DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge...

52

Transcript of DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge...

Page 1: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole
Page 2: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

Y

Y

b

L.J

Y

SAMPLING AND INTERPRETATION OF DRILL CUTTINGS FROM GEOTHERMAL WELLS

J e f f r e y B. Hulen and Bruce S. Sibbett

.. from: Society o f Professional Well Log Analysts, Geothermal Log

I n t e r p r e t a t i o n Handbook, 2nd e d i t i o n ( i n press)

)

Also presented a t : Introduct ion t o Geothermal Log I n t e r p r e t a t i o n , Geothermal Resources Council Tech. Training Course No. 7, Apr i l 22-23, Reno, Nev. (1981).

Page 5: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

e I

c I;

ABSTRACT

D r i l l c u t t i n g s from geothermal and mineral explorat ion boreholes, by

con t ras t with those from most petroleum wells, commonly are der ived h i g h l y

f ractured and faul ted, hydrothermally a l t e r e d igneous and metamorphic rock

sequences, and are l i k e l y t o be severely contaminated. Character izat ion of a

subsurface resource from c u t t i n g s thus requires no t on l y espec ia l l y ca re fu l

sample co l l ec t i on , preparation, storage and examination, bu t a l s o a thorough

knowledge of d r i l l i n g technology, l o c a l geology and the f u l l range o f

p o t e n t i a l borehole contaminants.

Accurate i d e n t i f i c a t i o n o f l i t h o l o g y from c u t t i n g s i s c r i t i c a l f o r

recogni t ion and c o r r e l a t i o n o f rock types l i k e l y t o s e l e c t i v e l y host t he

desired commodity, However, many o f the rocks encountered i n geothermal and

mineral exp lo ra t i on boreholes (such as gneisses and g r a n i t i c rocks) can

resemble one another c lose ly as cu t t i ngs even though d i s s i m i l a r i n outcrop o r

core,

can be determined by comparison wi th simulated c u t t i n g s f o representat ive

surface rocks, and w i t h various geophysical and other wel l logs. Many other

I n such cases, t h e actual rock type(s) i n a cu t t i ngs sample genera l ly

c lues i n cut t ings, such as d iagnost ic metamorphic mineralogy, o r sedimentary

rounding and sort ing, may help i d e n t i f y subsurface l i t h o l o g i e s .

Faul ts and f ractures commonly are t h e dominant physical con t ro l s on . r '

geothermal and minral resources. Faul ts occasional ly can be recognized

I d i r e c t l y i n cu t t i ngs by t h e presence of s l ickensid ing, gouge, o r o ther crushed

mater ia l , More commonly, however, t h e "gouge" observed n cu t t i ngs a c t u a l l y i s L

pseudo-gouge created beneath a b i t dur ing d r i l l i n g . Since most f a u l t s and a l l

f r ac tu res produce no d i r e c t evidence apparent i n cut t ings, they are best

recognized i ndi r e c t l y , e i t h e r by commonly associated hydrothermal a1 te ra t i on ,

1

Page 6: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

o r by responses on appropr ia te geophysical we l l logs.

Hydrothermal a l t e r a t i o n , use fu l f o r l o c a t i n g and de f i n ing a geothermal o r

mineral resource, i s f a r more d i f f i c u l t t o recognize and i n t e r p r e t i n cu t t i ngs

than i n core o r outcrop. A l t e r a t i o n tex tu res and paragenetic re la t i onsh ips

can be obscured o r o b l i t e r a t e d as cu t t i ngs are produced.

a l t e r a t i o n (and rock-formi ng) minerals can be disaggregated dur ing d r i l l i n g

and l o s t from cu t t i ngs dur ing sampling o r washing. R e l i c t and contemporary

a l t e r a t i o n can be ind is t ingu ishab le , and a wide va r ie t y of borehole

Less r e s i s t a n t

contaminants can c lose ly resemble na tura l a l t e r a t i o n produts encountered

dur ing d r i l l i n g . These contaminants a lso can produce confusing geochemical

signatures.

2

Page 7: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

INTRODUCTION

D r i l l cut t ings, because o f t h e i r low cost and ease o f recovery r e l a t i v e

t o core, are t h e standard borehole rock samples.

source o f t h e d i r e c t downhole geologic in format ion essent ia l f o r a successful

subsurface i nves t i ga t i on . Cuttings, however, a re fragmentary, mixed and

frequent ly contaminated samples of formerly more o r l ess coherent rock, and

They a re commonly t h e only

the re fo re are more d i f f i c u l t than core t o i n t e r p r e t r e l i a b l y .

reconst ruct ion from c u t t i n g s o f t h e rock penetrated by a borehole requires, i n

add i t i on t o thorough knowledge o f l o c a l geology, a f u l l understanding o f t he

means by which these samples a re produced and transported i n d r i l l i n g f l u i d ,

col lected, prepared, s tored and exam1 ned.

i n t h i s paper, then appl ied t o i n t e r p r e t a t i o n o f l i t h o l o g y , contact

Imaginary

These processes a re each discussed

. re la t ionships, f rac tu r i ng and f a u l t i n g , geochemistry and hydrothermal

a l t e r a t i o n .

Logging o f r e l a t i v e l y undisturbed sediments and sedimentary rocks i s

thoroughly covered by previous pub l i ca t i ons (e.g. Swanson, 1981; Low, 1977;

Maher, 1964; H i l l s , 1949).

za t ion o f c u t t i n g s from fractured, a l tered, dominantly igneous and metamorphic

t e r r a i n such as commonly penetrated i n geothermal and mineral exp lo ra t i on

Therefore, t h i s paper w i l l emphasize character i -

,

boreholes. Many o f t h e concepts and techniques discussed a l so should be

useful f o r i n t e r p r e t i n g c u t t i n g s from petroleum we l l s i n s t r u c t u r a l l y complex

sedimentary sequences 1 i ke those o f t h e Rocky Mountai n Overthrust B e l t . PRODUCTION OF CUTTINGS

Thorough knowledge o f how cu t t i ngs are produced and transported t o a

sampling p o i n t w i l l ease t h e i r i n t e r p r e t a t i o n by a l lowing a c l e a r d i s t i n c t i o n

3

Page 8: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

between o r i g i n a l rock features and those induced by d r i l l i n g .

aspects o f t h e d r i l l i n g process which d i r e c t l y a f f e c t c u t t i n g s w i l l be

discussed i n t h i s paper. A more comprehensive survey o f d r i l l i n g techniques

Only those

and equipment i s provided by Moore (1974).

Cutt ings are produced beneath a b i t by a combination of impact, which

crushes and f rac tu res a rock, and drag, a gouging and f r a c t u r i n g act ion. The

r e l a t i v e importance o f drag and impact i n generating c u t t i n g s depends l a r g e l y

on b i t type.

Drag and claw b i t s , designed f o r s o f t e r rocks, penetrate by gouging and

f rac tu r ing wi thout impact (Fig. 1). Rotat ion combined w i th drawdown (weight-

on-b i t ) produces crushed zones i n f r o n t o f t he t e e t h o f these b i t s

(Nishimatsu, 1972). Chips are formed between f rac tu res propagated from these

crushed zones t o t h e rock surface o r t o pre-ex is t ing f rac tu res (Appl and

Row1 ey , 1963 ; Varnado, 1980).

FIG. 1 -- Conceptual i l l u s t r a t i o n o f cu t t i ngs product ion by a drag b i t .

Tricone b i t s produce cu t t i ngs by impact with subordinate drag. Those

designed f o r moderately hard rocks have o f f s e t cones, t h e axes o f which do not

cross the b i t s ' center o f r o t a t i o n (Moore, 1974). Because o f t h i s o f f s e t , t h e

m i l l e d t e e t h o r tungsten carbide i n s e r t s on t h e cones cannot t rack properly,

and a s l i g h t gouging a c t i o n resu l t s . Hard rock t r i c o n e b i t s have l i t t l e o r no

cone o f f s e t and correspond1 ngly reduced gouging action. A conceptual i r e d

penetrat ion sequence fo r a t r i c o n e b i t , based i n p a r t on rock penetrat ion

experiments by Sikarsk ie and Cheatham (1973) and Somerton (1959), i s

i l l u s t r a t e d i n Figure 2. The b i t t o o t h (or button) s t r i k e s the rock

e s s e n t i a l l y v e r t i c a l ly , formi ng a compacted crushed zone d i r e c t l y beneath the

4

Page 9: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

A B Figure 1, Conceptual i l l u s t r a t i o n o f cu t t i ngs product ion by a drag b i t . A,

r o t a t i o n combined w i th drawdown causes the b i t t oo th t o gouge t h e rock, forming a crushed zone from which f rac tu res are propagated forward t o the rock surface o r t o p re-ex is t ing f ractures, B, f u r t h e r movement o f the too th dislodges the crushed zone and a d r i l l ch ip wh i l e forming a new crushed zone and f ractures. The d is lodged crushed zone MY s u r v i v i e t ranspor t up the borehole t o appear i n c u t t i n g s as pseudo-gouge. Modi f ied from Nishimatsu (1972), Appl and Rowley (1963) and Varnado (1980).

A B Figure 2. Conceptual i l l u s t r a t i o n of cu t t i ngs product ion by a t r i c o n e b i t .

A, b i t t oo th ( o r i n s e r t ) (1) s t r i k e s the rock under heavy drawdown, forming a crushed zone f r o m which f rac tu res are propagated t o the surface or t o p re -ex i s t i ng f ractures. b i t cone r o l l s forward, t oo th (2 ) s t r i k e s the rock. This second impact, together w i t h s l i g h t l a t e r a l t o o t h movement and d r i l l i ng f l u id c i r c u l a t i o n , dislodges the chips and crushed m a t e r i a l (pseudo-gouge) formed by the previous impact. experimental work by S ikarsk ie and Cheatham (1973).

8 , as the

Based on

Page 10: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

t o o t h po int . Fractures are propagated downward and outward from t h i s crushed

zone t o i n t e r s e c t p re-ex is t ing na tura l f rac tu res o r those induced by previous

impacts. Chips formed between these f rac tu res are dis lodged by subsequent

impacts together w i t h s l i g h t l a t e r a l t oo th movement and t h e j e t t i n g ac t i on of

d r i l l i n g f l u i d .

f r i a b l e pseudo-gouge ( t o be subsequently discussed i n d e t a i l ) , which i n

cu t t i ngs commonly resembles n a t u r a l l y occurr ing f a u l t gouge.

The crushed zone may surv ive t ranspor t up t h e borehole as

FIG. 2 -- Conceptual i l l u s t r a t i o n o f cu t t i ngs product ion by a t r i c o n e b i t .

Diamond d r i l l b i t s , o f u n i t const ruct ion and studded w i t h small diamonds,

penetrate exc lus ive ly by r o t a r y g r ind ing and produce extremely f i n e

cut t ings. Cable too ls , by contrast , d r i l l by repeated impact o f a heavy

chisel-shaped b i t w i t h a s i n g l e tooth. Although such a b i t could produce very . ,

la rge chips, cable t o o l cu t t i ngs are general ly ra the r small, s ince @ey are

no t cont inuously removed from t h e hole and there fore are extens ive ly recut.

Cut t ings product ion i s a f fec ted not on ly by b i t type, bu t a lso by such

o ther var iab les of t h e d r i l l i n g process as r o t a r y d r i l l i n g speed, drawdown o r

weight-on-bit, and densi ty and c i r c u l a t i o n r a t e o f d r i l l i n g f l u id .

wa te r -d r i l l ed cu t t i ngs t r a v e l up a borehole annulus a t a moderate r a t e

(average about 100 f t /m in -- Low,'1977) w i t h l i t t l e o r no m i l l i n g and

mixing.

mixture, however, may be s i g n i f i c a n t l y mixed and abraded.

e f f e c t i v e l y , a i r o r air-based d r i l l i n g f l u i d s must be c i r c u l a t e d a t 3000 t o

7000 f t / m i n (Hobbs, 1979; Wolke, 1980), ra tes which temporar i ly may be boosted

even h igher by penetrat ion i n t o a high-pressure gas o r steam zone.

Mud- or

Those d r i l l e d and t ranspor ted i n a i r o r an air-water-foaming agent

To remove cu t t i ngs

Such h igh

f l u i d v e l o c i t i e s cause considerable turbulence and resu l tan t abrasion o f

cu t t i ngs by impact w i t h the hole w a l l , the d r i l l s t r i n g and other chips.

Page 11: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

t Cutt ings fran deeper a i r - d r i l l e d holes, which requ i re t h e highest f l u i d

c i r c u l a t i o n rates, canmonly a re rounded and p i t t e d through s e l e c t i v e erosion

o f s o f t e r minerals such as micas and clays. I n shallower a i r - d r i l l e d holes o r

L i n those where a foaming agent i s added t o he lp t ranspor t cut t ings, sample 1

abrasion and se lec t i ve mineral a t t r i t i o n may be minor.

Chip s ize, shape and t e x t u r e a re s t rong ly in f luenced by t h e phys ica l I' L charac te r i s t i cs o f t h e rocks penetrated.

which are so f t , heterogeneous, coarse grained and poor ly consolidated, and

h igh l y f ractured. By contrast , hard and unf ractured rocks, o r those which are

Large cu t t i ngs are favored by rocks

i c f i n e grained and r e a d i l y disaggregated, tend t o y i e l d small1 cut t ings.

monomineralic i s o t r o p i c rocks, b i t type and d r i l l i n g method w i l l be t h e

dominant fac to rs i n ch ip formation, but rock cha rac te r i s t i cs remain important

cont ro ls .

I n

L r , Cutt ings f r u n a b r i t t l e i s o t r o p i c rock such as quar tz i te , f o r u. example, tend t o be t h i n conchoidal fragments (Somerton, 1959) whereas i n a

s o f t rock such as c laystone shavings may be produced. 1 I SAMPLE COLLECTION

f" E f f e c t i v e logging and subsurface i n t e r p r e t a t i o n requ i re care fu l

c o l l e c t i o n and handl ing of cu t t i ngs samples. Poor samples can cause a v a r i e t y u o f i n t e r p r e t i v e er rors .

l o s t from mud-dr i l led cu t t i ngs if openings i n shaker screens (used t o separate

~ L * cu t t i ngs from mud) a re t o o l a rge These can be minimized Or e l iminated

Fine grained ore minerals, as one example, can be

1

G

ii i f sampli ng procedures are desi g

w i t h d r i l l i n g methods and w i t h the geology o f t he s i t e t o be d r i l l e d .

Cutt ings samples should be as representat ive as poss ib le o f an e n t i r e

d r i l l e d i n t e r v a l . Since t h e geology of geothermal systems and m i nera l i zed

6

Page 12: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

t e r r a i n can be very complex and can change abrupt ly, c u t t i n g s should be

co l l ec ted a t r e l a t i v e l y shor t i n t e r v a l s t o minimize o r avoid homogenization o f

m u l t i p l e l i t h o l o g i e s o r a l t e r a t i o n types i n a s i n g l e sample. Ten f e e t

probably should be t h e maximum i n t e r v a l f o r r o u t i n e sampling.

continuously, when p r a c t i c a l , are more representat ive than "grab" o r spot

samples, which can miss e n t i r e l y a geologic u n i t smaller than t h e sample

i n t e r v a l .

Samples taken

Mud- o r water-dr i l l e d cut t ings, especia l ly those from deep, large-bore

wells, canmonly a re separated from d r i l l i n g f l u i d on sloped, v i b r a t i n g and/or

r o t a t i n g shaker screens ("shale shakers"), t h e many designs o f which a re

beyond t h e range of t h i s d i scussi on . C u t t i ngs, which through screen v i b r a t i o n

may be p a r t i a l l y c l a s s i f i e d according t o ch ip s i t e and density, a re co l l ec ted

e i t h e r d i r e c t l y from t h e shaker o r from i t s discharge. Screen openings should

be as small as p r a c t i c a l t o r e t a i n f i n e r grained mater ia l , t h e l oss of which

can b ias sample i n t e r p r e t a t i o n and analysis. Openings o f 0.77 mm t o 1.54 mm

are t y p i c a l , b u t f i n e r screens commonly are used f o r f i n e grained sediments

such as penetrated i n Imperial Valley, Ca l i f o rn ia , geothermal we l l s (Westin,

1980). Mater ia l which passes through shaker screens can be removed from t he

d r i l l i n g f l u i d by desanders, d e s i l t e r s and decanting centr i fuges, and

considered along w i t h corresponding coarser c u t t i n g s i f necessary.

Shall ow mud- o r w a t e r - d r i l l ed boreholes are general l y completed by smal 1

r i g s wi thout shaker screens.

d r i l l i n g f l u i d e i t h e r from a mud d i t c h between t h e open hole and a mud p i t ,

or, i f surface casing i s i n s t a l l e d , i n a bucket a t the end o f a short

discharge pipe. The bucket can be emptied and cleaned a t t he end of each

i n t e r v a l t o ensure representat ive sampling.

Cutt ings from these we l l s are c o l l e c t e d w i t h

I

A l t e rna t i ve l y , samples from the

7

Page 13: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

b

pipe can be caught i n a s t ra ine r , although t h i s method w i l l r e s u l t i n loss o f

f i n e r grained mater ia l w i th d r i l l i n g f l u i d through openings i n t h e s t r a i n e r

screen. Yet another method, successful l y used on several geothermal boreholes

i n Nevada, invo lves channeling f l u i d and cu t t i ngs over a stacked se t o f sample

s p l i t t e r s (H. D. P i lk ington, AMAX Exploration, Inc., pers. comm., 1980).

A i r - d r i l l e d boreholes do not requ i re shaker screens. On shallower holes

o f t h i s type, samples a re co l l ec ted from t h e mound o f cu t t i ngs which forms

around t h e o r i f i c e . On deeper holes, such as t y p i c a l l y d r i l l e d i n The Geysers

geothermal area, Ca l i f o rn ia , re tu rns ( a i r and cu t t i ngs ) are conducted away

from t h e we l l head through a b loo ie l i ne , where water may be added. The

moistened mix tu re then enters a muf f le r , o r cyclone separator. The gaseous

f r a c t i o n o f t h e returns, along w i t h some rock powder, i s exhausted from t h e

top o f t he muf f le r ; remaining coarser cu t t i ngs and water f low out t h e

bottom.

c u l v e r t l i n e d d i tch, from which samples are co l l ec ted a t regular i n te rva l s .

The d i t c h i s cleaned a f t e r each sample t o minimize contamination (M.

Twi tchel l , Aminoil, Inc., pers. comm., 1980).

A t The Geysers, t h i s coarser f r a c t i o n genera l ly i s trapped i n a h a l f -

Sample Lag

As cu t t i ngs are co l lected, a sample general ly i s l a b e l l e d w i t h cur ren t

d r i l l i n g depth.

t r a n s i t t o the c o l l e c t i o n point , t h i s recorded depth i s greater than the

actual depth o f t h e sample.

However, because d r i l l i n g continues wh i le cu t t i ngs are i n

The d i f fe rence between the two depths i s t h e

sample lag, discussed i n d e t a i l i n Low (1977) and Hobbs (1979), who a lso

provide methods f o r i t s ca lcu la t ion .

boreholes, i n which cu t t i ngs t ranspor ted i n a h igh-ve loc i ty a i r stream reach

the surface almost immediately a f t e r they are produced. Lag a lso i s minimal

Lag i s n e g l i g i b l e f o r a i r - d r i l l e d

Page 14: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

li i n mud- o r wa te r -d r i l l ed boreholes penetrat ing t h e hard igneous and

metamorphic rocks t y p i c a l of geothermal systems and minera l ized t e r r a i n , s ince c d r i l l i n g ra tes i n these rocks r a r e l y exceed 3-10 f t (1-3 m) per hour.

I' Fie1 d Preparation, Packagi ng and Storage . Borehole cu t t i ngs genera l ly w i l l be s tud ied no t on ly on s i t e wh i le

d r i l l i n g i s i n progress, b u t l a t e r , when de ta i l ed examination and analys is may u be necessary f o r f u r t h e r charac ter iza t ion o r l o c a t i o n o f a resource. Thus,

cu t t i ngs samples should be f ie ld-prepared ._ and packaged so t h a t physical and

chemical changes dur ing storage are minimized o r el iminated.

F i e l d preparat ion general l y i nvol ves only washing the sampl es t o remove

b forei-gn mater ia l , although t h i s process commonly i s deferred u n t i l cu t t i ngs

are a c t u a l l y needed f o r study, Among t h e advantages o f f i e l d washing are

reduct ion o f subsequent labora tory preparat ion t ime and acce le ra t ion o f sample

dry ing through removal o f d r i l l i n g f l u i d and 'o ther contaminants.

f l u i d may conta in a c t i v e chemicals such as caus t ic soda which can reac t w i t h

cu t t i ngs i f they are s tored wet before washing.

washing inc lude lack o f t ime and proper equipment and u n a v a i l a b i l i t y o f de-

ion ized water i f required. Hasty washing, genera l ly through i n s u f f i c i e n t l y

f i n e screens, may r e s u l t i n l o s s of t he f i n e r grained component o f cu t t i ngs

D r i l l i n g

Disadvantages o f f i e l d c

c w i t h d r i l l i n g f l u i d . Washing w i t h de-ionized water may be requi red i f

c chemical analys i s o f c u t t i ngs i s a n t i c i pated.

Sample containers should be la rge enough t o conta in 500 g o r more of

cut t ings, s u f f i c i e n t l y durable t o wi thstand t ranspor ta t i on and storage, and

I completely i d e n t i f i e d (borehole, depth i n t e r v a l etc.) w i t h permanent

waterproof i n k on securely attached labels. Type o f package requi red w i l l

depend on the nature o f s tud ies planned f o r t h e cut t ings. Those t o be

9

Page 15: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

F

analyzed f o r v o l a t i l e elements such as arsenic and mercury, f o r example,

should be packaged i n a i r - t i g h t g lass o r heavy p l a s t i c . Although containers

made of these ma te r ia l s a r e bu lky and may cause handling problems (such as

glass breakage), they e l im ina te element l oss and cross-contamination o f

samples.

which a re r e l a t i v e l y inexpensive and easy t o handle.

these bags a l s o f a c i l i t a t e sample drying.

Generally, however, c u t t i n g s w i l l be placed i n c l o t h o r paper bags,

Since they are porous,

Most samples should be s tored dry, s ince moisture may a l t e r t h e

appearance and composition o f cut t ings. D r i l l s tee l , f o r example, r e a d i l y

rus ts when moist and may s t a i n and obscure c u t t i n g s o r may resemble Indigenous

1 imonite (Hulen, 1978). Wet storage a lso promotes hydrat ion and resu l tan t

sof ten ing o f formation clays, which then are l o s t from samples when

subsequently washed.

e a s i l y redissolved and removed by washing.

Dr ied d r i l l i n g mud may weakly b ind cut t ings, but i t i s

SAMPLE PREPARATION

Careful preparat ion o f d r i l l cu t t i ngs f o r examination o r analys is he lps

The ensure they w i l l y i e l d maximum informat ion about a subsurface resource.

wide range o f a n a l y t i c a l techniques avai lable, and t h e special sample

preparat ion each requires, exceed t h e breadth o f t h i s discussion. This

sect ion w i l l be conf ined t o sample cleaning, a pre l iminary process requi red

f o r near ly a l l methods o f cu t t i ngs study, and t o preparat ion o f samples f o r

b inocular microscopic and petrographic examination.

Mud-dr i l led c u t t i n g s should be washed t o remove d r i l l i n g mud and other

fo re ign debris, such as l o s t c i r c u l a t i o n mater ia l , i n such a way t h a t l o s s o f

natura l const i tuents o f t h e d r i l l e d rock i s minimized. An e f f e c t i v e washing L

Page 16: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

method i nvol ves pouring water

and careful l y decanti ng . The

mater ia l has f l o a t e d frm t h e

d r i l l i n g mud. This method i s

over a sample i n a shallow pan, gen t l y s t i r r i n g ,

process i s repeated u n t i l most l o s t c i r c u l a t i o n

cu t t i ngs and t h e decanted water i s c l e a r o f

preferable t o washing c u t t i n g s i n a screen,

through which much of t h e f i n e f r a c t i o n o f a sample can be l o s t along w i t h

d r i l l i n g f l u i d .

c lay and s i l t from such mater ia ls as a l luv ium o r s o f t a r g i l l i z e d rock i f

Even t h e decanting method, however, can remove some na tu ra l

samples a re over-washed.

De-ionized water may be useful f o r washing c u t t i n g s i n preparat ion f o r

chemical studies. I n many cases, however, t h i s special technique may be

superfluous. Mud-dr i l led cut t ings, f o r example, a1 ready may be contaminated

with a wide v a r i e t y o f i ons der ived from d r i l l i n g f l u i d s and add i t i ves and

adsorbed on natura l rock c lays and micas.

A f t e r washed c u t t i n g s have been dr ied, e i t h e r n a t u r a l l y o r i n an oven a t

low heat, remaining l a r g e r o r heavier f o re ign debr is such as cottonseed h u l l s

and various metals can be removed by hand-picking.

magnet ical ly removed, b u t t h i s method w i l l a l so remove some natura l magnetite

as wel l as any mineral wf th which i t i s intergrown.

D r i l l s tee l can be

A i r - d r i l l e d c u t t i n g s are devoid of t h e introduced clays, l o s t c i r c u l a t i o n

mater ia ls and other add i t i ves used f o r mud d r i l l i n g and therefore requ i re

washing only t o rmove f i n e rock dust, which may obscure l a r g e r cu t t i ngs

dur ing b inocular microscopic examination. Metals, however, are very common

contaminants i n these c u t t i n g s (Wolke, 1980). Steel and i ron, t h e most J

prevalent, can be removed magnet ical ly ( i n e v i t a b l y along w i t h some natura l

magnetite) i f not thoroughly rusted.

s p i t e o f meticulous e f f o r t , t h e cu t t i ngs may remain s l i g h t l y contaminated.

Other metals can be hand-picked, but i n

11

Page 17: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

L

Such res idual contamination should be taken i n t o account i f t h e cu t t i ngs are

f u r t h e r analyzed by chemical o r o ther methods.

Binocular microscopic study requi res l i t t l e preparat ion o f d r i l l c u t t i n g s

a f t e r washing, The samples can be examined loose i n small dishes, but pouring

cu t t i ngs ou t o f and back i n t o bags i s t ime consuming and messy. This problem

can be avoided by examining samples i n shallow paper cups, which then can be

capped f o r storage.

Cutt ings can be examined most. e f f i c i e n t l y when glued on chipboards (Fig.

3) o r canvas s t r i p s .

i n t e r v a l s c l e a r l y marked, a1 low rap id examination and comparison o f l a rge

numbers of samples whi le e l im ina t i ng unneccessary sample handling. Chips are

firmly secured f o r easy scratch tes t ing .

tex tu re , which cou ld be overlooked wi thout m u l t i p l e sample comparison, a re

detected e a s i l y on chipboards.

r o l l e d up f o r easy storage. The small amount o f each sample ( t y p i c a l l y about

These devices, a t an appropr ia te scale and w i th depth

Subtle va r ia t i ons i n c o l o r and

Canvas s t r i p s , as an added advantage, can be

1.5 g) used t o prepare these boards o r s t r i ps , however, may not always be

adequately representat ive.

FIG. 3 -- D r i l l cu t t i ngs mounted on chipboards.

For petrographic study, cu t t i ngs are embedded i n epoxy which then i s

s l i c e d t o make a grain-mount th in-sect ion. These sect ions must be prepared

M i th care, s ince d i f f e r e n t i a l s e t t l i n g ra tes o f chips w i th d i f f e r e n t s izes

and/or s p e c i f i c g r a v i t i e s I n t h e viscous epoxy can r e s u l t i n a non-

representat ive s l i ce . Even w i t h care fu l preparat ion, th in-sect ions can be

l ess representat ive than chipboard i n te rva l s , s ince they incorporate a f a r

smal l e r po r t i on of an e n t i r e cu t t i ngs sample.

12

Page 18: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

1 SAMPLE B I A S CAUSED BY DRILLING AND SAMPLE PREPARATION

The d i f f e r e n t mineral cons t i tuents o f a rock may o f f e r va r iab le ~

res is tance t o crushing dur ing d r i l l i n g . Softer, more b r i t t l e o r otherwise

weaker minerals; f o r example, a re l i k e l y t o be s e l e c t i v e l y pu lver ized or:

disaggregated (Somerton, 1959). Thus reduced i n g ra in size, they may be l o s t

from a cu t t i ngs sample, e i t h e r w i th d r i l l i n g f l u i d a t t he c o l l e c t i o n po in t o r

l a t e r when t h e sample i s washed. Harder, more r e s i s t a n t cons t i tuents thereby

may become enr iched i n cu t t i ngs r e l a t i v e t o t h e rock from which they were

d r i l l e d .

a i r - d r i l l e d we l ls i n The Geysers geothermal area are r i c h e r i n quar tz than the

corresponding rock i n the borehole (M. Twi tchel l , Aminoil, Inc., pers. comm.,

I: u

For example, graywacke cut t ings. from t h e deeper por t ions o f many

1980).

Cut t ings samples enr iched i n c e r t a i n minerals and depleted i n others

compared t o t h e i r source rocks can cause a v a r i e t y o f i n t e r p r e t i v e er rors .

Soft, a r g i l l i z e d and s e r i c i t i z e d i n t e r v a l s i n a borehole, f o r example, can be

overlooked o r underemphasized i f c lays and s e r i c i t e are e l iminated from

cut t ings.

d imin ish po ten t i a l geochemical anomalies, s ince many d iagnost ic t race elements

Removal o f c lays and l imon i tes from a sample may s l g n i f i c a n t l y

are known t o be concentrated i n these minerals (Levinson, 1974, 1980).

Samples enr iched i n quartz, one o f t h e best na tura l heat conductors

(Kappelmeyer and Haenel , 1974) w i 11 y i e l d erroneously h igh thermal

F

conduc t i v i t y values and correspondingly low thermal gradients.

Select ive mineral dep le t ion i n cu t t ings a l s o a f f e c t s poor ly consol idated Li

c l a s t i c sedimentary rocks. These rocks tend t o break around, ra the r than

through grains, l i b e r a t i n g f i n e r grained mat r ix const i tuents and cement t o be

removed from samples along w i th d r i l l i n g f l u i d . I n t h i s way, f i n e grained,

13

Page 19: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

w uranium-bearing organic carbon i s commonly washed out o f cu t t i ngs fran r o l l -

f r o n t sandstone uranium deposi ts such as those o f t h e Crooks Gap and Gas H i l l s

d i s t r i c t s o f Wyoming. S i m i l a r l y , in te rgranu lar l i m o n i t e o r hematite, which

are commonly coprec ip i ta ted w i t h (or adsorb) valuable ore metals, can be

f lushed from cu t t i ngs and can s t a i n d r i l l i n g f l u i d s b r i g h t orange- o r reddish

brown.

u \ CONTAMINATION OF CUTTINGS

D r i l l cu t t ings , p a r t i c u l a r l y those from boreholes i n h i g h l y f rac tu red

t e r r a i n , f requent ly are contaminated w i t h a v a r i e t y o f indigenous and

introduced debris. Recognition and descr ip t ion of these contaminants i s

c r u c i a l f o r an accurate subsurface inves t iga t ion . Fragments from i n t e r v a l s .

h igher i n t h e borehole, f o r example, i f incorporated i n t o subsequent samples,

w i 11 m i srepresent t h e actual rock penetrated.

cu t t i ngs w i l l be i n e r r o r r e l a t i v e t o t h e parent rock. This sec t ion b r i e f l y

discusses common contaminants, methods by which they can be i d e n t i f i e d , and

Analyses o f contaminated a .

t h e i r i n f l uence on phys ica l and chemical measurements o f cu t t i ngs samples, u Indigenous contaminants i n cu t t i ngs samples are those der ived from

prev ious ly d r i l l e d i n t e r v a l s i n t h e borehole. e Generally, they are re fe r red t o

as caved o r sloughed fragments, although ra the r than always caving i n t o t h e

borehole (as i s common dur ing " t r i p s " f o r b i t changes -- Low, 1977) they are ," \ i probably o f t e n eroded o r plucked from i t s wa l ls by upward-flowing d r i l l i n g

I f l u i d . They a l so may be recyc led cu t t i ngs -- e i t h e r those no t removed from

I d r i l l i n g f l u i d a t t h e c o l l e c t i o n p o i n t and then rec i rcu la ted , o r those c a r r i e d

i n t o and subsequently f lushed from c a v i t i e s i n t h e borehole w a l l .

lu

Caved o r sloughed fragments i n cu t t ings samples t r a d i t i o n a l l y are

14

Page 20: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

i d e n t i f i e d by t h e i r l a rge s ize r e l a t i v e t o coex is t ing actual d r i l l ch ips (e.g.

Low, 1977). Thus, samples commonly a re passed through coarse screens and t h e

1 arger fragments discarded p r i o r t o examination and in te rp re ta t i on . We

be l ieve t h i s technique genera l ly should no t be appl ied t o geothermal we l ls o r

o ther boreholes i n f rac tu red te r ra in . Cutt ings from f r a c t u r e zones i n these

wel ls can be anomalously l a rge as wel l as representat ive o f t he i n t e r v a l

d r i l l e d . I n samples from we l l Utah State 14-2 a t Roosevelt Hot Springs KGRA,

f o r example, w i t h i n a f ractured, hot water en t r y zone between 487.7 and 548.6

m (1630 and 1800 ft) (Glenn and Hulen, 1979), average ch ip s i r e i s th ree t o

f i v e times as l a r g e as i n surrounding unf ractured rock (Fig. 4). These l a r g e r

cu t t ings probably r e f l e c t t h e ease w i t h which f rac tu red rock i s dislodged by

t h e d r i l l b i t .

FIG. 4 -- Anomalously l a rge cu t t i ngs from a f rac tu red probable hot water en t ry zone i n Thermal Power Company geothermal we l l Utah State 14-2, Roosevelt Hot Springs KGRA, Utah.

>

Caved fragments may be recognized more re1 i ably, though no t u n f a i l i ngly , by t h e i r i ncongru i t y i n cu t t i ngs samples. As a c l e a r hypothet ica l example, a

d iscrete, rounded and f ros ted quar tz pebble i n a sample cons is t ing most ly of

angular gabbro chips has c e r t a i n l y caved i n t o o r otherwise contaminated t h e

sample, probably f r a n an over ly ing a l l u v i a l horizon. Angular g r a n i t i c ch ips

i n the gabbro sample, however, may be contaminants o r may represent i n s i t u

dikes o r xenol i ths. Thorough knowledge o f surface geology i s essent ia l i n

determining which o f these p o s s i b i l i t i e s i s most l i ke ly . ’

Introduced o r fo re ign contaminants i n d r i l l cu t t i ngs inc lude:

d r i l l i n g muds and mud addi t ives; lost -c i rcu la tSon mater ia ls ; metal from

cement;

d r i l l s t r i n g s , b i t s , casing and d r i l l a b l e components o f cementing assemblies;

thread compounds and other greases; pa in t and rubber; and mater ia l sloughed

15

Page 21: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

' \

!

Figure 4.

I;

i

Figure 3. Drill cut t ings mounted on ch

I

pboards.

Anomalously l a r g e cutt ings f r o m a fractured probable hot water ent ry zone (above 1800 f t ) i n Thermal Power Company geothermal wel l Utah S t a t e 14-2, Roosevelt Hot Springs KGRA, Utah.

Page 22: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

L 1

from the sides o f d i tches and s e t t l i n g o r sampling p i t s . Most o f these

substances are r e a d i l y recognized as contaminants, but several may s t rong ly

resemble na tura l ly -occurr ing mater ia ls l i k e l y t o be encountered i n t h e

borehole. A l i s t of t h e more common contaminants (many of which a re f u r t h e r

discussed i n subsequent sect ions on l i t h o l o g y and hydrothermal a l t e r a t i o n ) i s

provided i n Table 1.

Table 1. Common introduced contaml nants i n d r i l l cu t t ings .

Borehole cement i s an espec ia l l y troublesome contaminant i n cu t t ings ,

s ince i t can resemble a v a r i e t y of rock types and a l t e r a t i o n products.

t y p i c a l l y a sof t , l i g h t gray t o buff, f i n e l y speckled substance (Fig. 5) which

may appear spongy o r ves icu lar , and which ef fervesces v igorous ly i n d i l u t e

hydrochlor ic acid. Depending on t h e add i t i ves i t contains (Table l ) , cement

e a s i l y can be confused i n cu t t i ngs w i t h chalk, marl, calcareous claystone o r

s i l t s t o n e , calcareous t u f f , t r a v e r t i n e , o r any bleached, c a l c i t i c ,

hydrothermal l y a l t e r e d rock, p a r t i c u l arly an aphan i t i c volcanic.

incorporates cu t t i ngs o r rock debr is from the borehole w a l l i t can a l s o

It i s

If cement

resemble brecc ia w i t h a mat r ix o f rock f l o u r and ca l c i t e . Cement i s most

l i k e l y t o contaminate cu t t i ngs a t and immediately below t h e bottoms o f casing

s t r ings , bu t may slough i n t o any sample co l l ec ted from lower i n t h e borehole.

FIG. 5 -- Per l i te-bear ing borehole cement cu t t i ngs from Getty O i l Company geothermal we l l Utah State 52-21, Roosevelt Hot Springs KGRA, Utah.

Physical and chemical analyses o f cu t t ings , f requent ly h e l p f u l i n

1 ocat ing and c h a r a c t e r i r i ng a subsurface resource, can be ser ious ly

compromised by sample coniarni nat . For instance, thermal conduc t i v i t y

measurements, used t o det a m i n e h i a t f low i n geothermal exp lo ra t ion (Sass e t

Page 23: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

-1

I

Tab1 e 1, Common i n t roduced cont ami nant s i n d r i 1 1 cu t t i ngs .

MINERALS

D r i l l i n g mud c lays :

-Bent on i t e (mon tmor i -

- A t tapul g i t e o r

D r i l l i n g mud weight ing

l l o n i t e f i l l i t e , mixed- l a y e r c l a y and k a o l i n i t e )

s e p i o l i t e

Agents

- B a r i t e -Hematite -Ca lc i t e -Gz l l ena - I 1 men i t e

Cement

.Cement addi t,i ves

- S i l i c a f l o u r -Per1 i t e -Pozto l a n -Diatomaceous e a r t h -Bent on i t e -Hematite -Bar it e -Mica -Quartz sand

..

-G Y DS um

~~ ~~

ORGANIC AND SYNTHETIC MATERIALS

D r i l l i n g mud th inners and dispersants

- L i g n i t e and l i gnosu l fona te

D r i l l i nq mud 1 ubr icants

- S i l i c a o r glass spheres

L o s t - c i r c u l a t i o n ma te r ia l s

-Nut Shel ls -Wood f i b e r -Cane f i b e r -Seed h u l l s .- Pa pe r - L i g n i t e (coarse) -Cell ophane -Processed formica and o the r p l a s t i c s

-M i scel 1 aneous 1 oca1 l y a v a i l a b l e ma te r ia l such as a l f a l f a cubes

\

Cement Add i t i ves

- g i l s o n i t e and coal

Rubber and P l a s t i c

-Jackets on cement plugs -.

METALS {SEE TABLE 2)

Metal shavings from t h e d r i l l i n c l svstem

-Steel, brass, etc.

D r i l l a b l e metal from downhol e cementi na assembl i es

-Lead, i r o n and a 1 umi num

Col o r i ng agents

Metals i n thread . compounds and o the r greases

Page 24: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

i I, I I

i I,

e 5. P e r l i t e - b geothermal we1 1 U Utah. A, cement urn gray wi th white speckles) wi th

t h i n sect ion ( transmitted l i g h t ) unted i n epoxy; m a t r i x i s cement;

white, angular fragments are quartz; l a r g e r subrounded 1 ight gray inclusions are p a r t i a l l y d e v i t r i f d p e r l i t e ; dark inclusions are an un ident i f ied opaque miperal.

-21, Roosevelt Hot Springs KGRA, u u

Page 25: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

other conductive metal.

samples w i l l a l so be h igh r e l a t i v e t o t h e corresponding u n d r i l l e d rock.

Perhaps most f requent ly m i s l eadi ng , though , are geochemical analyses of

Density measurements on these metal--contami nated

cont ami nated cu t t i ngs . Inf luence o f Contami nat fon on t h e Geochemistry o f D r i 11 Cutt ings

Multi-element s o l i d s geochemistry has long been successfu l ly app l ied by

t h e mining i ndus t r y t o t h e search f o r and charac ter iza t ion o f mineral

deposits, These deposi ts commonly are surrounded by geochemical ha1 oes, t h e

nature and i n t e n s i t y o f which, as detected i n s o i l , rock, core and cut t ings,

can be used t o p r e d i c t d i r e c t i o n s t o and distances from ore-grade

m ine ra l i za t i on (Levinson; 1974,

geochmi cal l y zoned. Ewers and

1980). Geothermal systems a l so are

Keays (1977), Bamford e t a l . (1980) and

Chri stensen ( 1980a, 1980b) have demonstrated t h a t so l i ds geochemistry can be

usefu l i n est imat ing the s i ze and conf igura t ion o f a geothermal systkm and i n

l o c a t i n g o r p red ic t i ng appropch t o thermal f l u i d e n t r i e s w i t h i n these

systems.

f low paths are commonly s i g n a l l e d by anomalous concentrat ions o f mercury,

arsenic and l i t h i u m i n d r i l l cu t t i ngs and i n s p e c i f i c g r a v i t y concentrates

prepared from .these cu t t i ngs (Bamford e t a1 .

A t Roosevelt Hot Springs KGRA in \ l l tah, f o r example, thermal f l u i d

1980).

The geochemistry o f a cu t t i ngs sample, however, may not accurate ly

r e f l e c t t h e geochemistry of t h e rock from which i t i s obtained. Clays, i r o n

oxidesp s u l f i d e s and o ther minerals i n which d iagnost ic t r a c e elements

commonly are concentrated (Levi nson , 1974, 1980), f o r exampl e, may be enr iched

o r depleted i n cu t t i ngs r e l a t i v e t o t h e i r source rocks by d r i l l i n g , sampling

and sample preparation. A p o t e n t i a l l y usefu l geochemical i n d i c a t o r may be

d i l u t e d beneath i t s de tec t ion l i m i t by contamination o f a cu t t i ngs sample.

17

Page 26: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

Most important ly, though, m e t a l l i c contaminants i n c u t t i n g s can produce

confusing o r f a l s e geochemical signatures. The more common o f these

contaminants, t h e i r sources and chemistry are presented i n Table 2.

Table 2. Chemistry o f common m e t a l l i c and metal-bearing contaminants i n d r i l l c u t t i n g s .

~~ ~~

~

F igure 6 exempl i f ies spurious cu t t i ngs geochemistry due t o m e t a l l i c

contamination. Lead values i n c u t t i n g s are p l o t t e d on t h e f i g u r e opposite

cementing l oca t i ons i n t h e upper p a r t o f a we l l i n t h e Roosevelt Hot springs

KGRA, Utah. Strong lead anomalies i n the wel l c l e a r l y co inc ide with cementing

s i t e s and are, i n fact , due t o incorporat ion i n cu t t i ngs o f d r i l l a b l e lead

components o f downhole cementing assemblies (Bamford e t a1 . FIG. 6 -- Lead geochemistry o f cu t t i ngs compared w i t h cementing depths i n t h e upper p o r t i o n o f Thermal Power Company geothermal wel l Utah State 14-2,

1980).

Roosevelt Hot Springs KGRA, Utah. ..

EXAMINATION AND DESCRIPTION OF CUTTINGS

The methods used t o examine c u t t i n g s and t h e ' d e t a i l w i t h which they a re

logged w i l l depend l a r g e l y on t h e unique requirements o f each d r i l l i n g

project .

o f fundamental features, some o r a l l o f which a re c e r t a i n t o he lp character ize

o r l o c a t e t h e resource under i nves t i ga t i on .

no t be l i m i t e d t o :

o r i g i n a l mineralogy, a l t e r a t i o n mineralogy and i n t e n s i t y , presence o f gouge o r

Even cursory c u t t i n g s logs, however, should record a minimum number

These features include, but may

color(s) , rock type(s), g r a i n s ize(s), rock fab r i c (s ) ,

o ther evidence o f f au l t i ng , presence o f d r i l l -produced pseudo-gouge, s i ze and

shape o f d r i l l chips, and types and amounts o f contaminants.

Binocular microscopic examination, a t 5X t o 50X, i s adequate f o r r o u t i n e

18

Page 27: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

Table 2. Chemistry of canmn metallic and metal-bearing contaminants in

cuttings . I

Contaminant I Source I Elements Present I

Drill pipe, dr i l l collars, bits, subs, reamers, stabilizers, casi ng , mi scel laneous surface components

Steel (and rust) I; (1) Fe, Mo, Cr, N i , V , S

Tungsten carbide

u Thread compounds and other greases ' Monel metal

u Cast a l u m i n u m , lead and , i ron; iron filings

..

u Paint

c .

Bits, stabi 1 izers, W reamers, hol e openers

Tool j o in t s , etc. (2 ) Pb, Zn, Mo, Cu, Li, A1

Non-magnetic dril l (3) C u , N i col 1 a rs

Drillable metal ( 4 ) Al, Pb; Fe (A1 and components of downhol e cementing assembl i es

Fe may be alloyed with '

or contaminated by minor amounts of other metals)

Painted components of (3 ) (Exampl es) the dril l i ng system Blue: Cu, Co, Sn

Red: .Cd, Fe White: Pb, Zn, T i

.

Page 28: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

CEMENT

3

200

600

data from Barn ford et all, 7980 Figure 6. Lead geochemistry o f cuttings compared with cementing

the upper portion o f Thermal Power Company geothermal State 52-21, Roosevelt Hot Springs KGRA, Utah.

depths i n well Utah

Page 29: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

1 t cu t t i ngs logging. Wetting the cu t t i ngs may enhance the v i s i b i l i t y o f

otherwise obscure features such as f i n e l y disseminated su l f ides . As

prev ious ly discussed, most cu t t i ngs can be logged r o u t i n e l y us ing

chipboards. For i n t e r v a l s o f special i n t e r e s t o r complexity,. however, a

f a i r l y l a rge sample p o r t i o n ( a t l e a s t log) should be examined.

port ions, such as those used t o prepare chipboards o r grain-mount t h i n

sections, may not be adequately representat ive o f t h e rocks penetrated,

p a r t i c u l a r l y i f t h e rocks a re heterogeneous, coarse-grained, o r hydrothermal ly

1 1

Smaller L I

I' a1 tered.

Simulated d r i l l cu t t i ngs o f representat ive surface rocks, both a l t e r e d

and unaltered, g rea t l y f a c i l i t a t e i d e n t i f i c a t i o n and desc r ip t i on o f downhole

rock types and a l te ra t i on .

screening se lected hand samples, should be consul ted w i th caution, however,

s ince not a l l rocks encountered i n a borehole w i l l have surface equivalents.

1 t These simulated cut t ings, prepared by crushing and

I L Petrographic examination may be necessary t o conf i rm or expand

i l pre l iminary descr ip t ions o f cut t ings. However, i t should complement, ra the r M

than supplant, ca re fu l b inocu la r microscopic study. For example, a f i n e

I grained, l i gh t - co lo red bu t otherwise nondescript ch ip which could be e i t h e r i

cement o r a calcareous t u f f o r mudstone, general ly can be p o s i t i v e l y

i d e n t i f i e d only i n grain-mount t h i n section.

such as those which are s t rong ly a r g i l l i z e d and i ron-stained, remain obscure

even pet rographica l ly . Thin sect ions are most useful f o r i d e n t i f y i n g

unaltered, homogeneous rocks w i th g ra in s i ze l ess than d r i l l ch ip s ize.

g ra in s i ze exceeds ch ip size, t h e c h a r a c t e r i s t i c i n t e r g r a i n re la t i onsh ips o f a

rock are ob l i te ra ted .

Cer ta in o ther rocks, though, I

IJI i L

; I I f I

I

Cut t ings l o g formats and s t y l e s should be t a i l o r e d t o the p a r t i c u l a r

19 i

Page 30: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

needs o f each subsurface invest igat ion.

sedimentary sequences a re provided by H i l l s (1949), Low (1977), Maher (1964)

Useful examples o f l o g formats f o r

and Hobbs (1979). Log formats fo r geothermal and .mineral exp lo ra t i on

boreholes w i l l be s i m i l a r t o these examples but a l so should provide columns

f o r g raph ica l l y recording a l t e r a t i o n and minera l izat ion, which are very useful I

i n resource exp lo ra t i on and character izat ion. Regardless o f format and

d e t a i l , logs should i nc lude both descr ip t ions of cu t t i ngs as w e l l as some

i n t e r p r e t a t i o n o f those descr ipt ions, s ince an examiner can best i n t e r p r e t how

the rocks penetrated i n a borehole r e l a t e t o the o v e r a l l geology o f a p r o j e c t

area . INTERPRETATIOh OF LITHOLOGY FROM DRILL CUTTINGS

Correct i d e n t i f i c a t i o n o f subsurface l i t h o l o g y i s important n o t on l y f o r

s t r a t i g r a p h i c and s t r u c t u r a l corre la t ion, b u t a lso because c e r t a i n rocks may

s e l e c t i v e l y host t he resource under i nves t i ga t i on . Careful rock type

determi nat fon a l s o a1 lows more accurate geophysical we1 1 l o g i n te rp re ta t i on .

The use of geophysical l ogs i n petroleum wel ls t o character ize sedimentary 'i

sequences i s well-documented ( f o r example, Maher, 1964).

usefu l

Such logs a re a l so

moreover, f o r deciphering t h e complex igneous and metamorphic geology

canmonly encountered i n geothermal and mineral exp lo ra t i on boreholes (Keys,

1979; Sanyal e t al., 1980). Potassic igneous rocks such as g ran i te and

r h y o l i t e , f o r example, produce conspicuous p o s i t i v e gamma-ray anomalies (Keys,

1979). Rocks r i c h i n hydrous minerals such as b i o t i t e and c h l o r i t e a r e

character ized by t h e i r spur iously high responses on neutron po ros i t y logs

(Nelson and Glenn, 1975).

confused w i t h coQductive thermal water en t r y zones i n geothermal we l l s

(S ibbet t and Glenn, 1981).

Graphi t ic rocks which cause r e s i s t i v i t y lows can be

20

Page 31: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

i Rocks which are recognized r e a d i l y i n outcrop o r core f requent ly can be I

d i f f i c u l t t o i d e n t i f y and d i f f e r e n t i a t e as d r i l l cut t ings. Larger-scale

d iagnost ic features, i nc lud ing boulders, bedding and segregation banding,

phenocrysts, f low-breccia, xenol i ths, and g ra in boundaries i n coarser grained

rocks, can be o b l i t e r a t e d by t h e d r i l l i n g process. D iss im i la r rock types thus

can c lose ly resemble one another i n a cu t t i ngs sample.

Springs KGRA, f o r example, massive Te r t i a ry g r a n i t i c rocks are bel ieved t o be

f a r super ior as rese rvo i r hosts t o the f o l i a t e d Precambrian gneisses they

i n t rude (Sibbet t and Nielson, 1980), y e t t h e two rock types can be mistaken

f o r one another i n d r i l l cu t t i ngs (Fig. 7). As prev ious ly discussed, rock

i d e n t i f i c a t i o n can be complicated f u r t h e r by contamination and by

composit1ona.l discrepancies between cu t t i ngs and t h e i r source rocks.

FIG. 7 -- Hand samples and simulated d r i l l cu t t i ngs o f Precambrian gneiss and Te r t i a ry quar tz monzonite from Roosevelt Hot Springs KGRA, Utah.

i :I I ' u 1

11 i ; I I

; L

I

A t t h e Roosevelt Hot

I

i IL i

!

Local l i t h o l o g i e s t y p i c a l l y vary widely i n character and composition from !

general descr ip t ions provided by reg ional repor ts and maps, textbooks o r

manuals.

i n t h e type of geologic environment being d r i l l e d , are essent ia l f o r

determinat ion o f rock types fran cut t ings , espec ia l l y i n complex igneous and

Thus, d i r e c t knowledge o f 1 oca1 geology, as we1 1 as f i e l d experience 1

4

I t ;

'1

1

I U metamorphic t e r r a i n .

The remainder o f t h i s sec t ion w i l l discuss i n d e t a i l recogn i t ion and

i n t e r p r e t a t i o n o f t h e major l i t h o l o g i c groups as d r i l l cu t t i ngs -- a l luv ium

and other unconsolidated deposits, sedimentary rocks ( c l a s t i c and chemical ),

vol cani c and hypabyssal rocks, and p lu ton i c and metamorphi c rocks. The

discussions on sediments and sedimentary rocks w i l l emphasize those occurr ing

i n t h e s t r u c t u r a l l y complex and commonly a l t e r e d sequences l i k e l y t o be

F " '

i b I i

1 I

li; 1

i '

21

Page 32: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

c c

A

c Li 2 ,

Figure 7.

C

Hand samples and simulated drill cuttings o f Precambrian gneiss and Tertiary quartz monzonite from Roosevelt Hot Springs KGRA, Utah. gneiss. C, simulated cuttings o f quartz monzonite.

A, hand samples (gneiss at left). B , simulated cuttings o f

Page 33: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

encountered i n geothermal and m i neral expl o ra t i on boreholes.

from d r i l l c u t t i n g s o f t h e unaltered, r e l a t i v e l y undisturbed sediments and

sedimentary rocks which host petroleum reservo i rs i s thoroughly discussed i n

I n t e r p r e t a t i o n

H i l l s (1949), Maher (1964) and low (1977).

provide guidel ines f o r logging, respect ively, cu t t i ngs from p lacer deposits

Wells (1969) and Hobbs (1979)

and coal sequences.

Al luvium and Other Unconsolidated Deposits

Many geothermal and m i nera l expl o r a t i o n boreholes are c o l l ared i n

unconsolidated s u r f i c i a l deposits. A good l i t h o l o g i c l o g may be t h e on ly

source o f data f o r these deposits, since t h e upper pa r t s o f boreholes commonly

are cased t o depths o f several hundred f e e t before any geophysical logs a re

run . Because unconsolidated mater ia ls are disaggregated almost t o t a l l y when

d r i l l e d , many o f t h e i r deposi t ional features a re obl i terated. Much o f t he

matr ix mater ia l , f o r example, i nc lud ing clay, s i l t and f i n e sand, may be l o s t

w i t h d r i l l i n g f l u i d a t t h e sampling p o i n t o r dur ing washing. Matr ix g r a i n

s i ze and degree o f s o r t i n g l a r g e l y determine a l l u v i a l permeabi l i ty , so the

l oss o f matr ix from a sample precludes accurate assessment of t he e f f i c i e n c y

o f an a l l u v i a l hor izon as an aqui fer .

contains most a l t e r a t i o n and other secondary minerals, i t s loss a lso can

Since t h e matr ix mater ia l general ly

e l im ina te valuable c lues t o ’ t h e nature o f and distance from a resource.

I n s p i t e o f these d i f f i c u l t i e s , considerable in format ion can be gained

from carefu l logging o f a l l u v i a l cut t ings.

rounding and sor t ing, l i t h o l o g i e s and minerals present, g ra in s i z e

d i s t r i b u t i o n , cementation and a l t e r a t i o n w i 11 a s s i s t w i t h s t r a t i g r a p h i c

c o r r e l a t i o n between holes and may provide con t ro l on s t ructures and a l l u v i a l

Such features as degree of

22

Page 34: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

aqui f e r s . Post-deposit ional a l t e r a t i o n i n al luvium can be good evidence fo r

contemporary o r recent geothermal a c t i v i t y .

deposi t ional a l t e r a t i o n by t h e re la t i onsh ip o f a l t e r a t i o n t o g r a i n surfaces.

Nhereas pre-deposit ional a l t e r a t i o n i s confined t o i n d i v i d u a l grains, post-

It can be d is t inguished from pre-

e

deposi t ional a l t e r a t i o n may a f f e c t g ra in surfaces and the matr ix between

grains. Euhedral c r y s t a l s and s ta ins o r c rus ts on g ra in surfaces a re

especia l ly i n d i c a t i v e o f late-stage a l te ra t i on .

bedrock a l t e r a t i o n alsoI i s use fu l i n deciding age re la t i onsh ips o f a l t e r a t i o n

minerals i n alluvium.

Thorough know1 edge o f surface

The depth and nature o f t h e contact ( f a u l t e d o r deposi t ional ) between

a l luv ium and bedrock i n a borehole are extremely important f o r t h e

i n t e r p r e t a t i o n o f var ious geophysical surveys as we1 1 as subsurface

s t ructure. Generally t h i s contact i s e a s i l y determined unless t h e bedrock i s

immediately o v e r l a i n by composi t ional ly i d e n t i c a l gravel , conglomerate or, i n

the case of weathered c r y s t a l l i n e rock, by a t h i c k grus. Al luvium genera l ly

contains variably-colored, m u l t i p l e l i t h o l o g i e s , whereas bedrock tends t o be

homogeneous and uni formly co lo re Angular chips are t y p i c a l o f bedrock, but

a l s o may be produced from l a r g e r pebbles, cobbles o r boulders i n gravel o r

conglomerate. Chips from these sediments, however, may r e t a i n a few rounded

surfaces which b e l i e t h e i r or ig ins. Gravels general ly are ye l l ow ish t o

brownish colored from surface weathering dur ing erosion, t ranspor t and

deposition.

s i m i l a r l y , but w i l l be i n v a r i a b l y angular.

Chips from paleo-weathered zones on bedrock may be colored

D r i l l i n g r a t e and o the r borehole logs may help i d e n t i f y a bedrock-

a1 1 uv i um contact. For exampl e, d r i l l i ng r a t e t y p i c a l l y decreases dramat

23

i c a l l y

Page 35: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

c

i n bedrock, w i t h a corresponding increase i n t h e densi ty response. D r i l l i n g

rate, however, i s a f fec ted by o ther fac to rs than formation hardness, and

hardness contrast , i n fact , may be greater a t t he base of a weathered zone

than a t t h e base o f alluvium. A gradat ional contact between grus and i t s

parent c r y s t a l l i n e rock sometimes can be i n te rp re ted from t h e d r i l l i n g r a t e

and t h e degree o f weathering observed i n cut t ings.

A number o f features may help d i s t i n g u i s h a bedrock-alluvium contact as

f a u l t e d o r deposi t ional . A deposi t ional contact, f o r example, may e x h i b i t a

pa leosoi l , rego l i t h , o r weathered zone a t t h e top o f bedrock.

contact, by contrast , genera l ly lacks a weathered zone, although i t may be

A f a u l t

character ized by b recc ia t i on and a l t e r a t i o n o f one o r both formations.

f a u l t e d contact may cause a sharp de f l ec t i on o f a d r i l l ho le which w i l l be

apparent on a d i r e c t i o n a l survey. Surface t races o f known f a u l t s can be

pro jected downward t o t h e borehole, and t h e angles o f t he pro jec t ions compared

w i t h actual measured d ips on t h e f a u l t s t o determine t h e p r o b a b i l i t y t h a t

these s t ruc tu res i n t e r s e c t t h e borehole t o form t h e bedrock-a1 luvium

contact. S imi la r downward pro jec t ions o f bedrock erosional slopes should make

A

c l e a r i f t h e borehole bedrock-alluvium contact i s more l i k e l y t o be

deposi t ional . Sedimentary Rocks

Common sedimentary rocks -- sandstones, s i 1 tstones, shales and carbonates *

-- are very wel l documented (see, f o r example, t he references i n t h e

i n t roduc t i on t o t h i s sect ion), s ince they host o r are associated w i t h

petroleum reservoirs. T e r r e s t r i a l vo l can ic las t i c rocks, however, p a r t i c u l a r l y

as d r i l l cu t t ings , are l e s s thoroughly underst od.

commonly encountered i n geothermal and mineral exp lo ra t ion boreholes, they

Since these rocks are

24

Page 36: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

t

L

u

w i l l be emphasized i n t h e discussion which fol lows.

Tuffaceous o r vo lcanoclast ic sediments possibly a re t h e most d i f f i c u l t

c l a s t i c s t o log, s ince they tend to 'occu r i n complex sequences which may

inc lude water la in, a i r - f a l l and non-welded ash-flow t u f f s , lahars, lava f lows

and dikes. Tuffaceous sediments t y p i c a l l y are very heterogeneous, poor ly

sorted and al tered.

def ined t o be evident, although bedding may be i nd i ca ted by r a p i d changes i n

c o l o r and t e x t u r e from sample t o sample.

Bedding i n these immature sediments general ly i s t o o ill-

Volcanoclastic o r tuf faceous sediments commonly are so a r g i l l i z e d t h a t

most o r i g i n a l t ex tu res a re destroyed. The a r g i l l i z e d sediments thus may

resemble s i m i l a r l y a1 tered glassy volcanic o r subvolcanic i n t r u s i v e rocks o r

t u f f s .

grains.

The sediments, however, commonly conta in r e l e c t rounded d e t r i t a l

Free euhedral c r y s t a l s i n t h e a r g i l l i z e d ma t r i x are more t y p i c a l of

a l t e r e d volcanic o r subvolcanic i n t r u s i v e rocks,'whereas broken c r y s t a l s

general ly i n d i c a t e a p y r o c l a s t i c o r i g in .

Descr ipt ions o f tuffaceous o r volcanoclast ic sedimentary rocks should

include, i n a d d i t i o n t o g ra in size, sort ing, rounding, l l thology, mineralogy

and a l t e r a t i o n , t he type o f cementing mater ia l and po ten t i a l porosi ty.

Although formation c o l o r i n t h e subsurface i s o f t e n d i f f e r e n t from t h a t o f the

outcrop, i t should be noted f o r he lp i n c o r r e l a t i o n between boreholes.

degree o f l i t h i f i c a t i o n o r metamorphism a l so i s important.

shale has poor rese rvo i r p o t e n t i a l but a s l a t e -- i t s metamorphic equivalent

-- may develop f r a c t u r e permeabi l i ty .

The

For example, a

Si l iceous and calcareous s i n t e r , d i s t i n c t i v e hot spr ing deposits i n

outcrop, can as cu t t i ngs resemble a wide va r ie t y o f other rock types and

Page 37: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

i

I:

i L I I

c w

I,

a l t e r a t i o n products. S i l i ceous s i n t e r i s of p a r t i c u l a r i n t e r e s t i n geothermal

explorat ion, s ince i t ind ica tes past o r present rese rvo i r temperatures of a t

l e a s t 180OC (White e t al., 1971).

f o r a bedded s i l i c e o u s sediment o r hydrothermal s i l i c i f i c a t i o n . Some

s i l i c e o u s s i n t e r can be i d e n t i f i e d by a tendency t o be porous and t o

I n cu t t ings , however, i t can be mistaken

incorporate frothy-appearing p e t r i f i e d p lan t debr is o r casts, as a t Bal tazor

Hot Springs KGRA, Nevada (Hulen, 1979). Spring-deposited calcareous s i n t e r

( t r a v e r t i n e ) can be near ly impossible t o d i s t i ngu ish i n cu t t i ngs from cave

t rave r t i ne , f resh water limestone, a lga l deposits, borehole cement,

hydrothermal ve in c a l c i t e , o r p r a c t i c a l l y any f i n e grained calcareous

sedimentary rock.

o r i g i n of a suspected t r a v e r t i n e sample.

Volcanic, Subvolcanic and Hypabyssal Rocks

Petrographic study may be'necessary t o help c l a r i f y t h e

Volcanic, subvolcanic and hypabyssal rocks inc lude a wide va r ie t y o f rock

types, f a b r i c s and modes o f formation. Pyroc las t ic rocks are p a r t i c u l a r l y

d i f f i c u l t t o work w i t h i n cu t t i ngs because most large-scale tex tu res such as

so r t i ng and bedding w i l l be destroyed by d r i l l i n g . F a m i l i a r i t y w i th t h e

unique tex tu res and mineral compositions o f these rocks w i l l a i d t he logger.

Uncompacted pumice, f o r example genera l ly w i l l be destroyed dur ing d r i l l i n g

bu t fiamme (compacted pumice), shards and e u t a x i t i c t ex tu re may be v i s i b l e

w i th a b inocular microscope. The fragmental t e x t u r e o f a py roc las t i c rock

(which may requ i re petrographic conf i rmat ion) may g ive chips a mot t led

appearance even when a l tered. Phenocrysts genera l ly a re present both i n t u f f s

and flows, bu t i f broken are much more t y p i c a l o f a py roc las t i c o r i g in .

Cinders w i l l conta in unbroken phenocyrsts, but also rounded vesicles. As

prev ious ly discussed, non-welded t u f f s may be hard t o d i s t i n g u i s h from

tuf faceous sediments, but c l a s t rounding and so r t i ng as wel l as a h igh content

26

Page 38: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

o f rounded mul t i -1 i t h o l o g i c c l a s t s suggests water deposition. Rounding alone,

however, i s no t d e f i n i t i v e evidence o f sedimentary o r i g in , s ince s o f t t u f f

ch ips can be h igh l y rounded dur ing t ranspor t up t h e d r i l l hole.

Lava f lows and subvolcanic o r hypabyssal i n t r u s i v e s may be impossible t o

d i f f e r e n t i a t e as cut t ings, bu t several features, i f present, may be helpfu l

f o r t h e i r i d e n t i f i c a t i o n . Flows, p a r t i c u l a r l y near t h e i r tops and bottoms,

are more l i k e l y t o conta in rounded ves ic les o r amygdules and c h i l l e d and

ox id ized f low breccia. Subvolcanic o r hypabyssal rocks, on t h e other hand,

may have c h i l l e d borders bu t general ly lack margin brecc ia and, u n l i k e flows,

may have f a u l t contacts.

body i n quest ion would be evidence f o r an i n t r u s i v e or ig in . M inera l i za t ion

Baking o f t h e country rock on both contacts o f t h e

and a l t e r a t i o n i n the country rock adjacent t o t h e contact a l so would suggest

t he body t o be an in t rus ive .

Netamorphic and P lu ton ic Rocks

The metamorphic rocks, as a group, are perhaps t h e most d i f f i c u l t t o

recognize i n d r i l l cut t ings. Lower-grade metamorphic rocks as cu t t i ngs may be

i nd i s t i ngu ishab le from t h e i r igneous and sedimentary parent l i t h o l o g i e s .

Chips o f high-grade gneiss and migmatite, on t h e other hand, may c lose ly

resemble p lu ton i c rocks i n t e x t u r e and mineralogy.

p l u t o n i c rocks from coex is t ing gneisses can be c r u c i a l t o a geothermal

evaluation.

rocks and are less l i k e l y t o develop and sus ta in f r a c t u r e permeabi l i ty f o r

D is t ingu ish ing downhole

Gneisses, i f fo l i a ted , are less competent than massive p lu ton i c

- t h e m a l f l u i d flow.

Charac ter is t i c mineral assemblages i n d r i l l chips are t h e best i nd i ca to rs

o f metamorphism, espec ia l l y t h e h igher grades.

rock cons is t ing mostly o r e n t i r e l y o f quartz and b i o t i t e , o r conta in ing

For example, cu t t i ngs of a

27 . .

Page 39: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

I,

L I

L 1

L

rl L L

b

c

diagnost ic minerals such as c o r d i e r i t e , s i l l i m a n i t e and kyanite, are almost

c e r t a i n l y of h i gh-grade met amorphi c o r i g i n . such as c h l o r i t e , a l b i t e Bnd epidote, are much less useful as genet ic

Lower-grade met am o r ph i c m i ne ra l s ,

indicators , s ince they a re a l s o common i n hydrothermally a l t e r e d t e r r a i n (Rose

and Burt, 1979).

Cer ta in rock textures apparent i n d r i l l cu t t i ngs s t rong ly suggest a

metamorphic o r i g i n , whereas others are ambiguous, p a r t i c u l a r l y i n t h i n -

section. C r y s t a l l o b l a s t i c textures, r e s u l t i n g from c r y s t a l growth i n a s o l i d

medium, provide good evidence f o r metamorphism.

character ized by " t r i p l e po in t " g r a i n boundaries and/or by a mosaic of more o r

Such tex tu res are

l ess polygonal grains w i t h boundaries bear ing no d e f i n i t e r e l a t i o n s h i p t o

c r y s t a l lographic axes o r cleavage d i rect ions.

metamorphic rock only if p a r t i c u l a r l y wel l developed (as i n p h y l l i t e s and mica

schists) , since i t may a l s o form i n response t o flowage i n volcanics and a t

F o l i a t i o n i s diagnost ic of a

t he margins o f i n t rus i ves . Cataclasis, e longat ion o f grains and g ra in

aggregates, mortar texture, kink-banding and strain-shadowing, can be produced

not on ly by dynamic metamorphism, but a l so by renewed movement o f p a r t i a l l y

c r y s t a l l i z e d magma.

produced by t h e d r i l l i n g process.

Cataclasis and s t r a i n shadowing of minerals a lso may be

The c r y s t a l l o b l a s t i c Series, which ranks minerals by tendency t o form

euhedral c r y s t a l s i n a so l i d ,g rowth medium, may help i d e n t i f y a rock ch ip as

igneous o r metamorphic.

faces I n metamorphic rocks, f o r example, but are q u i t e common i n many p l u t o n i c

rocks.

Quartz and fe ldspar r a r e l y develop euhedral c r y s t a l

. A l t e rna t i ng mafic and f e l s i c segregations i n gneisses and sch is t s may be

homogenized i n a c u t t i n g s sample. I n the absence o f d iagnost ic minerals,

l d 28

Page 40: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

these layered metamorphic rocks can be d is t inguished from mine ra log i ca l l y

s i m i l a r but massive i n t r u s i v e rocks by t h e i r geophysical wel l l o g responses.

Whereas massive rocks produce f a i r l y uniform geophysical signatures, 1 ayered

rocks a re character ized by f l u c t u a t i n g and h i g h l y va r iab le responses.

RECOGNITION OF FAULTS AhD FRACTURES FROM DRILL CUTTINGS

Recognition o f f a u l t s and f rac tu res i s one o f t he most important aspects

o f subsurface exp lo ra t i on and development. Faul ts and f ractures commonly a re

the domi nant physical con t ro l s on t h e commodities under invest igat ion.

Faults, f o r example, host, t runca te and displace ore bodies, provide t raps f o r

petroleum accumulation and, i n geothermal systems, serve as major channels f o r

thermal f l u i d flow. Permeabi l i ty i n most geothermal systems, i n fac t , i s

provided by f a u l t s and f rac tu res developed i n otherwise t i g h t and impermeable

host rocks (Sanyal e t al., 1980).

Faul ts and f rac tu res penetrated i n d r i l l holes t r a d i t i o n a l l y are

i d e n t i f i e d i n d i r e c t l y . They a r e commonly " l o s t c i r c u l a t i o n " zones which

remove f l u i d s from a d r i l l i n g system.

system, causing a wel l "kick".

recognized by t h e i r responses on appropri a te we1 1 1 ogs , 1 nc lud i ng c a l i per

(borehole enlargement), acoust ic v e l o c i t y (which decreases i n d isrupted rock)

and r e s i s t i v i t y (which decreases i n f a u l t s o r f rac tu res if saturated wi th

conduct 1 ve f l u i d ) .

They a lso may con t r i bu te f l u i d t o the

In most cases, however, these s t ructures a r e

Faults, p a r t i c u l a r l y those developed i n competent rocks, occasional ly can

be recognized d i r e c t l y from d r i l l c u t t i n g s by the presence of s l i ckens id ing

and chips o f gouge, breccia, c a t a c l a s f t e and mylonite.

however, provide such physical evidence o f t h e i r existence.

Not a l l f a u l t s ,

Gouge and

29

Page 41: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

F ' u

i ; . c

L

u t' ! b

b

microbreccia genera l ly are s o f t and f r i a b l e , e a s i l y disaggregated by the

d r i l l 1 ng process and subsequently removed from cu t t i ngs dur ing sample

c o l l e c t i o n o r washing. Fau l ts d i s rup t i ng incompetent rocks such as mica

sch is ts may even lack a crushed zone, and there fore may completely escape

de tec t ion i n cu t t i ngs samples.

O r i l l i n g produces a r t i f i c i a l gouge, ca tac las i te and s l ickensides which

can be confused w i th t h e i r na tura l counterparts.

block o f massive, unf ractured quartz d i o r i t e dur ing laboratory a i r d r i l l i n g

Cutt ings produced from a

experiments conducted i n 1980 by Terra Tek, S a l t Lake City, Utah, conta in 1.5-

2 volume percent pseudo-gouge1 (Fig. 8; see a lso Figs. 1 and 2).

mater ia l , i d e n t i c a l t o t h a t observed i n cu t t i ngs from many boreholes, forms

conspicuously l ight -co lored, crudely d i sco id o r t abu la r chips which, although

f r i a b l e , a r e commonly slickensided.

This

FIG. 8 -- Dr i l l -produced pseudo-gouge chips hand-picked from laboratory a i r - d r i l l e d quar tz d i o r i t e cut t ings.

Several promi nent cha rac te r i s t i cs o f pseudo-gouge d i s t i n g u i s h it, though

no t i nvar i ably, from fau l t-produced gouge and breccia.

f r i a b l e , whereas na tura l mater ia l may be wel l - indurated and very r e s i s t a n t t o

Pseudo-gouge i s a1 ways

crumbling.

(o r cemented), although such a l t e r a t i o n can be simulated by crushing and

s t reak ing of rock-forming o r a l t e r a t i o n minerals i n the rock penetrated.

Slickensides on pseudo-gouge chips, probably produced mainly beneath tungsten

carbide "button" i n s e r t s i n t r i c o n e b i t s , commonly a re concave (Fig. 8), very

smooth though no t polished, and t h i n l y smeared w i t h maf ic minerals o r streaked

Only na tura l gouge and ca tac las i te can be hydrothermally a l t e r e d

l/ Actua l l y pseudo-cataclasite, but here in re fe r red t o as pseudo-gouge fo r convenience.

30

Page 42: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

c

i Figure 8. Drill-produced pseudo-gouge chips handpicked from 1 aboratory air-

dril led quartz diorite cuttings. surfaces. Dark 'material i s crushed and smeared biotite. Largest chip a t upper left i s 5 mm i n length.

Note characteristic concave

/

t

Page 43: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

c L

I L

w i t h dark b i t metal.

more l i k e l y t o be f l a t o r convex, polished, and furrowed o r s t r i a ted .

Natural sl ickensides, although ra re i n cut t ings, are

Fractures, along which no movement has occurred, general ly cannot be

d i r e c t l y detected i n c u t t i ngs by v i sua1 examination.

provided pathways f o r thermal f l u i d flow, however, as i n geothermal systems

and mineral deposits, t h e i r wall rocks may be hydrothermally al tered. Thus

Where f rac tu res have

a l t e r a t i o n o f cu t t i ngs may i n d i r e c t l y s ignal subsurface f rac tu r ing . Such

a l t e r a t i o n , however, commonly i s accompanied by reduct ion or e l im ina t i on o f

o r i g i n a l permeabil i t y through formation o f hydrothermal v e i n l e t s by open-space

f i l l i n g o f former f ractures.

Anomalously l a rge cu t t i ngs a l so may I n d i c a t e f ractur ing. I n w e l l Utah

State 14-2 a t Roosevelt Hot Springs KGRA, f o r example, w i t h i n a geophysical ly

confirmed (Glenn and Hulen, 1979), f rac tu red hot water en t r y zone between

487.7 and 548.6 m (1600 and 1800 ft), average ch ip s i z e (3-5 mm) i s t h ree t o

f i v e t imes as l a r g e as i n surrounding unfractured rock (Fig. 4).

c u t t i n g s may r e f l e c t t he r e l a t i v e ease w i t h which f rac tu red rock i s dislodged

by the d r i l l b i t . I n some cases however, l a r g e r cu t t i ngs may i n d i c a t e only a

change o f b i t s ; a l l o ther var iables equal, a new b i t w i l l produce l a r g e r

c u t t i n g s than a d u l l one.

These l a r g e r

INTERPRETATION OF HYDROTHERMAL ALTERATION I N CUTTINGS \

Most mineral deposits and geothermal systems a re accompanied by

hydrothermal a l t e r a t i o n o f t h e i r host rocks.

deposits commonly i s strong , pervasive and arranged i n we1 1 -devel oped zones o r

halos which i n exp lo ra t i on boreholes can be used t o determine vectors and

A l t e r a t i o n around mineral

approximate distances t o mineral i zat ion (Levinson, 1974, 1980; Rose and Burt,

t 31

Page 44: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

i

I L i 1979). . I n many geothermal systems, by contrast , a l t e r a t i o n i s genera l ly

weaker and more e r r a t i c a l l y d is t r ibu ted . Nonetheless, i t can be used t o he lp I

def ine the three-dimensional geometry o f these systems and t o l oca te and

p red ic t approach t o thermal f l u i d en t r y zones (Elders e t al., 1979; Browne,

1978; Sum1 and Takashima, 1976; Browne and E l l i s , 1970; Steiner, 1968). I

Recognition and i n t e r p r e t a t i o n o f a l t e r a t i o n i n cu t t ings i s somewhat more pi

l L d i f f i c u l t than i n core o r outcrop.

l a r g e r scale d iagnost ic features o f t h e a l t e r a t i o n and may r e s u l t i n

e l im ina t i on o f c e r t a i n a l t e r a t i o n minerals from t h e cu t t i ngs w i t h d r i l l i n g

f l u i d dur ing sample c o l l e c t i o n o r washing.

The d r i l l i n g process commonly destroys 1L 1

A l t e r a t i o n tex tu res and paragenetic re la t i onsh ips may be obscured o r l i I t :

b I

o b l i t e r a t e d i n cut t ings. A l l but the smal lest ve in le t s and t h e i r cross-

c u t t i n g re la t i onsh ips are destroyed dur ing cu t t i ngs production. I I n t e r p r e t a t i o n becomes more d i f f i c u l t as d r i l l ch ip s i z e decreases.

cu t t i ngs prepared from representat ive hydrothermally a1 te red surface rocks as

wel l as knowledge o f surface a l t e r a t i o n paragenesis are very usefu l f o r

subsurface paragenetic i n t e r p r e t a t i o n from actual cut t ings.

Simulated

Softer, more b r i t t l e , more r e a d i l y cleaved and f iner-gra ined a l t e r a t i o n c

(and rock-forming) minerals are r e a d i l y disaggregated by the d r i l l i n g process

and there fore may be depleted n cu t t i ngs r e l a t i v e t o corresponding u n d r i l l e d

rock. Hydrothermal c lays enco ntered i n mud-dr i l led we l ls commonly w i l l be

completely e l iminated from cu t t i ngs (along w i t h b e n t o n i t i c c lays present i n

t h e mud) dur ing sample c o l l e c t i o n o r washing.

r '

L I '

R e l i c t or paleohydrothermal a l t e r a t i o n , p a r t i c u l a r l y i n cu t t ings , can be b i nd is t ingu ishab le from a l t e r a t i o n produced by a present ly ac t i ve geothermal

32 *

Page 45: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

c L

u

system.

t y p i c a l l y occupy zones o f s t r u c t u r a l weakness which are read1 l y ref ractured,

prov id ing channels f o r renewed thermal f l u i d flow. A t Roosevelt -Hot Springs

KGRA, Utah, f o r example, r e f r a c t u r i n g o f dense, s i l i c i f i e d , c h l o r i t i t e d and

s e r i c i t l z e d c a t a c l a s i t e zones i s bel ieved t o be responsible f o r much o f t h e

geothermal rese rvo i r ' s present permeabi l i ty (Nielson e t a1 . , 1978; Sibbet t and

Even r e l i c t a l t e r a t i o n zones are o f i n te res t , however, as they

N i e l son, 1980).

A l t e r a t i o n mineralogy r e l a t i v e t o depth o f occurrence i n a geothermal

system czn provide clues t o t h e age of a l t e r a t i o n r e l a t i v e t o present

geothermal a c t i v i t y . Minerals which t y p i c a l l y form a t elevated temperatures

and/or pressures and occur a t shallow l e v e l s i n a c t i v e systems, such as

epidote (Zen and Thompson, 1974) a t Roosevelt Hot Springs KGRA are probably

pa 1 eo hydrot he rmal . Various contaminants i n c u t t i n g s may st rongly resemble natura l a l t e r a t i o n

D r i l l i n g muds and mud add i t i ves are t h e minerals encountered dur ing d r i l l i n g .

contaminants most commonly m i staken f o r indigenous a l t e r a t i o n products, but

cements and m e t a l l i c shavings can a l so cause i n t e r p r e t i v e er rors .

The bas ic ingredients o f d r i l l i n g muds are c lays which may a l s o occur as

hydrothermal a l t e r a t i o n minerals i n and around ore deposits and geothermal

systems. Bentonite, from which standard d r i l l i n g muds are prepared, i s a

h i g h l y va r iab le c l a y cons is t i ng dominantly of sodium- and/or calcium

montmori l loni te, bu t which may a l so contain, depending on i t s source,

k a o l i n i t e , i l l i t e , saponite and h e c t o r i t e (Patterson and Haydn, 1975).

I 7

i u i t : i i 'i; Montmori l loni te, k a o l i n i t e and i l l i t e a r e common a l t e r a t i o n products i n a c t i v e i

1 : geothermal systems (Browne, 1978) and i n a l t e r a t i o n haloes ( p a r t i c u l a r l y

a r g i l l i c ) around many m i neral deposits (Rose and Burt, 1979) . Attapul g i t e

Page 46: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

(palygorski t e ) and s e p i o l i te, used t o prepare salt-water-based and/or h igh

temperature muds (Westin, 1980; Carney and Meyer, 1976) are much more

r e s t r i c t e d i n na tura l occurrence (Patterson and Haydn, 1975) and therefore

less l i k e l y t o be mistaken f o r const i tuents o f t h e . d r i l l e d rock.

D r i l l i n g mud weight ing agents, which are added p r i m a r i l y t o con t ro l

formation pressure and decrease caving, are prepared from a v a r i e t y of heavy

minerals which a1 so occur as hydrothermal a1 t e r a t i o n products.

f requent ly used weight ing agent i s b a r i t e which, although r a r e l y repor ted from

major ac t i ve geothermal systems (Browne, 1978), i s a common ore and gangue

,mineral i n hydrothermal vein deposits. Other mud weight ing mater ia ls l i k e l y

t o be confused w i t h a l t e r a t i o n minerals i n d r i l l e d rock are used much less

commonly than ba r i t e . They inc lude ilmenite/magnetite, hematite, galena,

(which may contains spha le r i t e as an impur i ty) , and c a l c i t e o r limestone.

The most

Los t - c i r cu la t i on mater ia ls , added t o d r i l l i n g f l u i d t o r e s t r i c t o r

prevent f l u i d l o s s t o pores, f ractures, f a u l t s and s o l u t i o n c a v i t i e s

encountered du r i ng d r i l l 1 ng , are general l y 1 ow-densi ty organic mater i a1 s

u n l i k e l y t o be v i sua1 l y m i staken f o r hydrothermal a1 t e r a t i o n products.

organic mater ia ls inc lude nut and seed hu l l s , hardwood and cane f i be rs , ground

paper, wool, and a l f a l f a . Two o ther l o s t - c i r c u l a t i o n addi t ives, however,

processed mica and cellophane f lakes, may mimic indigenous mica i f c u r s o r i l y

examined. Impure processed mica ( p a r t i c u l a r l y ve rm icu l i t e ) a d d i t i o n a l l y may

conta in subs tan t ia l amounts o f such impur i t i es as c h l o r i t e , p lagioclase,

These

quartz and r u t i l e .

D r i l l i n g muds and mud addi t ives, r e a d i l y

cons t i tuents dur ing b inocular o r petrographic

even more troublesome i n analyses o f cu t t ings

34

confused w i t h na tura l rock

microscopic examination, a re

by X-ray d i f f r a c t i o n and atomic

Page 47: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

absorpt ion spectrophotometry. Dypvik (1981) has analyzed most o f the common

muds and add i t i ves by one o r both o f these methods.

on ly d r i l l i n g mud clays, b u t a lso many dominantly organic add i t i ves (such as,

for example, walnut h u l l s ) produce s t rong X-ray peaks which e a s i l y could be

confused with patterns generated by natura l const i tuents of the d r i l l e d

rock.

He has shown t h a t no t

/J

,

He .has a l s o shown t h a t many add i t i ves conta in s i g n i f i c a n t amounts o f

m e t a l l i c t r a c e elements. Bar i te, f o r example, may be enriched not only i n

s t ront ium (as expected), but a l so i n s i l v e r , lead, z inc and manganese. As

previously discussed, such spurious geochemistry i n c u t t i n g s could lead t o

erroneous conclusions about t h e nature o f and distance from a geothermal

resource o r m i neral deposi t . Most metals abraded from d r l l l s t f i n g s , casing, and downhole cementing

assemblies, i n t l u d i n g s t e e l , brass, bronze, monel , lead and aluminum can be

recognized i n cu t t i ngs as fo re ign debr is by t h e i r c h a r a c t e r i s t i c d u c t i l i t y and

tendency t o form discrete, cu r led shavings and peels. Steel , however, r e a d i l y

rusts, p a r t i c u l a r l y i n samples s tored under moist condit ions. The r u s t

s t rong ly resembles n a t u r a l l y occurr ing earthy t o waxy g o e t h i t i c t o hemat i t i c

" l imon i te " (Hulen, 1978) which, by contrast with steel, cannot be removed from

c u t t i n g s magnetical ly.

Rust i n cu t t i ngs commonly can be d is t inguished from natura l ly -occurr ing

l i m o n i t e by consider ing the depth of t h e sample r e l a t i v e t o t h e base o f

ox ida t i on as i n te rsec ted i n the borehole.

t h i s zone i s l i k e l y t o be rust , although i s o l a t e d pockets of l i m o n i t e may be

Earthy i r o n oxide i n a sample below

l o c a l l y present i n deeply ox id ized f a u l t s o r f r a c t u r e zones. Rust der ived

from s tee l and i r o n w i l l a l s o tend t o occur on ly on chip surfaces whereas

indigenous i r o n oxides may a lso occur i n f ractures, along c r y s t a l boundaries

Page 48: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

b c

L

and i n the i n t e r i o r s o f mineral grains.

SUMMARY AND CONCLUSIONS

. D r i l l cut t ings, i n s p i t e o f t h e i r disadvantages as borehole rock samples

r e l a t i v e t o core, can provide valuable in format ion about a subsurface resource

i f c a r e f u l l y sampled and nterpreted. I n t e r p r e t a t i o n o f cu t t i ngs from

geothermal and mineral exp lo ra t i on boreholes can be complicated by i n t r i c a t e

igneous and metamorphic l i t h o l o g y , s t r u c t u r e and hydrothermal a l t e r a t i o n as

wel l as severe contamination. These complications c m be minimized by

c m b i n i n g c r i t i c a l sc ru t i ny o f c u t t i n g s w i t h a f u l l understanding o f both

l o c a l (and reg iona l ) geology and t h e e n t i r e range o f l i k e l y borehole

contaminants. 10 be most e f f e c t i v e i n character iz ing a resource, c u t t i n g s

i n t e r p r e t a t i o n should be used i n conjunct ion w i t h a l l o ther methods o f

subsurface invest igat ion, p a r t i c u l a r l y geophysical we l l logging.

ACKNOWLEDGEMENTS

We g r a t e f u l l y acknowledge the generous f i n a n c i a l support o f t he U. S.

Department o f Energy, D iv i s ion o f Geothermal Energy and the valuable

suggestions and ca re fu l c r i t i c a l reviews o f Dennis Nielson, Jon Ze is lo f t , Mike

Wright, Jim S t r i ng fe l l ow and Mike B u l l e t t .

prepared by Dor is Cul len and Connie Pixton.

Un ive rs i t y o f Utah Medical I 1 l u s t r a t i o n s Department. The manuscript was

Drafted i l l u s t r a t i o n s were

Photographs were produced by t h e

organized and prepared by Ho l l y Baker.

36

Page 49: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

ci I I - u u

I ‘

1

r”!

,

REFERENCES

Appl, F. C. and Rowley, D. S., 1963, D r i l l i n g stresses on drag b i t c u t t i n g edges, i n C. Fa i rhus r t (ed.), Rock mechanics: New York, MacMillan Co., p. 119-T56.

Bamford, R. W., Christensen, 0. D., and Capuano, R. M., 1980, Multi-element geochemistry o f s o l i d mater ia ls i n geothermal systems and i t s appl icat ions, p a r t I -- t h e hot-water system a t t he Roosevelt Hot Springs KGRA, Utah: Univ. o f Utah Research Inst., Earth Sci. Lab., Rept. 30., 168 p.

o i l f i e l d equipment and services: Besto l i fe , 1980-1981, Por t ion o f products catalog i n Composite cata log o f

Houston, WoTd O i l , Gul f Publ ishing co., p. 953-957,

Browne, P. R. L., 1978, Hydrothermal a l t e r a t i o n i n a c t i v e geothermal f i e l d s :

Browne, P. R. L., and E l l i s , A. J . , 1970, The Ohaki-Broadlands hydrothermal

Ann. Rev. Ear th Planetary Sci., vol. 6, p. 229-250,

area, New Zealand 0- mineralogy and r e l a t e d geochemistry: Sci., V. 269, p. 97-131.

Am. Jour.

Carney, L. L., and Meyer, R. L., 1976, A new approach t o high-temperature SOC. Petrol. Eng,, 51st Ann. F a l l Tech. Conf., New d r i l l i n g f i e l d s :

Orleans, La., Oct. 3-6, 1976, Paper SPE-6025.

Chemical Rubber Company, 1976-1977, Handbook o f Chemistry and Physics (58th e d i t i o n ) : Cleveland, Ohio, C. R. C. Press.

Christensen, 0. D., 1980a, Geochemistry of t h e Colado geothermal area, Rershing County, Nevada: Rept. 39, 31 p.

cut t ings, Beowawe geothermal area, Nevada: Univ. o f Utah Research Inst., Earth Sci. Lab., Rept. 48, 28 p.

and atomic absorpt ion analyses: AAPG Bull., vot. 65, p. 744-748.

mineral zones i n t h e geothermal rese rvo i r of Cerro Pr ieto, Baja Cal i forn ia , Mexico: Univ. o f C a l i f o r n i a a t Riverside, Inst . of Geophysics and Planetary Physics, ~ Rept. UCR-IGPP 79/2.

Ewers, G. R., and Keays, R. R t h e Broadlands geotherma f i e l d , New Zealand:

Univ. o f Utah Research Inst., Earth Sci. Lab.,

, 1980b. Trace element geochemistry of gradient ho le

Dypvik, H., 1981, D r i l l i n g mud contamination o f samples i n x-ray d i f f r a c t i o n

Elders, W. A,, Hoagland, 3. R., and McDowell, S. D., 1979, Hydrothermal

1977, V o l a t i l e and precious metal zoning i n Econ. Geol., vol . 72,

p . 1337-1 354.

Glenn, W. E., and Hulen, 3. B., 1979, I n t e r p r e t a t i o n o f wel l l o g data from four d r i l l holes a t Roosevelt Hot Springs KGRA, Utah: Inst., Earth Sci. Lab., Rept. 28, 74 p.

Univ. o f Utah Res.

37

Page 50: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

Hal l i b u r t o n Services, 1980-1981, Sales and serv ice cata log no. 40 i n Composite cata log o f o i l f i e l d equipment and services: Publ ishing Co. , p. 3285-3524.

Hendrikson, R. R., Jones, A. H., Winzenreid, R. W., and Maish, A. B., 1980, F i e l d d r i l l i n g t e s t s of improved geothermal unsealed ro l ler -cone b i t s : Sandia Nat l . Lab. , Rept. SAND80-7079.

H i l l s , 3. M., 1949, Sampling and examination o f wel l cut t ings: AAPG Bull.,

Hobbs, R. G., 1979, Guidelines f o r logging, descr ib ing and sampling cores and

Houston, World m, Gulf

U id ;ti

k:

V O ~ . 33, pa 73-91.

c u t t i n g s o f coal and associated rocks a t t he d r i l l s i t e : U. S. Geol. Survey, Open-File Rept. 79-1522, 23 p.

holes, Roosevelt Hot springs KGRA and v i c i n i t y , M i l l a r d and Beaver Counties, Utah: 58 p.

Painted H i l l s thermal areas, Humboldt County, Nevada: Research Inst., Earth Sci. Lab., Rept. 27, 20 p.

o i l f i e l d equipment and servlces:

I

Hulen, J. B., 1978, Strat igraphy and a l t e r a t i o n , 15 shallow thermal gradient

Univ. o f Utah Research Inst., Earth Sci. Lab., Rept. 9,

Hulen, J. B., 1979, Geology and a l t e r a t i o n o f t he Bal tazor Hot Springs and Univ. o f Utah :I

I;

L

Jet-Lube, 1980-1981, O i l f i e l d products catalog i n Composite cata log o f Houston,World O i l , Gulf Publ ishing

C O O , p. 4157-4164.

Kappelmeyer, O., and Haenel, R., 1974, Geothermics: Ber l in , Gebruder Borntraeger, Geoexploration Monographs, Series 1, No. 4.

Keys, S., 1979, Borehole geophysics i n igneous and metamorphic rocks: presented a t 5Oc. Prof. Well Log Analysts 20th Ann. Symp., Tulsa,

Paper

: L Oklahoma, June 3-5.

Levinson, A. A., 1974 (w i th 1 0 Supplement), I n t roduc t i on t o exp lo ra t i on W i 1 met t e, ll., Applied Publ. Co., 924 p.

Low, 3. h., 1977, Examination o f wel l cu t t i ngs and t h e l i t h o l o g i c l o g i n

geoch emi s t ry :

Leroy, L. W., Leroy, D. O., and Raese, J. W., eds., Subsurface ge’o7bgy (4 th e d i t i o n ) :

c u t t i n g s (2nd e d i t i o n ) :

Proc,, 2nd U. N, Symp, on Dev. and Use o f Geoth. Resources, San Francisco, Ca l i f o rn ia , May 20-

Golden, Colorado, Colorado School o f Mines, p. 286-303.

Maher, 3. D., 1964, The composite i n t e r p r e t i v e method of logging d r i l l

Maurer, W. C., 1976, Geothermal d r i l l i n g technology:

Oklahoma Geol. Survey Guidebook X I V , 48 p.

29, 1975, p. 1509-1521.

Moore, P. L., 1974, D r i l l i n g pract ices manual: Tulsa, The Petroleum Publ ishing Co., 448 p.

Page 51: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

' 0

Nelson, P. H., and Glenn, kI. E., 1975, Inf luence o f bound water on the neutron l o g i n mineral ized igneous rocks: SOC. Prof. Well Log Analysts Annual Logging Symposium, New Orleans, Louisiana, June, Paper M, 9 p.

and Samberg, S. M., 1978, Geology o f Roosevelt Hot Springs KGRA, Utah: Univ. o f Utah Research Inst., Earth Sci. Lab., Rept. 12, 120 p.

Mech. Min. Sci. , vol . 9, p. 261-270.

Nielson, D. L., Sibbett, B. S., McKinney, 0. B., hulen, J. B., Moore, J. N.,

Nishimatsu, Y., 1972, The mechanics o f rock cu t t i ng : I n te rna t i ona l Jour. Rock

O i l Center Research, Inc., 1980-1981, Product in format ion catalog, 24p.

Parks, R. D., 1957, Examination and va luat ion o f mineral property:

Patterson, S. H., and Haydn, H. M., 1975, Clays i n Lefond, S. J., ed.,

Rose, A. W., and Burt, D. M., 1979, Hydrothermal a l t e r a t i o n i n Barnes, H. L., New York,

Reading, Mass., Addison-Wesley Pub1 . Co, Inc., 507 p.

I n d u s t r i a l minerals and rocks (4th edit ion)- New York, AIME, p. 519-585.

ed., Geochemistry o f hydrothermal ore deposits (2nd edimon): John Wiley and Sons, p. 173-235.

Sanyal, S. K., Wells, L. E., and Bickham, R. E., 1980, Geothermal w e l l l o g i n t e r p r e t a t i o n -- s t a t e o f t h e a r t ( f i n a l repo r t ) : Rept . LA-82 11-MS . o f rocks from measurements on fragments and i t s app l i ca t i on t o heat-f low determi nation:

Campbell E-2, Geothermal t e s t we1 1 , Humbol d t House geothermal prospect, Pershing county, Nevada: Rept. ( i n press).

Los Alamos Sci. Lab.

Sass, 3. H., Lachenbruch, A. H., and Monroe, R. J., 1971, Thermal conduc t i v i t y

Jour. Geophys. Res., vo l . 76, no. 14, p. 3391-3401.

Sibbett, B. S., and Glenn, W. E., 1981, L i tho logy and wel l l o g study o f

Univ. o f Utah Res. Inst., Earth Science Lab.

Sibbett, B. S., and Nielson, 0. Lo, 1980, Geology o f the cen t ra l Mineral Mountains, Beaver County, Utah: Lab., Rept. 33, 42 p.

mechanics, i n D. L. Sikarskie, (ed.) Rock mechanics symposium: Amer. SOC, Mech. E g o , AMD vol. 3, p. 41-71.

Smith, D. K., 1974, Cements and Cementing i n Moore, P. L., ed., D r i l l i n g p r a c t i c s manual :

Somerton, bl. h. , 1959, Laboratory study o f rock breakage by r o t a r y d r i l l i n g ; pt. 2, d iscussion by R. Simon: P t . 1, May, p. 92-97:

New Zealand: Clays and Clay Minerals, vol. 16, p. 193-213,

Univ. o f Utah Research Inst., Earth Sci.

Sikarskie, D. L. and Cheatham, 3. B., Jr., 1973, Penetrat ion problems i n rock

Tulsa, The P e t r o l e u m u b l i s h i n g Company, p. 400-448.

AIME, Jour. o f Petroleum Tech., vol. 11, P t . 2, Dec., p. 78-80.

Steiner, A., 1968, Clay m i nerals i n hydrothermally a l t e r e d rocks a t Wai rakei,

39

Page 52: DISCLAIMER - UNT Digital Library · Interpretation Handbook, 2nd edition (in press) ) ... knowledge of drilling technology, local geology and the full range of potential borehole

e Sumi, K. and Takashima, I., 1976, Absolute ages o f the hydrothermal a l t e r a t i o n

halos and associated volcanic rocks i n some Japanese geothermal f i e l d s : Proc., 2nd U. N. Symp. on Dev. and Use o f Geoth. Resources, San Francisco, Ca l i f o rn ia , May 20-29, 1975, p. 625-634.

s i id

Swanson, R. G., 1981, Sample examination manual:

U. S. Steel (McGannon, H.E., ed.), 1964, The making and shaping o f s tee l (8th

Varnado, S. G., 1980, Geothermal d r i 11 i ng and compl e t i o n technology

AAPG Methods i n Exp. Ser., La/ 35 p.

e d i t i o n ) , 1300 p.

devel opment program semi -annual progress report , Apr i 1 -September 1979: Sandia Nat l . Lab., Rept. SAND79-2397, 232 p.

We1 I s , J. H., 1969, Placer examination p r i n c i p l e s and pract ice: D.C., U. S. Government P r i n t i n g Off ice, 209 p.

Westin, S.! 1980, Imperial Val ley d r i l l i n g procedure i n Basic geothermal d r i l l i n g and completion technology: Geoth. ResoTces Council Tech. Tra in ing course No. 3, March 24-26, Albuquerque, NM.

hydrothermal systems compared with hot-water systems:

I

u

Washington,

w LJ

u u u

White, D. E., Muf f ler , L. 3. P., and Truesdell, A. H., 1971, Vapor-dominated Econ. Geol . , vol .

66, p. 75-97.

Wolke, R., 1980, A i r d r i l l i n g i n Basic geothermal d r i l l i n g and completion technology: 24-26, A1 buquerque, NM.

e a u i l i b r i a re la t i ons : Ann. Rev. Earth and Planetary Sciences, vol. 2,

Geoth. Resouzes Council Tech. Tra in ing Course No. 3, March -

Zen, E., and Thompson, A. B., 1974, Low-grade regional metamorphism -- mineral

p . 179-212. ii