Direct-Current Nanogenerator Driven by Ultrasonic Waves

10
Direct-Current Nanogenerator Driven by Ultrasonic Waves Bryan Schubert EE C235 April 9, 2008 X. Wang, J. Song and Z. L. Wang, Science 316, 102 (2007).

description

Direct-Current Nanogenerator Driven by Ultrasonic Waves. Bryan Schubert EE C235 April 9, 2008. X. Wang, J. Song and Z. L. Wang, Science 316 , 102 (2007). Application. Energy scavenging Remote powering of implanted devices Force/pressure sensors. - PowerPoint PPT Presentation

Transcript of Direct-Current Nanogenerator Driven by Ultrasonic Waves

Page 1: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Direct-Current Nanogenerator Driven by Ultrasonic Waves

Bryan Schubert

EE C235

April 9, 2008

X. Wang, J. Song and Z. L. Wang, Science 316, 102 (2007).

Page 2: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Application

• Energy scavenging

• Remote powering of implanted devices

• Force/pressure sensors

X. Wang, J. Song and Z. L. Wang, Science 316, 102 (2007).

Page 3: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Principle of operation

• Piezoelectric effect:– d is piezoelectric coefficient

Z. L. Wang and J. Song, Science 312, 242 (2006).

dE zz /

Page 4: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Principle of operation

• Pt-ZnO Schottky barrier

Z. L. Wang and J. Song, Science 312, 242 (2006).

AFM scan of nanowire array

Page 5: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Principle of operation

• Nanowire contact scenarios:I. & II. Nanowire is bent until

compressed side contacts electrode.

III. Resonating nanowire.

IV. Compressed nanowire.

X. Wang, J. Song and Z. L. Wang, Science 316, 102 (2007).

Page 6: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Fabrication

X. Wang, J. Song and Z. L. Wang, Science 316, 102 (2007).

*J. Frühauf and S. Krönert, Microsyst. Technol. 11, 1287 (2005).

• ZnO Nanowires– Grown on Al2O3, using Au particles as catalyst for Vapor-Liquid-Solid process.

• 10/μm2 density• 1 μm long• 40 nm diameter

• Pt-coated Si zigzag electrode– Wet-etching*

• 1 μm peak-to-peak• 200 nm Pt layer

• Total device• 2 x 106 μm2 area

Page 7: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Performance

• Equivalent circuit

– Vs, nanowire source

– Ri, active NW contact resistance w/ electrode

– Rw, inactive NW resistance – 30 kΩ

– Rc, measurement device contact resistance w/ electrode – 30 Ω

– IA ≈ Vs/(Rc+Ri)

– V ≈ -VsRw/(Ri+Rw)

• Output for 41 kHz wave

– 0.15 nA increase in IA

– V = -0.7 mV output

– R = 3.56 kΩ

– Estimated 250 to 1000 NW engaged

X. Wang, J. Song and Z. L. Wang, Science 316, 102 (2007).

Page 8: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Performance

• Alternative designs– CNTs are not piezoelectric– Flat electrode does not allow contact of compressed edge.

X. Wang, J. Song and Z. L. Wang, Science 316, 102 (2007).

Page 9: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Performance

X. Wang, J. Song and Z. L. Wang, Science 316, 102 (2007).

* Z. L. Wang and J. Song, Science 312, 242 (2006)

• Durability– Can produce dc output

for over 1 hour

• Power– 1 to 4 fW per fiber– 1 pW total output– 0.00125 to 0.005% of

fibers contribute

• Efficiency*– Mechanical-to-

electrical, 17 to 30%

Page 10: Direct-Current Nanogenerator Driven by Ultrasonic Waves

Improvements

• Control nanowire dimensions to optimize power per nanowire (1 fW to 10 fW per fiber).

• Control spacing and patterning to optimize nanowire co-operation (10 μW/cm2 => 0.2 μW for this device).