Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of...

17
© Fraunhofer IWS Kürzel: Datum und Name der Präsentation G. Göbel, J. Kaspar, B. Brenner, E. Beyer April, 25th 2012 Dissimilar Metal Joining: Macro- and Microscopic Effects of MPW ICHSF 2012

Transcript of Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of...

Page 1: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Göbel, J. Kaspar, B. Brenner, E. Beyer April, 25th 2012

Dissimilar Metal Joining: Macro- and Microscopic Effects of MPW

ICHSF 2012

Page 2: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 2

Introduction Portrait: Fraunhofer Institute Material and Beam Technology (IWS)

Part of Fraunhofer Society (57 Institutes, 15.000 Employees)

IWS Institute: 240 employees

Scientific Background IWS: material analysis, process tech-nologies, surface technologies

Important topic: Joining in industrial applications

Fraunhofer IWS in Dresden, Germany

Page 3: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 3

Expertise: development and transfer of technologies into production processes

long term cooperation with major automotive and aerospace companies and SMI

Strong network in welding community

Magnetic Pulse Welding as a solution for difficult mixed material joining tasks

Automotive welding (e.g. Laser)

Introduction Portrait: Fraunhofer Institute Material and Beam Technology (IWS)

Aerospace welding (e.g. FSW)

Page 4: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 4

Friction Stir Welding

Magnetic Pulse Welding

Systems:

40 kJ Generator* 160 kJ Generator*

Simulation

Analysis

Introduction Fraunhofer IWS: Special Joining Technologies

*built by Helmholtz-Zentrum Dresden-Rossendorf

Page 5: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 5

Motivation Importance of dissimilar metal joints Typical Materials involved:

Aluminum

Copper

Steel

Nickel

Magnesium

Titanium

Many processes could be suitable, established in IWS so far:

Laser beam welding

Laser induction roll plating

Friction Stir Welding

Magnetic pulse welding

Joints made using different joining processes for example mix Al+Cu

FSW Laser

Roll plating

MPW

Page 6: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 6

Motivation Pro/Contras for MPW Pro:

Many material combination weldable

(Possible) good joint properties (HAZ, Strength)

(Possible) low process costs (energy efficient, clean)

Contra:

Geometry restrictions

Equipment reliability

Noise, EM-Noise

Question: How to reach perfect welds?

Details MPW joint Al+Cu

Some insights concerning parameter windows and interface properties will be presented

Page 7: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 7

Motivation Principle and Open Questions

Questions When is welding possible?

What is the origin of waves?

Is MPW comparable to other shock welding techniques?

Local process conditions

vC

β Collision line

Jet

Welded area

Magnetic pressure Flyer-tube Coil

Inner part

MPW Principle

Page 8: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 8

MPW <-> EXW Parameter Comparison Welding Window Analysis

30 µm

30 µm

Grignon et al. 2004:

Kuzmin 04

Simonov 91

Zhakareno 83

Sartangi 08

Front velocity vC / m/s

Col

lisio

n fro

nt a

ngle

β /

°

Page 9: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 9

MPW <-> EXW Parameter Comparison Welding Window Analysis

Parameter windows of EXW and MPW differ, especially wave formation in MPW is hard to explain due to lower speeds!

vC= vI tan(β) vC

β

vI

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000

Collision velocity vC / m/s

Col

lisio

n an

gle

beta

/ °

St+St [ZHAKARENKO 83]St+Ti [SARTANGI 08]Al+St, [KUZMIN 04]Al+Al [GRIGNON 02]Cu+St [ZHAKARENKO 83]

Welding Windows: Lower EXW-Border + MPW Examples

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000

Collision velocity vC / m/s

Col

lisio

n an

gle

beta

/ °

St+St [ZHAKARENKO 83]St+Ti [SARTANGI 08]Al+St, [KUZMIN 04]Al+Al [GRIGNON 02]Cu+St [ZHAKARENKO 83]Al+Cu [ZHANG 10] vi=265 m/sCu+Cu [ZHANG 10] vI=250 m/sAl+Al [WATANABE 09] vI=150 m/sAl+Ti, [PSYK08], vI=30 m/s

Page 10: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 10

MPW <-> EXW Parameter Comparison Welding Window Analysis

Possible explanation in regard to wave formation:

According to Pai et al. metastable waves are possible

Initiation by disturbances (wire idea)

Transient nature of MPW tends to metastable wave initiation

General disagreement of welding window not clear yet further research needed!

Also not answered yet: can MPW welds be fully free of intermetallics?

vC

β

Wire = disturbance

Idea [PAI 06]

Page 11: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 11

Experimental Results, Metallographic Analysis Overview typical weld geometry Cross section:

Good connection but also residual gap at start/end critical for fatique and crevice corrosion, needs optimization

Page 12: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 12

Experimental Results, Metallographic Analysis Properties and Influence of Intermetallic Phases

? ? Discussed in ICHSF 2010:

SEM-visible intermetallic phases can be reduced to pockets in Al+Cu

Experience/Literature: films with thickness <5µm not detrimental

Still unclear if intermetallics free interface has been reached even partly

Page 13: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 13

Experimental Results, Metallographic Analysis Properties and Influence of Intermetallic Phases TEM Analysis, 3 µm phase seam, Al+Cu weld

Cu

Al Al

Page 14: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 14

Experimental Results, Metallographic Analysis Properties and Influence of Intermetallic Phases TEM Analysis, 3 µm phase seam

Al

Extreme fine grained structure, no preferred crystal alignment

Unusually high nano-porosity (diameter 10-20 nm)

Page 15: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 15

Experimental Results, TEM Analysis Analysis of pocket-free sections

Continuous films were found throughout all analysed specimen!

Page 16: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 16

Conclusions

Although MPW is also a shock welding process, it seems to differ significantly from EXW behaviour

By discussing a metastable wave initiation, wave formation for MPW could be explained

MPW can be used to create mixed material joints with extremely low intermetallic phases

Seen from TEM Analysis, at least for Al+Cu joints fully intermetallics free joints do not seem feasible

Page 17: Dissimilar Metal Joining: Macro - and Microscopic Effects of MPW · 2017. 11. 21. · Importance of dissimilar metal joints Typical Materials involved: Aluminum Copper Steel Nickel

© Fraunhofer IWS Kürzel: Datum und Name der Präsentation

G. Goebel, ICHSF 2012, Slide 17

Acknowledgements

The authors would like to thank the European Regional Development Fund (ERDF) and the State of Saxony for its financial support.

We also thank the team of the High Magnetic Field Laboratory of the Helmholtz Center Dresden-Rossendorf for the design and manufacturing of the pulse generators.