Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent...

25
Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999 Advisor : Chris Rogers (Tufts University) Committee Members : Vincent Manno (Tufts University)

Transcript of Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent...

Page 1: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference

Frame of a Turbulent Flow

James A. BickfordM.S.M.E. Defense

10 August 1999

Advisor : Chris Rogers (Tufts University)

Committee Members : Vincent Manno (Tufts University)

Martin Maxey (Brown University)

Page 2: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Outline

• Overview and Applications• Quasi-numerical Simulation

– QNS Method– Velocity autocorrelations, spectra– Integral scales– u’– Anomalous drift

• Digital Particle Image Velocimetry– DPIV Method– Kolmogorov estimates– Effects of preferential concentration

Page 3: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Particles and Turbulence

• Turbulent Fluid Fluctuations– Occur on a range of length and

time scales

– Suspended particles respond to these scales

f

pSt

18

2pd

p

d

plf

dg

u

vS

'pd gv

Page 4: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Applications

• Engine combustion, radiation and pollution control, volcanic erruptions

• Aeolian Martian processes

• Formation of planetary bodies and large scale structure of the universe

1 0 0 0 0 .0

-5 0 0 .0

0 .0

5 0 0 .0

1 0 0 0 .0

1 5 0 0 .0

2 0 0 0 .0

2 5 0 0 .0

3 0 0 0 .0

3 5 0 0 .0

4 0 0 0 .0

4 5 0 0 .0

5 0 0 0 .0

5 5 0 0 .0

6 0 0 0 .0

6 5 0 0 .0

7 0 0 0 .0

7 5 0 0 .0

8 0 0 0 .0

8 5 0 0 .0

9 0 0 0 .0

9 5 0 0 .0

8 0 0 0 .0-8 0 0 0 .0 -6 0 0 0 .0 -4 0 0 0 .0 -2 0 0 0 .0 0 .0 2 0 0 0 .0 4 0 0 0 .0 6 0 0 0 .0

Page 5: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Three-tiered research approach

• Tactical approach uses separate but complimentary methods– Microgravity flight experiments

– Direct numerical simulations

– Quasi-numerical simulations

Page 6: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Quasi-Numerical Overview

• Technique– Hybrid numerical-experimental– Two-axis traverse emulates a virtual particle in a water flow– Measures turbulence statistics in the particle’s reference frame

• Variable Parameters– Particle time constant

• (size)

– Drift velocity • (gravity)

– Reynolds number • (turbulence intensity)

• Data Acquisition Methods– Laser Doppler Velocimetry– Digital Particle Image Velocimetry

Page 7: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

QNS Methodology

gVUdt

dvpf

p

p 1Read Fluid Velocity

Update Traverse Velocity

gVUdt

vdpf

p

p ˆˆˆ1ˆ

Repeat >> Tk

Page 8: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Particle Response to Turbulence1 7 .5

-2 5 .0

-2 2 .5

-2 0 .0

-1 7 .5

-1 5 .0

-1 2 .5

-1 0 .0

-7 .5

-5 .0

-2 .5

0 .0

2 .5

5 .0

7 .5

1 0 .0

1 2 .5

1 5 .0

4 5 0 0 .00 .0 5 0 0 .0 1 0 0 0 .0 1 5 0 0 .0 2 0 0 0 .0 2 5 0 0 .0 3 0 0 0 .0 3 5 0 0 .0 4 0 0 0 .0

F lu id V e lo c ity (mm/ s )

P a rtic le V e lo c ity (mm/ s )

3 0 .0

-3 5 .0

-3 0 .0

-2 5 .0

-2 0 .0

-1 5 .0

-1 0 .0

-5 .0

0 .0

5 .0

1 0 .0

1 5 .0

2 0 .0

2 5 .0

5 5 0 0 .00 .0 5 0 0 .0 1 0 0 0 .0 1 5 0 0 .0 2 0 0 0 .0 2 5 0 0 .0 3 0 0 0 .0 3 5 0 0 .0 4 0 0 0 .0 4 5 0 0 .0 5 0 0 0 .0

F lu id V e lo c ity (mm/ s )

P a rtic le V e lo c ity (mm/ s )

3 5 .0

-2 5 .0

-2 0 .0

-1 5 .0

-1 0 .0

-5 .0

0 .0

5 .0

1 0 .0

1 5 .0

2 0 .0

2 5 .0

3 0 .0

4 0 0 0 .00 .0 5 0 0 .0 1 0 0 0 .0 1 5 0 0 .0 2 0 0 0 .0 2 5 0 0 .0 3 0 0 0 .0 3 5 0 0 .0

F lu id V e lo c ity (mm/ s )

P a rtic le V e lo c ity (mm/ s )

f

pSt

18

2pd

p

d

TimeTime

Vel

ocit

yV

eloc

ity

Vel

ocit

y

Particle Velocity

Fluid Velocity (along particle path)

Page 9: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Movie - “QNS in action”

Page 10: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Effect of Gravity on Velocity Autocorrelations

1 .0

-0 .1

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

4 0 0 0 .00 .0 5 0 0 .0 1 0 0 0 .0 1 5 0 0 .0 2 0 0 0 .0 2 5 0 0 .0 3 0 0 0 .0 3 5 0 0 .0

Sg = 0

Sg = 0.6

Sg = 1.3

Sg = 2.0

Sg = 2.6

Streamnormal Fluid Velocity Autocorrelation (Tp = 250 ms)

Gravity• Decreases Correlation times

•“crossing trajectories” effect

• Increases relative particle energy at higher frequencies•Little effect on fluid spectra

Time

Rii /

u’2

Page 11: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Effect of Particle Inertia on Velocity Autocorrelations

Particle Inertia• Increases particle correlation times• Almost no effect on fluid correlations or spectra•Decreases relative energy at higher frequencies

1 .0

-0 .1

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

4 0 0 0 .00 .0 5 0 0 .0 1 0 0 0 .0 1 5 0 0 .0 2 0 0 0 .0 2 5 0 0 .0 3 0 0 0 .0 3 5 0 0 .0

St = 2.6

St = 4.4

St = 6.1

St = 8.8

St = 12.3

St = 17.5

Streamnormal Fluid Velocity Autocorrelation (Sg = 0)

Time

Rii /

u’2

Page 12: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Effect of Gravity on Integral Scales

1.500

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

3.00.0 0.5 1.0 1.5 2.0 2.5

Best Fit

St = 2.6

St = 4.4

St = 6.1

St = 8.8

St = 17.5

Sg

Gravity• Fluid Scales Decrease

• Streamwise• Streamnormal (more)

• Particle Scales•Possible decrease (tiny)

• p-L fluid scales • ME = pL @ Sg = 1

T2p-

L /

T2m

e

Page 13: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Effect of Particle Inertia on Integral Scales

T1p-

L /

T1m

e

Stme

2.400

0.800

1.000

1.200

1.400

1.600

1.800

2.000

2.200

2.00.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Best Fit

Drift = 0%

Drift = 2.5%

Drift = 5%

Drift = 7.5%

Drift = 10%

Inertia•General increase in fluid and particle integral scales•Possible local peaks

• Tf ~ 1 (particle)• Tf ~ 0.7 (fluid)•SW more prominent

Page 14: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Anomalous Drift Velocities

0.007

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

2.00.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Best Fit

Drift = 0%

Drift = 2.5%

Drift = 5%

Drift = 7.5%

Drift = 10%

(Mea

sure

d D

rift

- I

mpo

sed

Dri

ft)

/ U

Stme

Page 15: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

U’ Dependence on Gravity and Particle Inertia

U’ ipl

/ U

’ ime

Streamwise Streamnormal1.0

0.6

0.7

0.8

0.9

2.00.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Drift = 0%

Drift = 2.5%

Drift = 5%

Drift = 7.5%

Drift = 10%

1.0

0.6

0.7

0.8

0.9

4.00.5 1.0 1.5 2.0 2.5 3.0 3.5

Stme Stme

Page 16: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Mechanisms Dictating Particle Behavior

Looking beyond single point statistics• Vorticity as a governing force for particle motion

•Preferential concentration

Page 17: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Digital Particle Image Velocimetry

• Four computers used during simultaneous QNS– Master control

– Traverse control (DSP)

– Frame grabber

– Laser and camera pulse control

• 750 mW pulsed diode laser illuminates a 2-D plane of the flow

• Dichroic filter allows camera and LDV regions to coincide

• Kodak ES-1 camera grabs 1008x1018 pixel images at 30 Hz

Page 18: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Image Correlations

• Images broken into sections (interrogation windows)

• Sub-images cross-correlated to produce vector field

Page 19: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Bad Vector Identification

• Bad correlations (lighting, dirt, 3-D effects)

• Bad vectors are identified by comparing the velocity of a given vector to its surrounding neighbors.

22iii dvdu

γ = 2 (good)

γ = 2 (good)γ = 8 (bad) γ = 6 (bad)

Page 20: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Tagged Vector Replacement

• Average with surrounding vectors

– iterate to fix coincident vectors– inaccurate velocities– reduced resolution

• Replace with higher order interpolated value

– more accurate interpolation– same reduced resolution

• Use secondary correlation peaks– no loss of resolution or

accuracy

Page 21: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Estimation of the Kolmogorov Fluid Time Scale

• Kolmogorov Fluid Time Scale

21115 xu

21

• Results

Re Tk (ms) Std (ms) V ectors

3300 201 11 336350

6600 57 6 168175

Page 22: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Effect of Preferential Concentration on Particle Path

Page 23: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Conclusion

• Gravity and Inertia– Affect particle trajectory

which in turns affects• Integral scales

• Measured u’

• Measured vorticity

• Observed Anomalies– Drift– Integral scale

dependence

Page 24: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Acknowledgements

• Committee Members– Chris Rogers *

– Vincent Manno

– Martin Maxey

• Staff– Jim Hoffmann, Vinny Maraglia

– Audrey-Beth Stein, Joan Kern

• TUFTL– Becca Macmaster, AJ

Bettencourt

– Dave McAndrew, Dan Groszmann, Scott Coppen, Jon Coppeta, Merre Portsmore

Page 25: Direct Measurement of Particle Behavior in the Particle-Lagrangian Reference Frame of a Turbulent Flow James A. Bickford M.S.M.E. Defense 10 August 1999.

Ainley & Bickford Rii Comparisons

1 .0

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

2 5 0 0 .00 .0 5 0 0 .0 1 0 0 0 .0 1 5 0 0 .0 2 0 0 0 .0

Ainley Data, Ainley Code

Ainley Data, Groszmann Code

Bickford Data, Groszmann Code

U Fluid Velocity Autocorrelations1 .1

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

2 5 0 0 .00 .0 2 5 0 .0 5 0 0 .0 7 5 0 .0 1 0 0 0 .0 1 2 5 0 .0 1 5 0 0 .0 1 7 5 0 .0 2 0 0 0 .0 2 2 5 0 .0

Ainley Data, Ainley Code

Ainley Data, Groszmann Code

Bickford Data, Groszmann Code

U Particle Velocity Autocorrelations• Fluid Velocity Autocorrelation • Particle Velocity Autocorrelation