Dimensional Molding Shrinkages

18

description

How to manage molding shrinkage for engineers.

Transcript of Dimensional Molding Shrinkages

  • High Performance Thermoplastics 1

    Dimensional molding shrinkage of athermoplastic part is a typical phenomenonrelated to the injection molding process,caused by the volumetric shrinkage, duringand after molding cycle.For this reason, cavities, from which part ismolded, have to be measured consideringthis important aspect, so that the part initself has its desired measures.However, the shrinkage entity is difficult tobe evaluated because it is linked to manyconcomitant factors such as materialfeatures, part geometry and transformationconditions.Purpose of this experimentation is toanalyze the interact ion betweenproduct-process variables and moldingshrinkage property.After introducing terms and definitions(in tabular form), the first section concernsthe material typology (chemical structureand filling process); the second oneanalyses the influence of part geometry,underlining, above all, the part thickness;the third section, concerns transformationconditions.Among transformation conditions, it isoften important to analyze some parametersjointly. Injection molding is, in fact, atechnology based on the combination ofdifferent physical properties such astemperature, speed, pressure and time.Tests have been performed, in mostcases, on semi-crystalline resins(prevalently PA66). These are very sensitiveto shrinkage phenomena and to allconnected parameters, unlike amorphousresins.The exposition is supplemented, dependingon the circumstances, with schedules, graphsor explanation diagrams. Otherwise curveshave been obtained keeping constanttransformation parameters.Different typologies of test specimens havebeen used (specified from time to time); forthe study of transformation parameters,PLATE ISO 294-3 D2 TYPE is prevalentlyused. It is provided with cavity transducer,which allows important studies abouteffective pressure load.Using different size and thicknesses testspecimens, the obtained results underlinesimilar trends; however these trends can havesensitively different values. IN

    TRO

    DU

    CTI

    ON

  • Hig

    h P

    erfo

    rman

    ce T

    herm

    opla

    stic

    s

    2

    RM Medium molding shrinkage(RL+ RT)/2

    [%]It defines in percentage the medium shrinkage entity:

    RMmin; RMmed; RMmax

    RD Differential shrinkageRT-RL

    [%]

    It defines the difference between RT and RL; theobtained value is inversely proportional to the partplanarity:

    RDmin; RDmed; RDmax

    WL Side warpage parallel to theinjection flow((Ln-Lm min)/Tn)*10

    [10- 2

    mm/cm]

    It defines the side warpage entity parallel to the flow,which is how many hundredths of millimeters ofbending are obtained for each centimeter of platelength.The obtained value is inversely proportional to thepart planarity

    WT Side warpage orthogonal to theinjection flow((Tn-Tm min)/Ln)*10

    [10- 2

    mm/cm]

    It defines the side warpage entity orthogonal to theflow, which is how many hundredths of millimeters ofbending are obtained for each centimeter of platelength.The obtained value is inversely proportional to thepart planarity

    S Planarity indexProportional calculus asfunction of RD e W (100for RD and W= 0,0 forRD=1 and W= 4)

    Data Definition Calculus Practical meaning

    Ln Part nominal length parallel to theinjection flow

    Tn Part nominal length orthogonal tothe injection flow

    Lm Real part measure parallel to theinjection flow

    Tm Real part measure orthogonal to theinjection flow

    RL Molding shrinkage parallel to theinjection flow((Ln-Lm)/Ln)*100

    [%]

    It defines in percentage shrinkage entity parallel tothe injection flow:

    RLmin; RLmed; RLmax

    RT Molding shrinkage orthogonal to theinjection flow((Tn-Tm)/Tn)*100

    [%]

    It defines in percentage the shrinkage entityorthogonal to the injection flow:

    RTmin; RTmed; RTmax

    DATA

    RD, differential shrinkage

    VALUE

    -0.200.20

    0.200.40

    0.400.60

    0.600.80

    PLANARITY

    EXCELLENT

    GOOD

    MIDDLE

    SCARCE

    WARPAGE

    >1.00 VERY BAD

    WL, WT, side warpage

    01

    12

    23

    34

    VERY LOW

    LOW

    MIDDLE

    HIGH

    >4 VERY HIGH

    S, dimensional stability

    0030

    3050

    5070

    7090

    90100

    DIMENSIONALSTABILITY

    VERY BAD

    SCARCE

    MIDDLE

    GOOD

    EXCELLENT

    [A] Used terms and definitions

    [B] Practical meaning of differential shrinkage and Side warpage

    It defines a significant value of a part dimensionalstability considering RD, WL and WT

  • High Performance Thermoplastics 3

    At room temperature, parts, molded withthermoplastic resins, may have some areas inwhich macromolecules tend to arrangethemselves in parallel one to each other(ordered), alternated in region, in which arearranged disorderly. The first one percentage(crystalline), in comparison with the secondone (amorphous) determines the crystallinepolymer degree. In practice, there are amorphousresins (up to 0%) and semi-crystalline resins(up to 70%).This condition is extremely important for theshrinkage phenomenon. In fact, among semi-crystalline resins, over glass-transition temperature,macromolecules, arranged in the ordered

    areas, start untying themselves from theirstructure, obtaining a higher and highermobility. As soon as the fusion temperature isreached, macromolecules are completely freeand the entire mass acquires a totally amorphousstructure.This phenomenon is associated with an importantspecific volume increase [C]. This is the typical polymer condition beforebeing injected into the cavity mold. As it cools,macromolecules tend to organize themselvesaccording to their own nature: they recover theprimary crystalline percentage. In the newreordered areas, the free space among moleculesis lower than the amorphous areas: a concretespecific volume reduction (shrinkage) is thusobtained.

    For this reason, the higher is the densityand the crystalline areas extension, thehigher will be the mold shrinkage.In the amorphous resins, on the contrary, thecooling has the only effect to cool the structure,without any molecular reorganization. Theresulting low shrinkage is practicallycaused by the reduction of specific volume,due to drop in temperature.The crystalline degree of the part is alsoinfluenced by other contingent factors, relatedto the filling processes (for example nucleations),to the part geometry (especially thickness), tothe transformation conditions (temperaturesand pressures).

    Summarizing, in relation to technicalThermoplastics, it is necessary to considerthese variables: Derived from material:

    Resin nature; Semi-crystalline; Amorphous.

    Composition: Reinforcements; Mineral fillers; Filling processes.

    Derived from part: Mold geometry.

    Derived from process: Transformation parameters.

    2 - S H R I N K A G E P H E N O M E N O N

    Semi-crystalline Semi-crystalline structure

    Amorphous structureWeight increase

    Semi-crystallinestructure

    Volumetric shrinkagedue to cooling

    +Molecular organization

    High shrinkage

    PolymerSpecific weight connected

    to temperature

    Before Transformation(Granulate, in hopper)

    Heating effect(Melt mass, in

    plasticizing barrel)

    Cooling effect(In the mold cavity)

    Mold shrinkage(Influenced factors)

    Amorphous Amorphous structure Amorphous structureWeight increase

    Amorphous structure

    Volumetric shrinkage onlydue to cooling

    Low shrinkage

    [C] Resume

    TEMPERATURE

    TEMPERATURE

    VO

    LUM

    EV

    OLU

    ME

  • Hig

    h P

    erfo

    rman

    ce T

    herm

    opla

    stic

    s

    Semi-crystalline resinsSemi-crystalline resins have a highshrinkage tendency during the cooling(1.22.5% on the neat resins); theyorientate themselves on the injection flow,allowing the creation of differentialshrinkage (RD) and/or warpages(WL-WT) easier, above all if theyare filled with anisotropic fillers,such as glass and carbon fibers.

    Amorphous resinsAs amorphous resins have notmolecular regularities, which haveto be restored during the cooling,they have lower shrinkages(0,41.0%) and they are moredimensionally stable.In the table D it is reported aresume about molding shrinkageindicative values of the mostimportant neat resins, in theirnormal transformation conditions.The diagram 1 represents the RL-RTcorrelation and allows to finddifferences between the twochemical natures. In this diagram itis possible to notice the diagonal brokenline, which corresponds to RD=0 (any

    warpage connected to the differential shrinkage).The positioning along this directrixmeans planarity and dimensional stability.

    4

    2.1 THE MATERIAL2.1.1 - RESIN CHEMICAL NATURE

    Semi-crystalline resins

    LATENE

    LATAMID 6

    LATAMID 66

    LATER

    LATAN

    PP

    PA6

    PA66

    PBT

    POM

    1.502.00

    1.251.50

    1.351.70

    2.002.40

    1.852.35

    1.802.30

    1.351.75

    1.652.20

    2.202.40

    1.852.50

    PRODUCT RESIN RL [%] RT [%] RD [%]

    0.200.30

    0.100.40

    0.100.60

    0.050.25

    0.050.25

    LARPEEK PEEK 1.601.85 1.902.15 0.150.40

    Amorphous resins

    LASTILAC

    LARIL

    LATILON

    LASULF

    LAPEX R

    ABS

    PPOm

    PC

    PSU

    PPSU

    0,450.60

    0,600.80

    0,650.80

    0.801.00

    0.901.10

    0,450.60

    0,600.80

    0,650.80

    0.801.00

    0.901.10

    0.000.10

    0.000.10

    0.000.10

    0.000.10

    0.000.10

    [D] - Shrinkage of the most important neat polymers- plate 120 x 80 x 3.5 mm

    [1] RL RT data scattering of the most important neat polymers

  • High Performance Thermoplastics 5

    Filler/reinforcement typeglass fibre, carbon fibre, mica:

    these fillers underline remarkablythe differential shrinkage (RD)phenomenon in semi-crystallineresins. Because of their form(length is much higher thandiameter) fibers tend toarrange themselves parallel to theinjection flow. This causes anacross shrinkage, which is muchhigher than the along flow. Fiberorientation is also connected to theform factor (Ln/Tn) between thetwo senses. This is demonstratedby the differential shrinkage (RD)entity [2], which is an importantelement for this phenomenon.Thanks to their chemical structure,amorphous resins are affected onlyin part by shrinkage differences.They keep excellent planarity levels[7].

    mineral fillers, glass beads:they are isotropic in shape; theyare arranged homogeneous in themelt mass, without followingpreferential flows. They grant lowdifferential shrinkages RD [2]and low warpages WL-WT. Forthis reason, their use is availablein those applications, which needgood or excellent planarity anddimensional stability (only insemi-crystalline resins).

    2.1.2 - FILLER PROCESSES, REINFORCEMENTS, FILLERS

    [2] Differential Shrinkage RD as function of flow length-breadth relation, on rectangular plates

    1.451.75 1.401.60 0.000.30 1.001.20 2.302.50

    RT [%]

    0.650.95

    0.701.25

    0.701.05

    0.800.90

    1.101.40

    RM [%]

    0.400.75

    0.700.90

    0.700.85

    0.700.80

    0.901.20

    RD [%]

    0.500.65

    0.651.00

    0.150.40

    0.000.25

    0.300.50

    WL

    [10- 2

    mm/cm]

    4.905.30

    1.201.60

    1.001.20

    0.550.75

    2.603.10

    WT

    [10- 2

    mm/cm]

    2.102.50

    1.452.70

    1.252.10

    0.700.90

    3.003.50

    [E] - Shrinkage values with different filler reinforcement typologies (30%) - PA66; plate 120 x 80 x 3,5 mm

    REINFORCEMENT

    CARBON FIBER

    GLASS FIBER

    BLEND GLASS FIBER/MINERAL FILLER

    TALC

    ARAMID FIBER

    GLASS BEADS

    RL [%]

    0.150.40

    0.300.45

    0.350.40

    0.650.75

    0.801.00

    1.401.55

    [3] RL RT data scattering of the most important reinforcement types (30%) - PA66;plate120 x 80 x 3.5 mm

  • Hig

    h P

    erfo

    rman

    ce T

    herm

    opla

    stic

    s Blend mineral fillers/glass fibers,milled glass fibers:have an intermediate behaviourbetween the two above situations,as a function of percentagere lat ions among di f ferentcompounds [2].In the table E it is reported aresume about molding shrinkageindicative values of products filledwith the most important type offillers and reinforcements, used inThermoplastics. The diagram 3,which represents the RL-RTcorrelation, underlines data scatteringand allows to individuate differencesamong different typologies.In this case too, the diagonalbroken line, which corresponds toRD=0 (any warpage connected tothe differential shrinkage) is areference for the excellent planaritysituation.

    Reinforcement/Filler quantityConnected to the resin typologythe filler percentage influences onthe longitudinal RL, across RT,medium RM and differential RDshrinkage. In the graph 4 it isreported the value trend oflongitudinal RL and across RTshrinkage, connected to the glassfiber percentage (PA66). It ispossible to notice that over 30%longitudinal variations are rather low.

    6

    [4] Longitudinal and across shrinkage connected to the fiberpercentage PA66; plate 120 x 80 x 3,5 mm

    [5] Medium shrinkage RM connected to the filler percentage.PA66 with glass fiber (LATAMID 66), mineral filler (KELON A) andPC (LATILON); plate 120 x 80 x 3,5 mm

    [6] Differential shrinkage RD connected to the filler percentage.PA66 with glass f iber (LATAMID 66), mineral f i l ler(KELON A) and PC (LATILON); plate 120 x 80 x 3,5 mm

    The graph 5 describes, connectedto the filler percentage, mediumshrinkages RM of a PA66 (withglass fiber and mineral filler) andof a PC (glass fiber). Thanks tothe amorphous structure, PC(glass fiber) has low values. Onthe contrary, in a PA66 thevolumetric shrinkage ispractically constant, for thesame percentage and evenchanging the filler typology.But it is associated to a differentdifferential shrinkage RD [6],maximum in the range of 2030%.In the table F it is reported (seedefinitions) S dimensional stabilitymedium values of the most

  • High Performance Thermoplastics 7

    Additives Thermoplastic materials contain specificadditives to ensure or improve importantfeatures such as self-extinguish, lubrication,stabilization and pigmentation. Their presencehas an effect on the shrinkage behaviour.In the table G it is reported a resume ofshrinkage values, obtained with the mostimportant types of self-extinguish compounds.

    important neat resins, with 30%glass fiber or mineral filler. In thiscase too, the material chemicalstructure plays an important role;amorphous resins, even whenthey are filled, keep excellent orgood dimensional stability values.Semi-crystalline resins can reachthe same level only with mineralfillers. This phenomenon isdescribed in the histogram 7.

    The diagram 8 describes the RL-RT correlation,underlines data scattering and allows toindividuate differences between varioustypologies.In this case too, it is possible to compare valueswith the broken line (RD=0), as in the

    Semi-crystalline resins

    LATENE

    LATAMID 6

    LATAMID 66

    LATER

    LATAN

    PP

    PA6

    PA66

    PBT

    POM

    6075

    6878

    7280

    5565

    6070

    4050

    5267

    5771

    3852

    4555

    PRODUCT RESIN NEAT RESIN 30 % GLASS FIBER 30 % MINERAL FILLER

    7180

    6980

    7282

    6879

    -

    LARPEEK PEEK 6070 5166 -

    Amorphous resins

    LASTILAC

    LARIL

    LATILON

    LASULF

    LAPEX R

    ABS

    PPOm

    PC

    PSU

    PPSU

    8595

    8090

    8595

    8595

    8595

    7889

    7583

    8082

    8091

    8088

    -

    -

    -

    -

    -

    [F] - Dimensional stability of the most important polymers with 30% of glass fiber and 30% of mineral filler - plate 120 x 80 x 3,5 mm

    [7] Dimensional stability (S) of the most important polymers with30% of glass fiber and 30% of mineral filler. Plate 120 x 80 x 3,5 mm

  • Hig

    h P

    erfo

    rman

    ce T

    herm

    opla

    stic

    s

    previous cases.2.2 THE PART GEOMETRY

    Injection-molded parts representa mix view of situations,comparable to a whole ofgeometric elements, variablein form, complexity, size andsurface. Thickness and flowlength, runner size and gategeometry play an importantrole: they influence directlythe pressure entity, which isproduced during the fillingphase. The obtained shrinkageis the consequence of amore or less load loss, verified

    8

    [8] RL RT data scattering of the most important self-extinguishingagents. PA66 25% glass fiber; plate 120 x 80 x 3,5 mm

    [9] Longitudinal, across and medium shrinkage connected to the partthickness - PA66 30% glass fiber; plate ISO 294-3 60 x 60; pressure in cavityat 400 bar

    RT [%]

    0.751.00

    0.751.15

    1.001.30

    1.201.40

    RM [%]

    0.500.70

    0.550.85

    0.700.95

    0.801.00

    RD [%]

    0.400.65

    0.200.70

    0.400.90

    0.701.00

    WL

    [10- 2

    mm/cm]

    0.601.50

    1.802.50

    2.303.00

    0.802.00

    WT

    [10- 2

    mm/cm]

    1.302.50

    3.004.00

    1.502.50

    1.252.50

    [G] - Type of self-extinguishing influence- PA66 25% glass fiber; plate 120 x 80 x 3,5 mm

    ADDITIVE

    Polymeric self-extinguishing agentAlogen self-extinguishing agentSelf-extinguishing agent with

    Melamine saltSelf-extinguishing agent with

    red phosphorus

    RL [%]

    0.250.40

    0.350.55

    0.450.65

    0.350.45

  • High Performance Thermoplastics 9

    [10] Longitudinal, across shrinkage connected to the part thicknessand glass fiber percentage; PA66; plate 120 X 80 x 3,5 mm

    [11] Differential shrinkage connected to the part thickness and glassfiber percentage - PA 66; plate ISO 294-3 60 x 60; cavity pressure 600 bar

    [12] Warpage connected to the part thickness and glass fiber percentage- PA66; plate 120 x 80 x 3.5 mm

    case of across sense [RT]).

    Differential shrinkage RD[11] describes a trend, whichis proportional to thethickness and reachesmaximum values around2030% (see graph 6).

    According to the sideWarpage trend WM [12] it isobtained higher and highervalues for the majorthickness because of alittle increase for the lowest

    during the process.2.2.1 - THICKNESSES

    The results in the graph 9describe the strictly connectionbetween molding shrinkage (atthe same circumstances) andpart thickness. Moldingshrinkage is directly proportionalto thickness (it doubles withthickness doubling). The phenomenon reducesitself lenghting the flow pathor elevating the filler level. In the example [10] it is possibleto notice that, increasing thefiber percentage, the variationbetween the shrinkage measuredon the major and minorthickness tends to 0 (in the

  • Hig

    h P

    erfo

    rman

    ce T

    herm

    opla

    stic

    s thickness.2.2.2 - FLOW LENGHT, PARTGEOMETRY, INJECTION SECTION

    The analysis has been carried outon 7 different types of moulded parts,with different thicknesses, flowsand injection sections. As it ispossible to notice [H, 13], there is awide range o f data, in thelongitudinal sense RL (0,190,91%)and in the across RT sense(0,781,48%). The high resultscattering (it has not been possibleto indiv iduate any pract ica lcorrelation between the independentvariables and the obtained results)brings to the conclusion that everyobject, with its own geometries, hasparticular behaviours of moldingshrinkage. These are difficult toreproduce on test specimens withdifferent shapes, excepting throughprecise flow simulation analyses.

    2.3 TRANSFORMATION PARAMETERS

    The material shrinkage beginsduring the holding pressureapplication and continues throughthe cooling phase, until thecomplete part solidification atroom temperature. These are thebasic phases; the pressure on thepart reduces the shrinkage of thesame, conditioning the entity.The best instrument to analyzethis aspect is the PVT diagram[I, L]: it studies the correlation

    10

    TESTSPECIMEN SHAPE SIZE

    INJECTION[mm]

    VOLUME[cc]

    GATEAREA[cm2]

    Test specimen Rectangular

    Rectangular

    Rectangular

    Rectangular

    Rectangular

    Base

    Cover

    125

    120

    120

    110

    60

    80

    80

    12.7

    80

    80

    55

    60

    80

    80

    3.2

    3.5

    2.0

    12

    2.0

    0.56

    2.5

    Side 3.0 x 10

    Laminar 1 x 80

    Laminar 1 x 80

    Side 2 x 12

    Laminar 0,75 x 60

    Capillar

    Capillar

    5.1

    33.6

    19.2

    9.1

    7.2

    24.4

    30.6

    0.30

    0.8

    0.8

    0.24

    0.45

    0.03

    0.03

    RL[%]

    0.32

    0.43

    0.30

    0.19

    0.54

    0.74

    0.91

    RT[%]

    2.04

    1.48

    1.38

    0.78

    1.07

    1.05

    1.12

    RM[%]

    1.18

    0.94

    0.83

    0.49

    0.81

    0.90

    1.02

    RD[%]

    1,72

    1,05

    1,08

    0,59

    0,53

    0,31

    0,21

    Plate

    Plate

    Plate

    Plate ISO 294 type D2

    Box

    Box

    [H] - Test specimens used for the measurement and obtained results; PA66 30% glass fiber

    [13] Longitudinal, across and medium shrinkage calculatedon different types of test specimens-PA 66 30% glass fiber

    [I] Diagram PVT in the molding injection cycle of a PA66

  • High Performance Thermoplastics

    (constant) and the real pressure in the cavity [14],which decreases with the holding pressureapplication. This is caused by the progressivegate and part solidification. Because of the higherand higher part viscosity, there is a lowertransmission of hydraulic pressure, applied by thescrew (load loss).As soon as the gate solidification is reached (timeis variable in function of its section), cavity pressureis null and any further holding pressure

    11

    application is irrelevant.This is an important phenomenon because thederived molding shrinkage is directly connected tothe effective pressure in cavity.Moreover, some material features (fluidity) andsome transformation parameters (melt temperatureand/or mould temperature) allow more or less

    STEP MOLDING CYCLE PHASE

    Filling startA

    TEMPERATURE

    Molding melt temperature

    PRESSURE

    Atmospheric pressure

    VOLUME

    Volume corresponds tothe highest expansion

    Filling end- holding startB Constant (little decrease) Constant or little increase,till complete filling Little decrease

    Highest pressure reached-partsolidification startC Constant (little decrease) It increases quickly It decreases quickly

    Holding end- cooling pausestartD Decreases It decreases quickly Little decrease

    Cooling pause- atmosphericpressure reachingE Decreases

    Atmospheric pressure isreached Decreases

    EjectionF Decreases Atmospheric pressure Decreases

    Final stateG Room temperature Atmospheric pressure Final volume

    [14] Hydraulic and cavity pressure during injection and holding phase;plate ISO 294-3 60 x 60 x 2.0 mm

    [L] - Diagram phases in the injection molding

    among temperature, specificvolume and pressure; it gives alsoimportant information about thematerial behavior, when it isheated/cooled under the pressureload effect.The volume difference, surveyedbetween A and G points, correspondsto the real value of moldingshrinkage.Some of the singular phases aregoing to be analyzed deeply.

    2.3.1 INJECTION AND HOLDINGPHASE

    injectionIn this phase the material istransferred, through the nozzle,from the barrel to the mould. Thescrew works as piston and exertsa pressure on the polymer, whichincreases with slopes proportionalto the material viscosity andnozzle speed, until the switchingpoint [14]. The holding phasestarts. Any incorrect formulationof this parameter (advanced-delayed in comparison with theeffective mold filling), besidescreating different problems,influences on the pressure load incavity and consequently on theshrinkage entity.

    holdingDuring the holding phase, it isverified a difference between thepressure, applied by the screw

  • Hig

    h P

    erfo

    rman

    ce T

    herm

    opla

    stic

    s load loss for the sameapplied pressure.In the graph 15 and 16it is reported themedium shrinkage trendof a PA66, in functionof the cavity pressure(in different times)and holding time.It is possible to noticethat shrinkagedecreases with thepressure increase anddescribes a temporalcurve: beyond a certainpoint no real effectexists any more.This time correspondsto the completesolidification of theinjection section; screw

    12

    [15] Medium shrinkage connected to the cavity pressure with different typeof holding - Neat PA66; plate ISO 294-3 60 x 60 2,0 mm

    [16] Medium shrinkage connected to the holding t ime - Neat PA66;plate ISO 294-3 60 x 60 x 2.0mm; cavity pressure 600 bar

    [17] Side warpage connected to cavity pressure- Neat PA66; plateISO 294-3 60 x 60 x 2.0 mm

    pressure has any morepractical effect on the realpressure in the mould.WM side warpage presents,on the contrary, a trendthat is inversely proportionalto the applied pressure [17],but it is directly proportionalto its duration [18].

    2.3.2 - COOLINGIn semi-crystalline resins,if mould temperature andholding pressure time arecorrect, the part will reachthe highest crystalline leveland the cooling pause willensure the completesolidification of it.In this case, moldingshrinkage will be inversely

  • High Performance Thermoplastics

    [18] Side warpage connected to the holding t ime - Neat PA 66;plate ISO 294-3 60 x 60 x 2.0 mm; cavity pressure 600 bar

    [19] Medium shrinkage connected to the cooling time with different cavitypressure values - Neat PA 66; plate ISO 294-3 60x60x2.0 mm

    [20] Medium shrinkage connected to melt temperature - PA 6/66self-extinguishing halogen free; plate ISO 294-3 60 x 60x 2.0 mm;with or without adjustment of cavity pressure at 600 bar

    13

    proportional both to thecooling time and to theapplied pressure [19].2.3.2 TEMPERATURES MeltMelt temperature has adirect effect on thepressure transmissionfrom the screw to thecavity (the higher is thetemperature, the higheris the material fluidity;consequently the higheris the transmittedpressure). If anyadjustment on theholding value is made tokeep constant cavitypressure, there will be

    an inversely relation betweentemperature andshr inkage.In the example [20] it isreported (for a PA6/66self-extinguish Halogen free)the medium shrinkage RMtrend connected to the Melttemperature, without andafter compensation, at 600 barin cavity. In the second case, there isnot any important variation;for th is reason Melttemperature is not directlyconnected to the shrinkage,but it has an effect on the

  • Hig

    h P

    erfo

    rman

    ce T

    herm

    opla

    stic

    s

    [22] Medium Across shrinkage connected to mould temperature-PA 66 30% glass fiber; plate ISO 294-3 60 X60 2.0 mm; with orwithout adjustment of cavity pressure at 400 bar

    14

    [21] Medium Longitudinal shrinkage connected to moldingtemperature. PA 66 30% glass fiber; plate ISO 294-3 60 x 60 x 2.0 mm;with or without adjustment of cavity pressure at 400 bar

    shrinkage because it causesthe cavity pressureincrease. MouldThe material structure isvery important: semi-crystalline resins need atemperature higher thantheir glass transition. Underthis temperature level materialcould freeze in an improperamorphous structure. Theresult is a low moldingshrinkage [21, 22] but bythe time the part will recoverits original crystallinestructure, creating warpageproblems (post shrinkage).This phenomenon will berelevant when the partworking temperature is

    higher than mold temperatureduring the transformation.In amorphous resins, on thecontrary, mould heating ismade to improve the meltmass flow in the cavity,without having real effectson shrinkage properties.Mould temperature,moreover, has only a littleinfluence on the pressureload in cavity. This can beverified in the graph 21-22,in which there is a littledifference among theobtained curves, with orwithout adjustment at 400 bar.

  • High Performance Thermoplastics

    Semi-crystalline resin 1,7

    Shrinkage Warpage References(Graph number)

    Resin features

    Amorphous resin 1,7

    Glass fibre reinforcement 3,4,6,7,10,11,12

    Mineral filler 3,5,6

    Self extinguishing agent 8

    Thickness 9,10,11,12Flow length 2Transformation parameters

    Cavity pressure 15,17,19,20,21,22

    Holding pressure time 15,16,18 Cooling time 19

    Melt temperature 20Mould temperature 21,22

    Mould geometry

    Key

    == directly proportional == directly proportional, then stable

    == directly proportional, then inversely proportional

    == == stable

    == inversely proportional

    == inversely proportional, then stable

    15

    3 - S U M M A R Y

  • Hig

    h P

    erfo

    rman

    ce T

    herm

    opla

    stic

    s

    ISO 294-1 Plastic - Injection moulding of testspecimens of thermoplastic materials; Generalprinciples, and moulding of multipurpose andbar test specimens

    ISO 294-3 Plastics Injection moulding oftest specimens of thermoplastic materials;Small plates

    ISO 294-4 Plastics Injection moulding oftest specimens of thermoplastic materials;Determination of moulding shrinkage

    McCrum N.G., C.P. Buckley, C.B. Bucknall Principles of Polymer Engineering

    Pavan A, PVT relation in the polymertransformation. Issues of the XVI AIM SchoolConvention- Italian Association of macromoleculesscience and technology.

    16

    Values shown are based on testing of injection moulded laboratory test specimens, conditioned according to the practice and represent data that fall within the standard range of properties for non-coloured material. As they may be subject to variations,these values do not represent a sufficient basis for any part design and are not intended for use in establishing values for specification purposes. Properties of moulded parts can be influenced by a wide range of factors including, but not limited to,colorants, part design, processing conditions, post-treatment and environmental conditions. This information and technical assistance are provided as a convenience for informational purposes only and are subject to change without notice. Thecustomer shall always ensure that the latest release is at his own disposal. Lati S.p.A. extend no warranties or guarantee, including a warranty of merchantability, and make no representations as to the accuracy, suitability, reliability, completenessand sufficiency of the information provided, and assume no responsibility regarding the consequences of its use or for any printing errors. It is the customer's responsibility to inspect and test our products in order to determine to his own satisfactionwhether they are suitable for his intended uses and applications or used in conjunction with third-party materials. This application-specific analysis shall at least include preliminary testing to determine the suitability for the customer's particular purposefrom a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by us as the manner in which the customer use and the purpose to which utilise our products are beyond our control. Lati S.p.A.does not accept and hereby disclaims liability for, any damages whatsoever in connection with the use of or reliance on this information. No one is authorised to make any warranties, issue any immunities or assume any liabilities on behalf of LatiS.p.A. except in a writing signed by a specifically authorised Lati S.p.A. executive. Unless otherwise agreed in writing, the exclusive remedy for all claims is replacement of the product or refund of the purchase price at Lati's option, and in no eventshall Lati S.p.A. be liable for special, consequential, incidental, punitive or exemplary damages. No information herein can be considered as a suggestion to use any product in conflict with intellectual property rights. Lati S.p.A. disclaim any liabilitythat may be claimed for infringement or alleged infringement of patents. Unless specifically stated in writing, the products mentioned herein are not suitable for applications in the pharmaceutical, medical or dental sector, in contact with foodstuff orfor potable water transportation. For any other issues Lati S.p.A. Conditions of Sales apply. Copyright LATI S.p.A. 2008

    4 REFERENCES AND BIBLIOGRAPHICAL SOURCES

    Cop

    yrig

    ht

    200

    5

  • Printed in Italy 08/01/2008/C&I.002 LINK S.r.L.

    In

    te

    rn

    atio

    na

    ls

    ale

    so

    rg

    an

    iz

    atio

    n

    Z.I. des Ebizoires, 4 Rue des Frres LumireF - 78370 PLAISIR

    tel. +33 (0)1 - 30791819fax +33 (0)1 - 30791818

    http://www.lati.com - e-mail: [email protected]

    FFRRAANNCCEE

    LATI FRANCE S.A.S.

    Otto-Von-Guericke-Ring, 7D - 65205 WIESBADEN - Nordenstadt

    tel. +49 (0)6122 - 90820fax +49 (0)6122 - 908222

    http://www.lati.com - e-mail: [email protected]

    GGEERRMMAANNYY

    LATI IndustriaTermoplastici

    Deutschland GmbH

    C/ Muntaner, 270 - Sobretico AE - 08021 BARCELONA

    tel. +34 93 - 2097377fax +34 93 - 2011519

    http://www.lati.com - e-mail: [email protected]

    SSPPAAIINN

    LATI Ibrica, S.L.Unipersonal

    Crewe Hall - Weston Road - The QuadrangleUK - Crewe - Cheshire - CW1 6UA

    tel. +44 (0)1270 - 501713fax +44 (0)1270 - 509713

    http://www.lati.com - e-mail: [email protected]

    UUNNIITTEEDD KKIINNGGDDOOMM

    LATI UK LTD.

    Gullbergs Strangata 36 A-CS - 411 04 GTEBORGtel. +46 (0)31 - 7740236fax +46 (0)31 - 7740736

    http://www.lati.com - e-mail: [email protected]

    SSWWEEDDEENN

    SCANDILATITERMOPLASTICI AB

    Via F. Baracca, 7I - 21040 VEDANO OLONA (Va)

    tel. +39 - 0332 409111fax +39 - 0332 409235

    http://www.lati.com - e-mail: [email protected]

    UUSSAA

    LATI IndustriaTermoplastici S.p.A.

    AV. Prof. Gioia Martins, 206CEP: 05632-020 - SO PAULO - SP

    tel. +55 (0)11 - 35024700fax +55 (0)11 - 35024700

    http://www.lati.com - e-mail: [email protected]

    BBRRAASSIILL

    LATI TERMOPLSTICOSDO BRASIL LTDA

    Via F. Baracca, 7I - 21040 VEDANO OLONA (Va)

    tel. +39 - 0332 409111fax +39 - 0332 409235

    http://www.lati.com - e-mail: [email protected]

    AASSIIAA

    LATI IndustriaTermoplastici S.p.A.

    Via F. Baracca, 7I - 21040 VEDANO OLONA (Va)

    tel. +39 - 0332 409111fax +39 - 0332 409307

    http://www.lati.com - e-mail: [email protected]

    IITTAALLYY

    LATI IndustriaTermoplastici S.p.A.