicissue.Otherenergysources.Newtechnologies.Isenergythetipoftheiceberg?

12 M3.2 IsWatertheNextOil?Settingthescale,definingtheissuesUnderstandingwaterresources.Globalwaterfootprint.Globalwaterscarcity.WaterissuesfortheU.S.StatusofU.S.waterinfrastructure:theproblemsandtherangeofresponses.

13 M3.3 Non‐RenewableResourcesOncethey’regone,they’regone!Definitionofnon‐renewableresources.Demand,regulatorytrends,supplyrisks,prospects:mineralsandmetals,constructionmaterials,coal,oilandgas.

14 M3.4 CriticalMaterialsMaterialsneed,availability,supplyriskandprospectsforsubstitutionWhatarecriticalmaterials?History:ammoniaasacriticalmaterial.Technologysavestheday!Rareearthelements:Japanvs.China.Assessingthecriticalityofmaterials:cleanenergytechnologies,nationaldefense.Criticalmaterialstrategies.

15 M3.5 EcosystemServicesNatureprovidesthem,andthey’refree!Ecosystemservicesandrelationtowell‐being.Ecosystemservicesframework:provisioning,regulating,cultural,supporting.Thevaluingofecosystemservices.Relationshipofecosystemsservices,engineeringandthebuiltenvironment.

16 M3.6 TheWarningSignsofChangeThesymptomsofnon‐sustainabilityHowissuesemerge.Warningsigns:symptomsofnon‐sustainability.TheMillenniumEcosystemAssessment:origins,structureandrelationshiptosocietalwell‐being.

17 M3.7 TheMillenniumEcosystemAssessmentThestateofecosystemservicesAssessingtheimpactsofnon‐sustainability.Thestructureofecosystemservices.TheMillenniumEcosystemAssessmentfindings.Therelevanceofecosystemconditionstoinfrastructure.

18 M3.8 ClimateChangeisSimple…And Scary!Whathappensifwecontinuewith“businessasusual”DaveRobertsexplainsclimatechange(Video).

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

10

#  Mod  Description

M4.  CLIMATE CHANGE:  THE STATE OF PLAY 19 M4.1 ClimateRegulatingServices

ThegreenhouseeffectBillMcKibben’sbook,Eaarth:Makinglifeonatoughnewplanet.Earth’satmosphere.Thegreenhouseeffect.Maintainastableclimate.TheEarth’scarbonbalance.Carbondioxideconcentrations,temperaturesthroughouthistory.Risksofawarmingplanet.

20 M4.2 HistoryofaChangingClimateDevelopmentofourunderstandingofclimatechangeHowourunderstandingofclimatechangeevolved,1820tothepresent.Roleofcarbondioxideinwarmingtheatmosphere.

21 M4.3 ClimateChange:WhatWeKnowandWhatWeDon’tKnowWhattheclimatescientistsaretellingusFramingtheclimatechangeissue.Whatweknowanddon’tknowaboutclimatechange.Thedevelopmentoftheclimatemodels.Climatechangeanditseffects.Howmuchishumancaused.

22 M4.4 TheEcologicalImpactsofClimateChangeGlobalchanges.RegionalandlocalimpactsEcologicalimpactsofclimatechange.Regionalimpacts.Theglobalclimatechangecontroversy.

23 M4.5 ClimateChangeintheU.S.RegionalandtemporalrisksandimpactsRegionalimpactsofachangingclimate.GlobalclimatechangeforeightregionsoftheU.S.Theclimatechange“controversy”.

24 M4.6 RiskReductionStrategiesforaChangingClimate Strategiesforaddressingnon‐stationarityTheriskreductionstrategylandscape.Definitionsofriskanditscomponents.Strategiesforaddressingnon‐stationarity:robustness,adaptation,resiliencyandredundancy.Cityresponsestrategies.

25 M4.7 ClimateChangeScenariosLookingattherangeofpossiblefuturesWhatarethegreenhousegas(GHG)emissionscenarios.Purposeanddescription.Assumptions.SpecialReportEmissionsScenarios(SRES)andRepresentativeConcentrationPathway(RCP)scenarios.RelatingGHGemissionscenariostooutcomesandconsequences.

26 M4.8 ClimateChangeMitigationTakingonthecausesofclimatechangeOurclimatechoices.Mitigationvs.adaptation.Keymitigationtechnologiesbysector.Globalgreenhousegasemissionsmitigationcostcurve.Mitigationthroughcarboncapture,storageanduse.Carbonsequestration.

27 M4.9 ClimateChangeAdaptationAccommodatingchangesinenvironmentaloperatingconditionsClimatechangeadaptationframework.Dealingwithnon‐stationarity.Climatechangeadaptationstrategies:protect,retreat,accommodate.Industrysectorexamples.U.S.adaptivecapacity.

M5.  BECOMING A SUSTAINABLE SOCIETY 28 M5.1 CreatingaSustainableSociety

Whataretherequirements?WhataretheIssues?Theworldwelivein:levelsofsocietaldevelopment.TheTragedyoftheCommons:descriptionandexamples.Thesixdegreesofrecognition.Thetippingpointforsustainablegrowthanddevelopment.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

11

#  Mod  Description29 M5.2 SustainabilityintheDevelopedNations

Notlivingwithinourmeans(andlovingit!)Theworldwelivein:characteristicsofnationsbylevelofdevelopment.Situationforthedevelopednations.Trendsanddrivers.Engineeringneeds.Pathwaychoicesandsustainabledesignchallenges.

30 M5.3 SustainabilityintheDevelopingNations EconomicgrowthiswhatmattersSituationforthedevelopingnations.Trendsanddrivers.Engineeringneeds.Pathwaychoicesandsustainabledesignchallenges.Responseofthedevelopingnations.

31 M5.4 SustainabilityintheUnderdevelopedNationsSurvival!Situationfortheunderdevelopednations.Trendsanddrivers.Engineeringneeds.Pathwaychoicesandsustainabledesignchallenges.Actionstoassist:MillenniumDevelopmentGoals.Unconventionalalliesandcollaborations.

32 M5.5 The2030AgendaforSustainableDevelopmentAglobalplanofactionforpeople,planetandprosperityFollowonprogrambuildingontheMillenniumDevelopmentGoals.17goals,169targetsfor2030.

M6.  SUSTAINABILITY:  THE BUSINESS CASE 33 M6.1 SustainabilityMarketDrivers

Whatisindustrydoingandwhyaretheydoingit?FiveemergingtrendsandforcesshapingIndustry.Howindustryisresponding.Thethreeindustrydriversforsustainability:reputation,opportunityandnecessity.Examples.

34 M6.2 CreatingaSustainabilityStrategyHowcompaniesareembracingsustainabilityandcreatingshareholdervalueThevirtuematrix:enhancingbrandandreputationandcreatingstrategicadvantage.Thefourelementsofshareholdervalue.Respondingtothefiveemergingtrendsandforcesshapingindustry.

35 M6.3 TheBusinessCaseforSustainabilityGlobalsustainabilitymega‐forcesandtheirimpactsonbusinessBobWillardpresentationonhowcompaniescandesigneffectivestrategiestoaddresssustainabilityriskswhiletakingadvantageoftheresultingopportunities.

36 M6.4 CompaniesEmbracingSustainabilityEightcompaniesforwhichsustainabilityisanelementoftheircorporatestrategyTheCorporateKnightsGlobal100mostsustainablecorporations.Howtheyareranked.Additionalcompaniesandtheirapproachtosustainability:RoyalPhillipsElectronics(TheNetherlands),HCLTechnologiesLtd.(India),FordMotorCompany(USA),GeneralElectric(USA),BTplc.(UK),InterfaceCarpetCorporation(USA),Walmart(USA),NewBelgiumBrewing(USA).

37 M6.5 NewBelgiumBrewingCompanyandSustainabilityArecipeforsuccessorgreenwashingonsteroids!NewBelgiumBrewingCompanyandItscommitmenttosustainability.Policiesandpractices.Itsculture.Advocacy.Relationtothecommunity.Isthisarecipeforsuccess,orisitgreenwashingonsteroids!VideosofNewBelgiumnewsstories,employeesandcompanyactivities.

38 M6.6 SustainabilityinthePublicSectorHowaregovernmentagenciesresponding?Publicsectorrolesandresponsibilitiesregardingsustainability.Whatarethepoliciesandprograms?Whatactionsarebeingtaken?

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

12

#  Mod  Description39 M6.7 StructuralChangeforImprovedSustainablePerformance

RaisingtheplayingfieldandimprovingcompetitiveadvantageStructuralchange:revisitingtheVirtueMatrix.Howvariousindustrysectorsaresettingupprogramstoimprovetheindustrysector’ssustainablepractices.Examplesofwhatsomegroupsaredoingandwhy.

40 M6.8 CorporateSocialResponsibilityDoingwellbydoinggoodCorporateSocialresponsibility(CSR)definitionandcharacteristics.TrendsanddriversforCSR.Expansionofanorganization'sresponsibilities.ThebusinesscaseforCSR.Companyexamples.

41 M6.9 FindingEnvironmentalJusticeRequirementsforfairtreatmentandmeaningfulinvolvementforcommunitiesWhatisenvironmentaljustice?Whatareitsgoals?Timelineofcivilrightsandenvironmentaljusticelegislation.Relationshiptoinfrastructureinthebuiltenvironment.Toolsforissueanalysis.

M7.  THE GREAT INFRASTRUCTURE OVERHAUL 42 M7.1 SustainableInfrastructureDesign(NEW)

Whatdoesthebuiltenvironmentneedtolooklike?Introductiontothissection.Thissectiondescribestheneedforintegratedinfrastructuresystems.Compareswherewearenowtowhereweneedtobeanddiscussesthecurrentgap.Discusscompetitiveness.MarkReiner’smodel?Seguetothesectionmodules.Eachsubsequentmoduleshoulddealwiththeinfrastructuresectorbytalkingaboutthegapandhowcurrenteffortsareclosingthegap.

43 M7.2 HighPerformanceBuildingsDesigningforsustainabilitybecauseitmakeseconomicsenseHighperformancebuildings:whatarethey?Impactsofbuildingsonresourcesandtheenvironment.Opportunitiesforperformanceimprovement.Barrierstohighperformancebuildings

44 M7.3 FactorsinHighPerformanceBuildingDesignWaystoimprovetheoperationalperformanceofbuildingsTheelementsofhighperformancebuildingdesign.Designapproaches.Highperformancebuildingdesignexamples.

45 M7.4 SustainableUrbanWaterManagementManagingwaterasasystemSustainableurbanwaterresourcegoals.Dealingwithurbanwaterinfrastructureasasystem.Advancedwaterandwastewatertechnologies.

46 M7.5 MakingTransportationSystemsEffectiveProvidingefficientmobilityandaccessTheDenverlightrailsystem:mystory.Evolutionoftransportationtechnology.Importanceoftransportationsystems.Problemsinaccessandmobility.Impactsoftransportationsystems.

47 M7.6 AddressingtheIssuesofSustainableTransportationReducingtheimpactsandincreasingresiliencyAddressingtheissuesofsustainabletransportation.TransportationandGHGreduction:afour‐leggedstool.Context‐sensitivesolutions.Rethinkingtransportation.

48 M7.7 ImprovingOurEnergySystemsAddressingclimatechangeandenergysecurityU.S.energy:sources,supplies,consumption.Prospectsforthefuture.Whatwillthe21stcenturybring?EnergyasacriticalissuefortheU.S.andtheworld.Whatisrequired

49 M7.8 PollutionandWasteManagementHowdoyouthrowsomethingawaywhenthereisno“away”?Whatiswaste?Waste:Asystemsview.Wastemanagementpractices:acomparison.Federallawsgoverningwaste.U.S.wastemanagementinfrastructure:astatusreport.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

13

#  Mod  Description

M8.  TOOLS AND TECHNIQUES 50 M8.1 SustainableEngineeringDesignTools

AsurveyOverviewoftherangeoftoolsavailableinthecontextoftherequiredsustainableengineeringservices.Examplesofseveraldesigntools,e.g.,lifecycleanalysis,carbonfootprinting.Examplesofseveralpersonaltools.Howandwheretogetmoreinformation.

51 M8.2 EnvironmentalLifeCycleAssessments IFourphasesandthreetypesWhatisalifecycleassessment(LCA).Stagesofanalysis.EvolutionofLCAs.ConductinganenvironmentalLCA.Thefourphases:goalandscopedefinition,inventoryanalysis,impactassessmentandinterpretation.TypesofLCA’s:baseline,comparative,streamlined.

52 M8.3 EnvironmentalLifeCycleAssessments IILCAinventoryanalysisLCAinventoryanalysis:processorinput‐output.Hybridinventoryanalysis.Examples.AvailableLCAsoftwaretools.

53 M8.4 SocialLifeCycleAssessmentsSystematicallyassessingthesocialimpactsDefinitionofsocialLCAs.Whataresocialimpacts.DifferencesbetweenenvironmentalLCAsandsocialLCAs.Whataspectstoassess.Social“hotspots.”Conductinganinventoryanalysis.Impactassessmentandinterpretation.

54 M8.5 SustainableProductDesignApplyingtheprinciplesofwholesystemsdesigntoproductsSustainableProductDesign.Wholesystemsdesign.Lightweightingandmaterialsreduction.Designingforalifetime.Designfordurability,repairandupgrade,disassemblyandrecycling.Energyuseindesign.Reducingenergylossesindesign.

55 M8.6 CarbonFootprintingHowtocalculateacarbonfootprintToolsforcalculatingyourpersonalcarbonfootprint.Sourcesofinformation.Example.

M9.  ASSESSING AND REPORTING PROGRESS 56 M9.1 MakingProgressTowardsSustainability

Goals,ObjectivesandMetricsSustainabilityindicatorsdevelopmenttimeline.MillenniumDevelopmentGoals:progress?Sustainabilityratingsystems:productsandprojects.Overviewofthevarioussustainabilitymeasuringandratingsystems.Understandingoftheirpurposeandcontext.Productsustainabilitymeasuringandratingsystems:CradletoCradleCertification,GreenSeal,others.Projectsustainabilitymeasuringandratingsystems:LEED,ASPIRE,CEEQUAL,Envision™,others.

57 M9.2 PerformingSustainabilityAuditsFivetypesofauditsandtheirapplicationWhatisasustainabilityaudit.Fivetypesofsustainableaudits:theirpurposeandapplication.

58 M9.3 SustainabilityPerformanceReportingTheGRIGuidelinesTheGlobalReportingInitiative(GRI).Whyreportonsustainableperformance.Evolutionofsustainablereporting.TheCERESPrinciples.TheGRIguidelines.Anevaluationofanorganization’scontributiontosustainability.

59 M9.4 GreenhouseGasEmissionsReportingConventionsandinventoriesandprotocols,ohmy!GHGprotocolsandtreaties.InternationalGHGemissionsreporting.U.S.GHGinventoryreportingrulesandregistries.California’scapandtradeprogram.Rulesandtargets.Results.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

14

#  Mod  Description60 M9.5 LeadershipinEnergyandEnvironmentalDesign(LEED)

AsustainabilityratingsystemforbuildingsTheU.S.GreenBuildingCouncil.Evolutionofgreenbuildingdesign.Whybuildings?WhyLEED?Architecture:the2030Challenge.Greenbuildingbenefits.

61 M9.6 TheLEEDCertificationSystemHowitworksDescriptionofLEED.LEED3.0certification.AchievingLEEDcredits.Projectexamples.LEEDcertificationprocess.LEEDprosandcons.

62 M9.7 Envision™SustainableInfrastructureRatingSystemRecognizinginfrastructureprojectsfortheircontributiontosustainabilityEnvision™scopeandpurpose.Designbasis.Organizationandstructure.Systemcomponents.Projectsustainabilityassessment,verificationandrecognition.

M10.  SUSTAINABILITY AS A DRIVER FOR INNOVATION   63 M10.1 InnovationandSustainableDevelopment

ChangingoperatingconditionsasadisruptiveanomalyWhatisinnovation?Barrierstoinnovationinsustainabledesign.Theinnovator’sdilemma.Theeco‐innovator’sdilemma.Theengineer’sdilemma.Changingoperatingconditionsasadisruptiveanomaly.ThomasKuhnandBillMcKibben.Thedisruptiveinnovators.Examples.

64 M10.2 BiomimicryInnovationinspiredbylivingsystemsBiomimicry:definition,taxonomy.Nature’sdesigncriteria.Examples:products,processandinfrastructuredesignsbasedondesignsfromnature.

65 M10.3 IndustrialEcologyandBy‐ProductSynergyInnovationsinindustryIndustrialecologydefinition.Evolutionofindustrialsystems:TypesI,IIandIII.KalundborgPark.By‐productSynergy(BPS):history,exampleapplications,process.

M11.  NON‐STATIONARITY AND PROJECT DELIVERY   66 M11.1 EngineeringinaNon‐stationaryWorld

DeliveringHighPerformanceInfrastructureUnderConditionsofNon‐StationarityThechallengesofnon‐stationarityinthebuiltenvironment.Takingadifferentviewininfrastructuredesign:reinventingprocesses,reimaginingsystems,redefiningboundaries.Addressingchangingparametervalues:robustness,adaptability,resiliencyandredundancy.

67 M11.2 SustainableDesignforaChangingOperatingEnvironment,Part1ThesustainableinfrastructureprojectchallengeThe3componentsofthesustainableinfrastructureprojectchallenge:(1)meettheprojectowner’sneeds,requirementsandspecifications,(2)contributetoimprovedsustainableperformance,and(3)accountforachangingoperatingenvironment.

68 M11.3 SustainableDesignforaChangingOperatingEnvironment,Part2HandlingchangingoperatingconditionsUsingtheobservationalmethod(learnasyougo).Accountforachangingoperatingenvironment,considerations:(a)identifyandaddresssignificantchangesinoperatingconditions,(b)accountfornewoperatingconditionsinthedesign,(c)observeandadjusttoactualconditions.

M12.  RESILIENT, SUSTAINABLE CITIES 69 M12.1 CreatingSustainableCities I

ThecityasanefficientformofhumanhabitatWhatisacity?.Increasingglobalurbanization.Importanceofcities.Elementsofasustainablecity.

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

15

#  Mod  Description70 M12.2 CreatingSustainableCities II

ThechallengesFourchallengesincreatingsustainablecities:technical,financial,organizationalandpublicpolicy.

71 M12.3 GreenCityDevelopmentSectorialstrategiesforsustainablegrowthanddevelopmentNewopportunitiesforcitiescreatedbyashifttosustainability.Sectorialstrategies:Howcitiesaretakingadvantageoftheseopportunities.Typesofsectorialstrategies.Cityresponsetoclimatechange.Rankingcitiesbasedonsustainabilitycriteria.

72 M12.4 CreatingResilient,AdaptiveCitiesEngineeringcontributionsforcurrentandfuturegenerationsUrbanizationisincreasing.Today,over50percentoftheworld’spopulationresidesintownsorcities.Withthisconcentrationcomesincreasedriskfromnaturalandman‐madeevents.Approachesforcreatingtownsandcitiesthatareresilientandadaptive.Acityresilienceframework.

M13.  PROSPECTS FOR A SUSTAINABLE FUTURE 73 M13.1 BecomingaSustainableSociety

Abusiness‐focusedroadmapto2050Abusinessasusualoutlookto2050.WBCSD’sVision2050:directionstoasustainableworld.Thepathwayto2050:nineelements.“Musthaves”by2020.Movingfromvisiontoaction.Riskstoachievingvision2050.

74 M13.2 PathwaystoDeepDecarbonizationHownationscanlimitglobalwarmingtolessthan2degreesCelsiusTechnicalapproachestoreducingGHGtobelow1990levelsby2050.Requiresanambitioustransformationoftheenergysystem,butthecostislow.

M14.  COURSE WRAP‐UP 75 M14.1 CourseWrapup

BriefsummaryofthecourseHere’swhatwecoveredinthecourse.Here’swhatwedidn’tcover.TheB.H.A.G.revisited.Best10booksonsustainability(mynominations).Goodbyeandgoodluck!

END OF THE COURSE 

   

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

16

OTHER REFERENCES YOU MAY FIND HELPFUL (ordered by publication date) BillMcKibben,Eaarth:MakingaLifeonaToughNewPlanet,HenryHoltandCompany,LLC,NewYork,2010.AlGore,OurChoice:APlantoSolvetheClimateCrisis,Rodale,Emmaus,PA(2009).ErnstvonWeizsäcker,etal.,FactorFive:TransformingtheGlobalEconomyThrough80%ImprovementsinResourceProductivity,Earthscan,London(2009)DanielGoleman,EcologicalIntelligence,BroadwayBooks,NewYork(2009)AldenSchendler,GettingGreenDone,PerseusGroup,NewYork(2009)ThomasL.Friedman,Hot,Flat,andCrowded:WhyWeNeedaGreenRevolution‐‐andHowItCanRenewAmerica,Farrar,StrausandGiroux,NewYork(2008)DanielEsty&AndrewWinston,GreentoGold:HowSmartCompaniesUseEnvironmentalStrategytoInnovate,CreateValue,andBuildCompetitiveAdvantage,JohnWiley&Sons,Hoboken,NJ(2006)TimFlannery,TheWeatherMakers:HowManIsChangingtheClimateandWhatItMeansforLifeonEarth,TextPublishingCompany,Melbourne,Australia(2005)BillWallace,BecomingPartoftheSolution:TheEngineer’sGuidetoSustainableDevelopment,AmericanCouncilofEngineeringCompanies,Washington,DC(2005)KentPortney,TakingSustainableCitiesSeriously,MassachusettsInstitutesofTechnology,Cambridge,MA(2003)J.F.Rischard,HighNoon:20GlobalProblems;20yearstoSolveThem,BasicBooks,NewYork,2002WilliamMcDonough&MichaelBraungart,CradletoCradle,NorthPointPress,NewYork(2002)NaturalCapitalism,PaulHawken,AmoryLovins,&L.HunterLovins,Little,Brown&Company,Boston(1999)JanineM.Benyus,Biomimicry:InnovationInspiredbyNature,WilliamMorrow,NewYork(1997)

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

17

INSTRUCTORBIO

1400OverlookDrive,SteamboatSprings,Colorado,USA80487Tel+1(970)879‐1122,Fax+1(970)871‐7923,Mobile+1(970)819‐2188Email:[email protected]

William A. (Bill) Wallace is a recognized leader in the field of sustainability, serving on several national and international professional society committees and operating a successful consulting practice. His book, Becoming Part of the Solution: The Engineer’s Guide to Sustainable Development, has been a “best seller” for the American Council of Engineering Companies (ACEC).

Bill is the inventor and lead designer of the Envision™ sustainable infrastructure rating system. This is a system that helps project owners and engineers determine the extent to which their infrastructure projects contribute to sustainability. Envision is managed by the Institute for Sustainable Infrastructure (ISI) in Washington, DC. ISI was founded by the American Society of Civil Engineers, the American Public Works Association and the American Council of Engineering Companies. Also, ISI is partnered with the Zofnass Program for Sustainable Infrastructure at the Harvard University Graduate School of Design. Since going live in 2012, ISI has given awards to 9 projects with a total constructed value of over $200 million. Forty more infrastructure projects are now moving through the verification stage of the Envision award process. Bill also designed the Envision Sustainability Professionals (ENV SP) and the Verifier accreditation courses as well as the tests. Currently, there are over 2800 ENV SPs and over 60 Verifiers.

For this work, Bill received Engineering News-Record’s 2013 Award of Excellence, and the American Society of Civil Engineers (ASCE) President’s Medal in 2014. He was also nominated by ASCE for the U.S. National Medal for Technology and Innovation.

Bill has over 40 years of professional experience, including 30 years in the field of environmental engineering and management. He spent 21 years at CH2M Hill holding various senior management positions including a three-year term on the board of directors. Bill directed the firm’s hazardous waste management group and assisted in its development into a national leader in hazardous waste site remediation. On multiple occasions, he was invited to give testimony to U.S. Congressional Committees on the use of innovative technologies in hazardous waste site cleanup. At CH2M Hill, Bill started the firm’s sustainable engineering practice, and led its foray into the Olympic Games. CH2M Hill provided environmental and engineering support services to Atlanta, Sydney, Salt Lake City, Beijing and London.

Bill is currently an adjunct lecturer for the University of Florida’s distance learning graduate education program, teaching “Principles of Green Engineering Design.” This course (ENV 6617) is part of a three-course series leading to a Sustainable Engineering Certificate from the Department of Environmental Engineering Sciences. In addition, Bill

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

18

has designed and delivered ASCE’s new 25 module on-line course, “Engineering for a Sustainable Future: Principles and Practices for the Built Environment”. This course is the central part of the ASCE’s Sustainable Infrastructure Education (SIE) program. Bill also prepared the course proficiency exam.

Bill is currently a member of the Board of GeoEngineers, Inc., and a past member of the Board of the International Society of Sustainability Professionals (ISSP). In the past, Bill served as a Liaison Delegate to the World Business Council for Sustainable Development, an international organization of over 200 multi-national companies, all with a shared commitment to sustainability. He also served as the President and member the Governing Board of Engineers Without Borders-USA, and Secretary and member of the Board of Engineers Without Borders-International.

Education 

Clarkson University Potsdam, New York BS, Chemical Engineering

Rensselaer Polytechnic Institute Troy, New York MS, Management

Harvard Business School Cambridge, Massachusetts Advanced Management Program (AMP 104)

Papers, Presentations 

Bill is a frequent lecturer on sustainable engineering at several universities. He has been an invited lecturer at the University of Florida (Ohanian Lecture Series), Carnegie-Mellon University (Distinguished Lecturer Series) and Clarkson University. He has authored over 60 technical papers, presentations and invited U.S. Congressional testimony covering subjects such as hazardous waste management, environmental technology, engineering standards, and sustainable development.

Professional Memberships 

GeoEngineers, Inc., Seattle, Washington, Member of the Board of Directors International Society of Sustainability Professionals, Past Member of the Board of

Directors World Business Council for Sustainable Development, Past Liaison Delegate International Federation of Consulting Engineers (FIDIC), Past Chairman of the

Sustainable Development Committee American Society of Civil Engineers, member of the Committee on Sustainability Engineers Without Borders-USA, Past President Engineers Without Borders-International, former member of the Board

Community Activities 

Clarkson University, Former member of the Engineering Advisory Committee Appointed to the Steamboat Springs Stormwater Task Force

Proposed Course Syllabus Engineering Design for a Sustainable Future Fall 2016

Bill Wallace

19

Awards Received 

American Society of Civil Engineers President’s Medal in 2014 (Creation and leading the development of the Envision sustainable infrastructure rating system, Chair of the International Conference on Sustainable Infrastructure, Long Beach, CA, November 6-8, 2014)

Engineering News-Record’s Award of Excellence in 2013 (Creation and leading the development of the Envision sustainable infrastructure rating system)

Colorado Association of Black Professional Engineers and Scientists (CABPES) Recognition Award (Helped the organization prepare their first strategic plan)

Colorado Law Enforcement Association Meritorious Citizenship Award (Came to the rescue of a woman who was being assaulted)

Hazardous Waste Action Coalition Service Award (President) U.S. Environmental Protection Agency, Bronze Medal (Branch Chief of the RCRA

Enforcement Program, development of hazardous waste enforcement policies and programs)

George A. Hogaboom Best Paper Award, American Electroplaters’ Society

i JamesC.CollinsandJerryI.Porras,BuilttoLast:SuccessfulHabitsofVisionaryCompanies,HarperCollinsPublishers,NewYork(1994).