Displaced Subdivision Surfaces

28
1 Displaced Subdivision Surfaces Displaced Subdivision Surfaces Aaron Lee Princeton University Henry Moreton Nvidia Hugues Hoppe Microsoft Research

description

Displaced Subdivision Surfaces. Aaron Lee Princeton University. Hugues Hoppe Microsoft Research. Henry Moreton Nvidia. Triangle Meshes. Interactive animation Adaptive rendering Compact storage. Dataset provided by Cyberware. mesh simplification. Scalable Algorithms. - PowerPoint PPT Presentation

Transcript of Displaced Subdivision Surfaces

Page 1: Displaced Subdivision Surfaces

1

Displaced Subdivision SurfacesDisplaced Subdivision Surfaces

Aaron LeePrincetonUniversity

Henry MoretonNvidia

Hugues HoppeMicrosoftResearch

Page 2: Displaced Subdivision Surfaces

2

Triangle MeshesTriangle Meshes

Interactive animation Adaptive rendering Compact storage

Dataset provided by Cyberware

Page 3: Displaced Subdivision Surfaces

3

Scalable AlgorithmsScalable Algorithms

Multiresolution now well established

subdivision surfacesmesh simplification

Page 4: Displaced Subdivision Surfaces

4

Subdivision SurfacesSubdivision Surfaces

Smooth with arbitrary topology No stitching of patches

Easy Implementation Simple subdivision rules

Level-of-detail rendering Uniform or adaptive subdivision

Page 5: Displaced Subdivision Surfaces

5

Our ApproachOur Approach

Control mesh Domain Surface Displaced Subdivision

surface

DSS = Smooth Domain Scalar Disp Field

Page 6: Displaced Subdivision Surfaces

6

Representation OverviewRepresentation Overview

Control mesh Piecewise-regular mesh of scalar displacement sampling pattern

Page 7: Displaced Subdivision Surfaces

7

Advantages of DSSAdvantages of DSS

Intrinsic parameterization Governed by a subdivision surface No storage necessary Significant computation efficiency Capture detail as scalar displacement

Unified representation Same sampling pattern and subdivision

rules for geometry and scalar displacement field

Page 8: Displaced Subdivision Surfaces

8

Conversion AlgorithmConversion Algorithm

Control mesh creationControl mesh optimizationScalar displacement computationAttribute resampling

Page 9: Displaced Subdivision Surfaces

9

Control Mesh CreationControl Mesh Creation

Mesh Simplification

Original Mesh Initial Control Mesh

[Garland 97] Surface simplification using quadric error metrics

Normal ConeConstraint

Page 10: Displaced Subdivision Surfaces

10

Normal Cone Constraint Normal Cone Constraint

allowable normals on Gauss sphere

Page 11: Displaced Subdivision Surfaces

11

Tracking CorrespondencesTracking Correspondences

Control Mesh Creation mesh simplification

11776 faces 120 faces

[Lee 98] Multiresolution Adaptive Parameterization of Surfaces

Page 12: Displaced Subdivision Surfaces

12

Conversion ProcessConversion Process

1. Obtain an initial control mesh by simplifying the original mesh.

2.Globally optimize the control mesh vertices.

3.Sample the displacement map and computr the signed displacement .

Page 13: Displaced Subdivision Surfaces

13

Control Mesh CreationControl Mesh Creation

Mesh Simplification

Original Mesh Initial Control Mesh

Normal ConeConstraint

Page 14: Displaced Subdivision Surfaces

14

Control Mesh OptimizationControl Mesh Optimization

Initial Control Mesh Optimized Control Mesh

GlobalOptimization

Page 15: Displaced Subdivision Surfaces

15

Scalar Displacement ComputationScalar Displacement Computation

Scalar Displacement Field

Smooth Domain Surface Displaced Subdivision Surface

Page 16: Displaced Subdivision Surfaces

16

Attribute ResamplingAttribute Resampling

Original mesh DSS With ScalarDisplacement Field

DSS with Resampled Texture

Page 17: Displaced Subdivision Surfaces

17

ApplicationsApplications

Editing Animation Bump mapping Adaptive tessellation Compression

Page 18: Displaced Subdivision Surfaces

18

EditingEditing

Page 19: Displaced Subdivision Surfaces

19

AnimationAnimation

Smooth Domain Surface(DSS)

Polyhedral Domain Surface(e.g. Gumhold-Hüttner 99)

Page 20: Displaced Subdivision Surfaces

20

AnimationAnimation

Page 21: Displaced Subdivision Surfaces

21

Bump MappingBump Mapping

134,656 faces 8,416 faces 526 faces

Explicit geometry Bump map

[Blinn 78] Simulation of wrinkled surfaces

Page 22: Displaced Subdivision Surfaces

22

Adaptive TessellationAdaptive Tessellation

Threshold

4.0 1.3

#Triangles

6,376 22,190

L2 error 0.13 % 0.05 %

Page 23: Displaced Subdivision Surfaces

23

CompressionCompression

Delta encoding

withLinear

Prediction

Scalar Displacement

field

M0

M1

Mk

QuantizerEntropy Coder

QuantizerEntropy Coder

QuantizerEntropy Coder

Bit Allocation

Page 24: Displaced Subdivision Surfaces

24

Compression (Venus)Compression (Venus)

Original Simplified DSS Compression Ratio

Mesh Info

#V=5000

2 #F=1000

00

#V=10002 #F=20000

#V=376 #F=748 (sub 4 times)

23 bits L2 0.0014%

0.027% 0.028%

12 bits L2 0.014% 0.03% 0.03%

8 bits L2 0.21% 0.21% 0.15%[Venus Raw Data] 1,800,032 bytes

Kbytes346 75 17 108

Kbytes140 33 16 115

Kbytes69 18 4 410

Page 25: Displaced Subdivision Surfaces

25

Compression (Dinosour)Compression (Dinosour)

Page 26: Displaced Subdivision Surfaces

26

ConclusionConclusionDSS Representation:

Unified representation Simple subdivision rules Analytic surface properties

Applications Editing Animation Bump mapping Adaptive tessellation Compression

Page 27: Displaced Subdivision Surfaces

27

Timings and ResultsTimings and Results

DatasetInput size#triangles

Armadillo 210,944

Venus 100,000

Bunny

# Basedomain

triangles

69,451

Dinosaur 342,138

1306

748

526

1564

Simplification

(mins)

61

28

19

115

Optimization

(mins)

25

11

12

43

Scalar field creation(mins)

2.5

21.3

4.6

Page 28: Displaced Subdivision Surfaces

28

over