Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems •...

16
1 Discrete Fundamental Theorem of Surfaces Yuanzhen Wang, Beibei Liu and Yiying Tong Motivation Local rigid motion invariant representations Geometry processing, shape analysis Shape deformation Thin shell simulation Discretization Edge lengths and dihedral angles ([FB11,WDAH10]) Overconstrained? [Cauchy 1813] Fundamental forms (e.g., [Lipman et al 05])

Transcript of Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems •...

Page 1: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

1

Discrete Fundamental Theoremof Surfaces

Yuanzhen Wang, Beibei Liu and Yiying Tong 

Motivation

• Local rigid motion invariant representations– Geometry processing, shape analysis

– Shape deformation

– Thin shell simulation

• Discretization– Edge lengths and dihedral angles ([FB11,WDAH10])

• Over‐constrained? [Cauchy 1813]

– Fundamental forms (e.g., [Lipman et al 05])

Page 2: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

2

Differential Invariants

• 1D Curve embedded in 3D– First derivative :  length

– Second derivative : curvature

– Third derivative: torsion

• 2D surface embedded in 3D– First derivatives: length (first fundamental form)

– Second derivatives: curvatures (second fundamental form)

Shape from Discrete Local Rep.• Curves

• Surfaces

length

curvature

torsion

second fundamental form?

first fundamental form

How does it correspond to the continuous theory? What if there are conflicts?

Page 3: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

3

Fundamental Theorem of Surfaces

Iαβ = hx,α,x,βiIIαβ = hx,αβ ,Ni

Fundamental Theorem of Surfaces

x,αβ = Γγαβx,γ + IIαβN

x,αβ = Γ1αβx,1 + Γ

2αβx,2 + IIαβN

Page 4: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

4

Fundamental Theorem of Surfaces

x,αβ = Γγαβx,γ + IIαβN

0 = x,αβγ − x,αγβ

Gauss’s Equation Mainardi‐CodazziEquations0

=

0

=Gauss’s surface equations

Linear Rotation‐Invariant Coords.

• one‐ring of a vertex

[LSLCO05] LIPMAN, Y., SORKINE, O., LEVIN, D., COHEN-OR, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. (SIGGRAPH) 2005

Page 5: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

5

Separate Frames & Coordinates

• Insensitive to translational constraints

The bump plane model from [BS08] BOTSCH M., SORKINE O.: On linear variational surface deformation methods. 2008

• Piecing together line segments or triangles

• Planar curve lifted to 3D– Introducing intermediate variables: frame is the 3rd dimension.

Lift of an Immersion

Page 6: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

6

Lift of a Surface Patch (3D to 6D)

b1

Local Surface Description

Page 7: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

7

Modified Surface Equations

Position Equation

• Local Frame

• derived from 1st fund. forms– edge lengths

Page 8: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

8

Frame Equations

NN

N

N

b1

b2

xn

xkxm

TiTj

e

• Transition rotation

• Based on 1st and 2nd fund. Forms– dihedral angles

Discrete Surface Equations

• Frame Equation across each edge

• Position equation along each (half‐)edge

NN

N

N

b1

b2

xn

xkxm

TiTj

e

Page 9: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

9

Discrete Fundamental Theorems

• Local discrete fundamental theorem of surfaces

Discrete Fundamental Theorems

• Local discrete fundamental theorem of surfaces

Page 10: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

10

Discrete Fundamental Theorems

• Local discrete fundamental theorem of surfaces

Discrete Fundamental Theorems

• Local discrete fundamental theorem of surfaces

Page 11: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

11

Discrete Fundamental Theorems

• Local discrete fundamental theorem of surfaces

Discrete Fundamental Theorems

Page 12: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

12

Discrete Fundamental Theorems

• Local discrete fundamental theorem of surfaces

– Discrete integrability condition:

• Alignment of normal 

– The Codazzi equations

• Alignment of tangents

– Gauss’s equation

Global Version

Global discrete fundamental theorem of surfaces

Closed mesh with genus g(i) local integrability condition (omit 2 vertices)(ii) global compatibility of rotation(iii) global compatibility of translation

Page 13: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

13

Application

• Surface Reconstruction

• Mesh Deformation

• Quasi‐isometric Parameterization

• Implementation: minimize

Quasi‐isometric Parameterization

• Set all dihedral angles as zero

Page 14: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

14

Comparison with previous work

[LSLCO05] LIPMAN Y., SORKINE O., LEVIN D., COHEN-ORD.: Linear rotation-invariant coordinates for meshes. 2005

[BS08] BOTSCH M., SORKINE O.: On linear variational surface deformation methods. 2008

Comparison with previous work

Page 15: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

15

Comparison with [LSLCO05]

• Distortion– edge length

• Distortion– dihedral angles

Ours [WLT12] [LSLCO05]

Conclusion

• Discrete fundamental theorem of surfaces

– : edge lengths

– : dihedral angles

• A simple sparse linear system 

– from an arbitrary set of    and    .

• Deformation with position & orientation constraints

• Limitations: nonlinear integrability condition, orthonormality requirements, self‐intersection.

III

I II

Page 16: Discrete Fundamental Theorem of Surfacesytong/DDG/DFF.pdf · Discrete Fundamental Theorems • Local discrete fundamental theorem of surfaces – Discrete integrability condition:

16

Thank you!

Questions?

– Acknowledgements: NSF IIS‐0953‐96, CCF‐0936830, CCF‐0811313, and CMMI‐0757123

Sketch of the Proof

• Uniquely determined frames for faces

• Uniquely determined positions for vertices