Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite...

27
Mathematical Surveys and Volume 228 Hilbert Schemes of Dimensional Lie Algebras Zhenbo Qin

Transcript of Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite...

Page 1: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

Mathematical Surveys

and

Volume 228

Hilbert Schemes of

Dimensional Lie Algebras

Zhenbo Qin

Page 2: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras

10.1090/surv/228

Page 3: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume
Page 4: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

Mathematical Surveys

and Monographs

Volume 228

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras

Zhenbo Qin

Page 5: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

EDITORIAL COMMITTEE

Robert GuralnickMichael A. Singer, Chair

Benjamin SudakovConstantin Teleman

Michael I. Weinstein

The author was supported in part by a Collaboration Grant for Mathematicians (AwardNumber: 268702) from the Simons Foundation and by a Research Council Grant (AwardNumber: URC-17-084-n) from the University of Missouri.

2010 Mathematics Subject Classification. Primary 14C05, 17B65;Secondary 14F43, 14J60, 14N35, 17B69.

For additional information and updates on this book, visitwww.ams.org/bookpages/surv-228

Library of Congress Cataloging-in-Publication Data

Names: Qin, Zhenbo, author.Title: Hilbert schemes of points and infinite dimensional lie algebras / Zhenbo Qin.Description: Providence, Rhode Island: American Mathematical Society, [2018] | Series: Mathe-

matical surveys and monographs; volume 228 | Includes bibliographical references and index.Identifiers: LCCN 2017036491 | ISBN 9781470441883 (alk. paper)Subjects: LCSH: Hilbert schemes. | Schemes (Algebraic geometry) | Lie algebras. | AMS: Alge-

braic geometry – Cycles and subschemes – Parametrization (Chow and Hilbert schemes). msc| Nonassociative rings and algebras – Lie algebras and Lie superalgebras – Infinite-dimensionalLie (super)algebras. msc | Algebraic geometry – (Co)homology theory – Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies).msc | Algebraic geometry – Surfaces and higher-dimensional varieties – Vector bundles on sur-faces and higher-dimensional varieties, and their moduli. msc | Algebraic geometry – Projectiveand enumerative geometry – Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants. msc | Nonassociative rings and algebras –Lie algebras and Lie superalgebras – Vertex operators; vertex operator algebras and relatedstructures. msc

Classification: LCC QA564 .Q56 2018 | DDC 516.3/5–dc23LC record available at https://lccn.loc.gov/2017036491

Copying and reprinting. Individual readers of this publication, and nonprofit libraries actingfor them, are permitted to make fair use of the material, such as to copy select pages for usein teaching or research. Permission is granted to quote brief passages from this publication inreviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publicationis permitted only under license from the American Mathematical Society. Permissions to reuseportions of AMS publication content are handled by Copyright Clearance Center’s RightsLink�service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to [email protected] from these provisions is material for which the author holds copyright. In such cases,

requests for permission to reuse or reprint material should be addressed directly to the author(s).Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of thefirst page of each article within proceedings volumes.

c©2018 by the American Mathematical Society. All rights reserved.Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelinesestablished to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 23 22 21 20 19 18

Page 6: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

Contents

Preface ix

Part 1. Hilbert schemes of points on surfaces 1

Chapter 1. Basic results on Hilbert schemes of points 31.1. Partitions 31.2. The ring of symmetric functions 51.3. Symmetric products 71.4. Hilbert schemes of points 101.5. Incidence Hilbert schemes 17

Chapter 2. The nef cone and flip structure of (P2)[n] 192.1. Curves homologous to βn 192.2. The nef cone of (P2)[n] 282.3. Curves homologous to β� − (n− 1)βn 322.4. A flip structure on (P2)[n] when n ≥ 3 35

Part 2. Hilbert schemes and infinite dimensional Lie algebras 41

Chapter 3. Hilbert schemes and infinite dimensional Lie algebras 433.1. Affine Lie algebra action of Nakajima 433.2. Heisenberg algebras of Nakajima and Grojnowski 463.3. Geometric interpretations of Heisenberg monomial classes 553.4. The homology classes of curves in Hilbert schemes 583.5. Virasoro algebras of Lehn 613.6. Higher order derivatives of Heisenberg operators 633.7. The Ext vertex operators of Carlsson and Okounkov 69

Chapter 4. Chern character operators 734.1. Chern character operators 734.2. Chern characters 804.3. Characteristic classes of tautological bundles 874.4. W algebras and Hilbert schemes 91

Chapter 5. Multiple q-zeta values and Hilbert schemes 995.1. Okounkov’s conjecture 995.2. The series Fα1,...,αN

k1,...,kN(q) 102

5.3. The reduced series⟨chL1

k1· · · chLN

kN

⟩′118

Chapter 6. Lie algebras and incidence Hilbert schemes 1216.1. Heisenberg algebra actions for incidence Hilbert schemes 121

v

Page 7: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

vi CONTENTS

6.2. A translation operator for incidence Hilbert schemes 1296.3. Lie algebras and incidence Hilbert schemes 137

Part 3. Cohomology rings of Hilbert schemes of points 139

Chapter 7. The cohomology rings of Hilbert schemes of pointson surfaces 141

7.1. Two sets of ring generators for the cohomology 1417.2. The Hilbert ring 1467.3. Approach of Lehn-Sorger via graded Frobenius algebras 1497.4. Approach of Costello-Grojnowski via Calogero-Sutherland

operators 154

Chapter 8. Ideals of the cohomology rings of Hilbert schemes 1578.1. The cohomology ring of the Hilbert scheme (C2)[n] 1578.2. Ideals in H∗(X [n]) for a projective surface X 1618.3. Relation with the cohomology ring of the Hilbert scheme (C2)[n] 1648.4. Partial n-independence of structure constants for X projective 1668.5. Applications to quasi-projective surfaces with the S-property 171

Chapter 9. Integral cohomology of Hilbert schemes 1759.1. Integral operators 1759.2. Integral operators involving only divisors in H2(X) 1809.3. Integrality of mλ,α for integral α 1849.4. Unimodularity 1859.5. Integral bases for the cohomology of Hilbert schemes 1909.6. Comparison of two integral bases of H∗((P2)[n];Z) 191

Chapter 10. The ring structure of H∗orb(X

(n)) 20310.1. Generalities 20310.2. The Heisenberg algebra 20510.3. The cohomology classes ηn(γ) and Ok(α, n) 20610.4. Interactions between Heisenberg algebra and Ok(γ) 20910.5. The ring structure of H∗

orb(X(n)) 212

10.6. The W algebras 214

Part 4. Equivariant cohomology of the Hilbert schemesof points 217

Chapter 11. Equivariant cohomology of Hilbert schemes 21911.1. Equivariant cohomology rings of Hilbert schemes 21911.2. Heisenberg algebras in equivariant setting 22411.3. Equivariant cohomology and Jack polynomials 225

Chapter 12. Hilbert/Gromov-Witten correspondence 23112.1. A brief introduction to Gromov-Witten theory 23212.2. The Hilbert/Gromov-Witten correspondence 23312.3. The N -point functions and the multi-point trace functions 23812.4. Equivariant intersection and τ -functions of 2-Toda hierarchies 24112.5. Numerical aspects of Hilbert/Gromov-Witten correspondence 244

Page 8: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

CONTENTS vii

12.6. Relation to the Hurwitz numbers of P1 247

Part 5. Gromov-Witten theory of the Hilbert schemesof points 251

Chapter 13. Cosection localization for the Hilbert schemes of points 25313.1. Cosection localization of Kiem and J. Li 25313.2. Vanishing of Gromov-Witten invariants when pg(X) > 0 25713.3. Intersections on some moduli space of genus-1 stable maps 26113.4. Gromov-Witten invariants of the Hilbert scheme X [2] 265

Chapter 14. Equivariant quantum operator of Okounkov-Pandharipande 27114.1. Equivariant quantum cohomology of the Hilbert scheme (C2)[n] 27114.2. Equivalence of four theories 27514.3. The quantum differential equation of Hilbert schemes of points 278

Chapter 15. The genus-0 extremal Gromov-Witten invariants 28315.1. 1-point genus-0 extremal Gromov-Witten invariants 28315.2. 2-point genus-0 extremal invariants of J. Li and W.-P. Li 29415.3. The structure of the genus-0 extremal Gromov-Witten invariants 301

Chapter 16. Ruan’s Cohomological Crepant Resolution Conjecture 30716.1. The quantum corrected cohomology ring H∗

ρn(X [n]) 308

16.2. The commutator [Gk(α), a−1(β)] 31016.3. Ruan’s Cohomological Crepant Resolution Conjecture 322

Bibliography 325

Index 335

Page 9: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume
Page 10: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

Preface

Since the pioneering work of Grothendieck [Grot], Hilbert schemes, which pa-rametrize subschemes in algebraic varieties, have been studied extensively as evi-denced in the survey [Iar2]. Viewed also as the simplest moduli spaces of sheaves,they are fundamental objects in algebraic geometry, play essential roles in variousimportant enumerative problems, and provide testing grounds for many interestingconjectures in algebraic geometry and its interplay with theoretical physics. Apartfrom the Hilbert schemes of curves on 3-folds over which the Donaldson-Thomastheory is defined and investigated [MNOP1,MNOP2], much attention has beenconcentrated on Hilbert schemes of points, i.e., those Hilbert schemes parametriz-ing 0-dimensional closed subschemes. When the dimension of the variety is at leastthree, the corresponding Hilbert schemes of points are in general singular. Whenthe variety is a smooth curve, the corresponding Hilbert schemes of points coincidewith the symmetric products of the curve. When X is a smooth algebraic surface,the Hilbert scheme X [n] parametrizing length-n 0-dimensional closed subschemesof X is irreducible and smooth [Bri,Fog1, Iar1]. Moreover, the Hilbert-Chowmorphism ρn from X [n] to the symmetric product X(n), which sends an elementin X [n] to its support (counted with multiplicities) in X(n), is a crepant desin-gularization of X(n). Many fundamental aspects of X [n] such as its cohomologygroups, Chow groups, motive, cobordism class, and relations with algebraic com-binatorics, the McKay correspondence and integrable systems have been analyzed[CoG,dCM,EGL,ES1,Got1,Hai1,Hai2,Mar1].

In the seminal papers [Groj,Nak3] which were motivated by [Nak1,Nak2,Nak4] regarding the construction of representations of affine Lie algebras on thehomology groups of the moduli spaces of instantons on ALE spaces (equivalently,on the homology groups of quiver varieties), Grojnowski and Nakajima geomet-rically constructed Heisenberg algebra actions on the cohomology of the Hilbertschemes X [n], where X denotes a smooth algebraic surface. Their geometric con-structions started a whole new chapter investigating interplays between the Hilbertschemes of points and infinite dimensional Lie algebras. Subsequently, using theHilbert schemes X [n], Lehn [Leh1] geometrically constructed the Virasoro algebrasand the boundary operator, W.-P. Li, W. Wang and the author [LQW1,LQW4]constructed the Chern character operators and the W algebras, and Carlsson andOkounkov [Car1,Car2,CO] constructed the Ext vertex operators. As noted in[FW, Introduction] and [Mat, Section 5], Lehn’s boundary operator is a versionof the bosonized Calogero-Sutherland operator. The Chern character operators arevertex operators of higher conformal weights, and the W algebras are higher-spingeneralizations of Lehn’s Virasoro algebras. The Ext vertex operators of Carlssonand Okounkov are motivated by the study of Nekrasov partition functions (which

ix

Page 11: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

x PREFACE

arise from supersymmetric quantum gauge theory) in the setting of Hilbert schemesof points.

All of these operators and algebras are powerful tools in understanding thefiner geometric properties of the Hilbert schemes X [n]. Indeed, the Heisenbergalgebras serve as a fundamental language in describing the homology and cohomol-ogy classes of X [n], which is crucial in studying the Gromov-Witten theory of X [n]

[Cheo2,ELQ,HLQ,LL,LQ1,LQ5,OP3,OP4]. The Virasoro operators and theChern character operators determine the cup products and ring structures of thecohomology of X [n] [CoG,LQW1,LQW2,LQW3,LQW5,LS1,LS2]. The Extvertex operators provide a very useful approach in understanding the intersectiontheory of X [n] when the tangent bundle of X [n] is involved [Car1,Car2,QY].

Two excellent books on Hilbert schemes of points exist. The first one isGottsche’s book [Got2] which includes fundamental facts about X [n], the Bettinumbers of X [n] when X is a surface, and the computation of the homology andChow rings of Hilbert schemes. The second is Nakajima’s book [Nak5] whichcontains his Heisenberg algebra constructions, symmetric products (in the Hilbertscheme X [n]) of an embedded curve in a surface X, and interactions with singu-larities, symplectic geometry and the ring of symmetric functions. We also refer to[EG,Leh2] for surveys on Hilbert schemes of points, the Heisenberg algebras andthe Virasoro algebras, and to [Nak7] for a survey on the equivariant cohomologyof the Hilbert schemes, the Heisenberg algebras, the Virasoro algebras and someinteresting applications to algebraic combinatorics.

The purpose of this book is to present a detailed survey of the developments,in the context of interactions between Hilbert schemes of points and infinite dimen-sional Lie algebras, that appeared after the book [Nak5]. This book contains 5parts consisting of 16 chapters. Part 1 deals with the basics of the Hilbert schemesof points and some geometry of the Hilbert schemes of points on the projectiveplane. Part 2 is devoted to the constructions of various infinite dimensional Lie al-gebra actions on the cohomology of the Hilbert schemes of points on surfaces, andto the connections with multiple q-zeta values. It includes Nakajima’s affine Liealgebra actions on the homology of quiver varieties as a motivation and backgroundmaterial, the Heisenberg algebras of Grojnowski and Nakajima, the boundary op-erator and the Virasoro algebras of Lehn, the Ext vertex operators of Carlsson andOkounkov, and the Chern character operators and the W algebras of W.-P. Li,W. Wang and the author. Part 3 studies the cohomology ring structure of theseHilbert schemes, such as the ring generators and the ideals, the approach of Lehnand Sorger when the canonical divisor of the surface is numerically trivial, the ap-proach of Costello and Grojnowski in terms of the Calogero-Sutherland operatorsand the Dunkl-Cherednik operators, the integral basis for the cohomology group,and the orbifold cohomology ring of the symmetric product of a surface. Part 4is about the equivariant cohomology of the Hilbert schemes via Jack polynomials,the Hilbert/Gromov-Witten correspondence between the equivariant cohomologyof the Hilbert schemes of points on the affine plane and the Gromov-Witten theoryof curves, and applications to the Hurwitz numbers of the projective line. Part 5includes the cosection localization technique of Kiem and J. Li, the Gromov-Witten

Page 12: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

PREFACE xi

theory of the Hilbert schemes of points, the equivariant quantum corrected bound-ary operator and the quantum differential equations of Okounkov and Pandhari-pande, the quantum corrected boundary operator of J. Li and W.-P. Li, and theproof of Ruan’s Cohomological Crepant Resolution Conjecture.

This book is suitable for graduate students and researchers in algebraic ge-ometry, representation theory, algebraic combinatorics, topology, number theoryand theoretical physics. Furthermore, a semester of an advanced course on Hilbertschemes of points and infinite dimensional Lie algebras may be organized from se-lected chapters in this book, e.g., Chapter 1, Chapter 3, Chapter 4, Chapter 7,Chapter 8, Chapter 11 and Chapter 12.

The author would like to thank all of his collaborators on works related tothe Hilbert schemes of points, without whom this book would be impossible: DanEdidin, Jianxun Hu, Wei-Ping Li, Yuping Tu, Weiqiang Wang, Fei Yu and QiZhang. In addition, thanks are due to Lie Fu, Wei-Ping Li, Hiraku Nakajima, BoiarQin, Wenzer Qin, Weiqiang Wang and the two anonymous referees for carefullyreading the manuscript and providing useful comments which have greatly improvedthe exposition of the book.

The author also thanks Sergei Gelfand, Christine M. Thivierge and the EditorialCommittee of the American Mathematical Society for their editorial guidance.

December 14, 2017

Zhenbo Qin

Page 13: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume
Page 14: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

Bibliography

[AGV] D. Abramovich, T. Graber, and A. Vistoli, Algebraic orbifold quantum products, Orb-ifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310,Amer. Math. Soc., Providence, RI, 2002, pp. 1–24, DOI 10.1090/conm/310/05397.MR1950940

[AGT] L. F. Alday, D. Gaiotto, and Y. Tachikawa, Liouville correlation functions fromfour-dimensional gauge theories, Lett. Math. Phys. 91 (2010), no. 2, 167–197, DOI10.1007/s11005-010-0369-5. MR2586871

[AIK] A. B. Altman, A. Iarrobino, and S. L. Kleiman, Irreducibility of the compactified Jaco-bian, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sym-pos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 1–12.MR0498546

[And] G. E. Andrews, The theory of partitions, Addison-Wesley Publishing Co., Reading,Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications,Vol. 2. MR0557013

[ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves.Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles ofMathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR770932

[ABCH] D. Arcara, A. Bertram, I. Coskun, and J. Huizenga, The minimal model program forthe Hilbert scheme of points on P2 and Bridgeland stability, Adv. Math. 235 (2013),580–626, DOI 10.1016/j.aim.2012.11.018. MR3010070

[AH] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sym-pos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961,pp. 7–38. MR0139181

[BBC] D. H. Bailey, J. M. Borwein, and R. E. Crandall, Computation and theory of extendedMordell-Tornheim-Witten sums, Math. Comp. 83 (2014), no. 288, 1795–1821, DOI10.1090/S0025-5718-2014-02768-3. MR3194130

[BB] V. V. Batyrev and L. A. Borisov, Mirror duality and string-theoretic Hodge numbers,Invent. Math. 126 (1996), no. 1, 183–203, DOI 10.1007/s002220050093. MR1408560

[BBM] P. Baum, J.-L. Brylinski, and R. MacPherson, Cohomologie equivariante delocalisee(French, with English summary), C. R. Acad. Sci. Paris Ser. I Math. 300 (1985),no. 17, 605–608. MR791098

[BC] P. Baum and A. Connes, Chern character for discrete groups, A fete of topology, Aca-demic Press, Boston, MA, 1988, pp. 163–232, DOI 10.1016/B978-0-12-480440-1.50015-0. MR928402

[Bea1] A. Beauville, Varietes Kahleriennes dont la premiere classe de Chern est nulle(French), J. Differential Geom. 18 (1983), no. 4, 755–782 (1984). MR730926

[Bea2] , Varietes kahleriennes compactes avec c1 = 0 (French), Asterisque 126

(1985), 181–192. Geometry of K3 surfaces: moduli and periods (Palaiseau, 1981/1982).MR785234

[Beh1] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127(1997), no. 3, 601–617, DOI 10.1007/s002220050132. MR1431140

[Beh2] , The product formula for Gromov-Witten invariants, J. Algebraic Geom. 8(1999), no. 3, 529–541. MR1689355

[BF1] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997),no. 1, 45–88, DOI 10.1007/s002220050136. MR1437495

325

Page 15: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

326 BIBLIOGRAPHY

[BF2] K. Behrend and B. Fantechi, Symmetric obstruction theories and Hilbert schemesof points on threefolds, Algebra Number Theory 2 (2008), no. 3, 313–345, DOI10.2140/ant.2008.2.313. MR2407118

[BSG] M. Beltrametti and A. J. Sommese, Zero cycles and kth order embeddings of smoothprojective surfaces, Problems in the theory of surfaces and their classification (Cortona,1988), Sympos. Math., XXXII, Academic Press, London, 1991, pp. 33–48. With anappendix by Lothar Gottsche. MR1273371

[BT] A. Bertram and M. Thaddeus, On the quantum cohomology of a symmetric productof an algebraic curve, Duke Math. J. 108 (2001), no. 2, 329–362, DOI 10.1215/S0012-7094-01-10825-9. MR1833394

[BO] S. Bloch and A. Okounkov, The character of the infinite wedge representation, Adv.Math. 149 (2000), no. 1, 1–60, DOI 10.1006/aima.1999.1845. MR1742353

[Boi1] S. Boissiere, Chern classes of the tangent bundle on the Hilbert scheme of points onthe affine plane, J. Algebraic Geom. 14 (2005), no. 4, 761–787, DOI 10.1090/S1056-3911-05-00412-1. MR2147349

[Boi2] , On the McKay correspondences for the Hilbert scheme of points on theaffine plane, Math. Ann. 334 (2006), no. 2, 419–438, DOI 10.1007/s00208-005-0738-z.MR2207706

[BN] S. Boissiere and M. A. Nieper-Wisskirchen, Generating series in the cohomology ofHilbert schemes of points on surfaces, LMS J. Comput. Math. 10 (2007), 254–270,DOI 10.1112/S146115700000139X. MR2320831

[Bor] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc.Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071, DOI 10.1073/pnas.83.10.3068.MR843307

[Bra1] D. M. Bradley, Multiple q-zeta values, J. Algebra 283 (2005), no. 2, 752–798, DOI10.1016/j.jalgebra.2004.09.017. MR2111222

[Bra2] , On the sum formula for multiple q-zeta values, Rocky Mountain J. Math. 37(2007), no. 5, 1427–1434, DOI 10.1216/rmjm/1194275927. MR2382894

[Bri] J. Briancon, Description de HilbnC{x, y}, Invent. Math. 41 (1977), no. 1, 45–89, DOI10.1007/BF01390164. MR0457432

[BG] J. Bryan and T. Graber, The crepant resolution conjecture, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence,RI, 2009, pp. 23–42, DOI 10.1090/pspum/080.1/2483931. MR2483931

[BP] J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves, J. Amer.Math. Soc. 21 (2008), no. 1, 101–136, DOI 10.1090/S0894-0347-06-00545-5. With anappendix by Bryan, C. Faber, A. Okounkov and Pandharipande. MR2350052

[Can] M. B. Can, Nested Hilbert schemes and the nested q, t-Catalan series (English, withEnglish and French summaries), 20th Annual International Conference on Formal PowerSeries and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput.Sci. Proc., AJ, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, pp. 61–69.MR2721442

[Car1] E. Carlsson, Vertex operators and moduli spaces of sheaves, ProQuest LLC, Ann Arbor,MI, 2008. Thesis (Ph.D.)–Princeton University. MR2711527

[Car2] , Vertex operators and quasimodularity of Chern numbers on the Hilbert scheme,Adv. Math. 229 (2012), no. 5, 2888–2907, DOI 10.1016/j.aim.2011.10.003. MR2889150

[CO] E. Carlsson and A. Okounkov, Exts and vertex operators, Duke Math. J. 161 (2012),no. 9, 1797–1815, DOI 10.1215/00127094-1593380. MR2942794

[dCM] M. A. A. de Cataldo and L. Migliorini, The Douady space of a complex surface, Adv.Math. 151 (2000), no. 2, 283–312, DOI 10.1006/aima.1999.1896. MR1758249

[CG] F. Catanese and L. Gœttsche, d-very-ample line bundles and embeddings ofHilbert schemes of 0-cycles, Manuscripta Math. 68 (1990), no. 3, 337–341, DOI10.1007/BF02568768. MR1065935

[CL] H.-l. Chang and J. Li, Semi-perfect obstruction theory and Donaldson-Thomas in-variants of derived objects, Comm. Anal. Geom. 19 (2011), no. 4, 807–830, DOI10.4310/CAG.2011.v19.n4.a6. MR2880216

[Che1] J. Cheah, On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996),no. 3, 479–511. MR1382733

Page 16: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

BIBLIOGRAPHY 327

[Che2] , Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math.183 (1998), no. 1, 39–90, DOI 10.2140/pjm.1998.183.39. MR1616606

[Che3] , The virtual Hodge polynomials of nested Hilbert schemes and related varieties,Math. Z. 227 (1998), no. 3, 479–504, DOI 10.1007/PL00004387. MR1612677

[CR1] W. Chen and Y. Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics andphysics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., Providence,RI, 2002, pp. 25–85, DOI 10.1090/conm/310/05398. MR1950941

[CR2] , A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1,1–31, DOI 10.1007/s00220-004-1089-4. MR2104605

[Cheo1] Wan Keng Cheong, Orbifold quantum cohomology of the symmetric product of Ar.Preprint. arXiv:0910.0629

[Cheo2] W. K. Cheong, Strengthening the cohomological crepant resolution conjecture forHilbert-Chow morphisms, Math. Ann. 356 (2013), no. 1, 45–72, DOI 10.1007/s00208-012-0833-x. MR3038121

[ChG] W. K. Cheong and A. Gholampour, Orbifold Gromov-Witten theory of the symmetricproduct of Ar, Geom. Topol. 16 (2012), no. 1, 475–527, DOI 10.2140/gt.2012.16.475.MR2916292

[Coa] T. Coates, On the crepant resolution conjecture in the local case, Comm. Math. Phys.287 (2009), no. 3, 1071–1108, DOI 10.1007/s00220-008-0715-y. MR2486673

[CCIT] T. Coates, H. Iritani, and H.-H. Tseng, Wall-crossings in toric Gromov-Wittentheory. I. Crepant examples, Geom. Topol. 13 (2009), no. 5, 2675–2744, DOI10.2140/gt.2009.13.2675. MR2529944

[CR] T. Coates and Y. Ruan, Quantum cohomology and crepant resolutions: a conjecture(English, with English and French summaries), Ann. Inst. Fourier (Grenoble) 63 (2013),no. 2, 431–478. MR3112518

[Cos] K. Costello, Higher genus Gromov-Witten invariants as genus zero invariants of sym-metric products, Ann. of Math. (2) 164 (2006), no. 2, 561–601, DOI 10.4007/an-nals.2006.164.561. MR2247968

[CoG] K. Costello, I. Grojnowski, Hilbert schemes, Hecke algebras and the Calogero-Sutherland system. Preprint. math.AG/0310189.

[CK] D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry, Mathematical Sur-veys and Monographs, vol. 68, American Mathematical Society, Providence, RI, 1999.MR1677117

[DHVW] L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Strings on orbifolds, Nuclear Phys. B261 (1985), no. 4, 678–686, DOI 10.1016/0550-3213(85)90593-0. MR818423

[ELQ] D. Edidin, W.-P. Li, and Z. Qin, Gromov-Witten invariants of the Hilbert scheme of 3-points on P2, Asian J. Math. 7 (2003), no. 4, 551–574, DOI 10.4310/AJM.2003.v7.n4.a7.MR2074891

[EG] G. Ellingsrud and L. Gottsche, Hilbert schemes of points and Heisenberg algebras,School on Algebraic Geometry (Trieste, 1999), ICTP Lect. Notes, vol. 1, Abdus SalamInt. Cent. Theoret. Phys., Trieste, 2000, pp. 59–100. MR1795861

[EGL] G. Ellingsrud, L. Gottsche, and M. Lehn, On the cobordism class of the Hilbert schemeof a surface, J. Algebraic Geom. 10 (2001), no. 1, 81–100. MR1795551

[EL] G. Ellingsrud and M. Lehn, Irreducibility of the punctual quotient scheme of a surface,Ark. Mat. 37 (1999), no. 2, 245–254, DOI 10.1007/BF02412213. MR1714770

[ES1] G. Ellingsrud and S. A. Strømme, On the homology of the Hilbert scheme of pointsin the plane, Invent. Math. 87 (1987), no. 2, 343–352, DOI 10.1007/BF01389419.MR870732

[ES2] , Towards the Chow ring of the Hilbert scheme of P2, J. Reine Angew. Math.441 (1993), 33–44. MR1228610

[ES3] , An intersection number for the punctual Hilbert scheme of a surface, Trans.Amer. Math. Soc. 350 (1998), no. 6, 2547–2552, DOI 10.1090/S0002-9947-98-01972-2.

MR1432198[EtG] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and

deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348,DOI 10.1007/s002220100171. MR1881922

[FPa] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent.Math. 139 (2000), no. 1, 173–199, DOI 10.1007/s002229900028. MR1728879

Page 17: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

328 BIBLIOGRAPHY

[FG1] B. Fantechi and L. Gottsche, Orbifold cohomology for global quotients, Duke Math. J.117 (2003), no. 2, 197–227, DOI 10.1215/S0012-7094-03-11721-4. MR1971293

[FG2] , Local properties and Hilbert schemes of points, Fundamental algebraic ge-ometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005,pp. 139–178. MR2223408

[Fog1] J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math 90 (1968), 511–521, DOI 10.2307/2373541. MR0237496

[Fog2] J. Fogarty, Algebraic families on an algebraic surface. II. The Picard scheme of thepunctual Hilbert scheme, Amer. J. Math. 95 (1973), 660–687, DOI 10.2307/2373734.MR0335512

[FU] D. S. Freed and K. K. Uhlenbeck, Instantons and four-manifolds, 2nd ed., Mathemat-ical Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, 1991.MR1081321

[FB] E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Mathematical Sur-veys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2001.MR1849359

[FKRW] E. Frenkel, V. Kac, A. Radul, and W. Wang, W1+∞ and W(glN ) with central chargeN , Comm. Math. Phys. 170 (1995), no. 2, 337–357. MR1334399

[FJW] I. B. Frenkel, N. Jing, and W. Wang, Vertex representations via finite groups andthe McKay correspondence, Internat. Math. Res. Notices 4 (2000), 195–222, DOI10.1155/S107379280000012X. MR1747618

[FW] I. B. Frenkel andW.Wang, Virasoro algebra and wreath product convolution, J. Algebra242 (2001), no. 2, 656–671, DOI 10.1006/jabr.2001.8860. MR1848963

[Fu] Y. Fu, Quantum cohomology of a Hilbert scheme of a Hirzebruch surface, ProQuestLLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.MR2941780

[FN] A. Fujiki and S. Nakano, Supplement to “On the inverse of monoidal transformation”,Publ. Res. Inst. Math. Sci. 7 (1971/72), 637–644, DOI 10.2977/prims/1195193401.MR0294712

[FO] K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariant for general

symplectic manifolds, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun.,vol. 24, Amer. Math. Soc., Providence, RI, 1999, pp. 173–190. MR1733575

[Ful] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131,Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures inGeometry. MR1234037

[FP] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology,Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer.Math. Soc., Providence, RI, 1997, pp. 45–96, DOI 10.1090/pspum/062.2/1492534.MR1492534

[Get] E. Getzler, Intersection theory on M1,4 and elliptic Gromov-Witten invariants, J.Amer. Math. Soc. 10 (1997), no. 4, 973–998, DOI 10.1090/S0894-0347-97-00246-4.MR1451505

[GSY1] A. Gholampour, A. Sheshmani, S.-T. Yau, Nested Hilbert schemes on surfaces: virtual

fundamental class. Preprint. arXiv.1701.08899.[GSY2] A. Gholampour, A. Sheshmani, S.-T. Yau, Localized Donaldson-Thomas theory of sur-

faces. Preprint. arXiv.1701.08902.[Got1] L. Gottsche, The Betti numbers of the Hilbert scheme of points on a smooth pro-

jective surface, Math. Ann. 286 (1990), no. 1-3, 193–207, DOI 10.1007/BF01453572.MR1032930

[Got2] , Hilbert schemes of zero-dimensional subschemes of smooth varieties, LectureNotes in Mathematics, vol. 1572, Springer-Verlag, Berlin, 1994. MR1312161

[Got3] , On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett.8 (2001), no. 5-6, 613–627, DOI 10.4310/MRL.2001.v8.n5.a3. MR1879805

[GS] L. Gottsche and W. Soergel, Perverse sheaves and the cohomology of Hilbertschemes of smooth algebraic surfaces, Math. Ann. 296 (1993), no. 2, 235–245, DOI10.1007/BF01445104. MR1219901

Page 18: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

BIBLIOGRAPHY 329

[Gou] I. P. Goulden, A differential operator for symmetric functions and the combinatorics ofmultiplying transpositions, Trans. Amer. Math. Soc. 344 (1994), no. 1, 421–440, DOI10.2307/2154724. MR1249468

[GJV] I. Goulden, D. Jackson, R. Vakil, Towards the geometry of double Hurwitz numbers,math.AG/0309440.

[GP] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135(1999), no. 2, 487–518, DOI 10.1007/s002220050293. MR1666787

[Groj] I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex oper-ators, Math. Res. Lett. 3 (1996), no. 2, 275–291, DOI 10.4310/MRL.1996.v3.n2.a12.MR1386846

[Grot] A. Grothendieck, Techniques de construction et theoremes d’existence en geometriealgebrique. IV. Les schemas de Hilbert (French), Seminaire Bourbaki, Vol. 6, Soc.Math. France, Paris, 1995, pp. Exp. No. 221, 249–276. MR1611822

[Hai1] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J.Amer. Math. Soc. 14 (2001), no. 4, 941–1006, DOI 10.1090/S0894-0347-01-00373-3.MR1839919

[Hai2] , Vanishing theorems and character formulas for the Hilbert scheme of pointsin the plane, Invent. Math. 149 (2002), no. 2, 371–407, DOI 10.1007/s002220200219.MR1918676

[Hai3] , Combinatorics, symmetric functions, and Hilbert schemes, Current develop-ments in mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 39–111. MR2051783

[Harr] J. Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR1182558

[Hart] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Grad-uate Texts in Mathematics, No. 52. MR0463157

[Hern] D. Hernandez, An introduction to affine Kac-Moody algebras. DEA. Lecture notes fromCTQM Master Class, Aarhus University, Denmark, October 2006.

[HLQ] J. Hu, W.-P. Li, and Z. Qin, The Gromov-Witten invariants of the Hilbert schemes ofpoints on surfaces with pg > 0, Internat. J. Math. 26 (2015), no. 1, 1550009, 26, DOI10.1142/S0129167X15500093. MR3313654

[Iar1] A. A. Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc. 10 (1977), no. 188,viii+112, DOI 10.1090/memo/0188. MR0485867

[Iar2] A. Iarrobino, Hilbert scheme of points: overview of last ten years, Algebraic geometry,Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer.Math. Soc., Providence, RI, 1987, pp. 297–320. MR927986

[IN] Y. Ito and I. Nakamura, McKay correspondence and Hilbert schemes, Proc. JapanAcad. Ser. A Math. Sci. 72 (1996), no. 7, 135–138. MR1420598

[Juc] A.-A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring,Rep. Mathematical Phys. 5 (1974), no. 1, 107–112. MR0419576

[Kac] V. Kac, Vertex algebras for beginners, 2nd ed., University Lecture Series, vol. 10, Amer-ican Mathematical Society, Providence, RI, 1998. MR1651389

[Kap] S. Kapfer, Computing cup products in integral cohomology of Hilbert schemes ofpoints on K3 surfaces, LMS J. Comput. Math. 19 (2016), no. 1, 78–97, DOI10.1112/S1461157016000012. MR3542518

[KaM] S. Kapfer, G. Menet, Integral cohomology of the generalized Kummer fourfold. Preprint.[KMM] Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model prob-

lem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland,Amsterdam, 1987, pp. 283–360. MR946243

[KL1] Y. Kiem, J. Li, Gromov-Witten invariants of varieties with holomorphic 2-forms.Preprint. arXiv:0707.2986

[KL2] Y.-H. Kiem and J. Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26(2013), no. 4, 1025–1050, DOI 10.1090/S0894-0347-2013-00768-7. MR3073883

[King] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math.Oxford Ser. (2) 45 (1994), no. 180, 515–530, DOI 10.1093/qmath/45.4.515. MR1315461

[KM] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enu-merative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR1291244

Page 19: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

330 BIBLIOGRAPHY

[Kuhn] N. J. Kuhn, Character rings in algebraic topology, Advances in homotopy theory(Cortona, 1988), London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ.Press, Cambridge, 1989, pp. 111–126. MR1055872

[LT] A. Lascoux and J.-Y. Thibon, Vertex operators and the class algebras ofsymmetric groups (English, with English and Russian summaries), Zap.Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001),no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6, 156–177, 261, DOI

10.1023/B:JOTH.0000024619.77778.3d; English transl., J. Math. Sci. (N. Y.) 121(2004), no. 3, 2380–2392. MR1879068

[LY] H. B. Lawson Jr. and S. S.-T. Yau, Holomorphic symmetries, Ann. Sci. Ecole Norm.Sup. (4) 20 (1987), no. 4, 557–577. MR932798

[Leh1] M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces,Invent. Math. 136 (1999), no. 1, 157–207, DOI 10.1007/s002220050307. MR1681097

[Leh2] , Lectures on Hilbert schemes, Algebraic structures and moduli spaces, CRMProc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 1–30.MR2095898

[LS1] M. Lehn and C. Sorger, Symmetric groups and the cup product on the cohomology ofHilbert schemes, Duke Math. J. 110 (2001), no. 2, 345–357, DOI 10.1215/S0012-7094-01-11026-0. MR1865244

[LS2] , The cup product of Hilbert schemes for K3 surfaces, Invent. Math. 152 (2003),no. 2, 305–329, DOI 10.1007/s00222-002-0270-7. MR1974889

[LZ] C. Li, X. Zhao, The MMP for deformations of Hilbert schemes of points on the pro-jective plane. Algebraic Geometry (to appear).

[LiJ] J. Li, Zero dimensional Donaldson-Thomas invariants of threefolds, Geom. Topol. 10(2006), 2117–2171, DOI 10.2140/gt.2006.10.2117. MR2284053

[LL] J. Li and W.-P. Li, Two point extremal Gromov-Witten invariants of Hilbert schemesof points on surfaces, Math. Ann. 349 (2011), no. 4, 839–869, DOI 10.1007/s00208-010-0542-2. MR2777035

[LT1] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraicvarieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174, DOI 10.1090/S0894-0347-98-00250-1. MR1467172

[LT2] , Virtual moduli cycles and Gromov-Witten invariants of general symplecticmanifolds, Topics in symplectic 4-manifolds (Irvine, CA, 1996), First Int. Press Lect.Ser., I, Int. Press, Cambridge, MA, 1998, pp. 47–83. MR1635695

[LT3] , Comparison of algebraic and symplectic Gromov-Witten invariants, Asian J.Math. 3 (1999), no. 3, 689–728, DOI 10.4310/AJM.1999.v3.n3.a7. MR1793677

[LQ1] W.-P. Li and Z. Qin, On 1-point Gromov-Witten invariants of the Hilbert schemes ofpoints on surfaces, Turkish J. Math. 26 (2002), no. 1, 53–68. MR1892799

[LQ2] W.-P. Li, Z. Qin, Incidence Hilbert schemes and infinite dimensional Lie algebras.

Proceedings of Fourth International Congress of Chinese Mathematicians (Hangzhou,2007), 408-441, Vol II.

[LQ3] , Integral cohomology of Hilbert schemes of points on surfaces, Comm. Anal.Geom. 16 (2008), no. 5, 969–988, DOI 10.4310/CAG.2008.v16.n5.a3. MR2471364

[LQ4] , Equivariant cohomology of incidence Hilbert schemes and infinite dimensionalLie algebras, Manuscripta Math. 133 (2010), no. 3-4, 519–544, DOI 10.1007/s00229-010-0387-8. MR2729266

[LQ5] , The cohomological crepant resolution conjecture for the Hilbert-Chow mor-phisms, J. Differential Geom. 104 (2016), no. 3, 499–557. MR3568629

[LQW1] W.-p. Li, Z. Qin, and W. Wang, Vertex algebras and the cohomology ring structure ofHilbert schemes of points on surfaces, Math. Ann. 324 (2002), no. 1, 105–133, DOI10.1007/s002080200330. MR1931760

[LQW2] , Generators for the cohomology ring of Hilbert schemes of points on surfaces,Internat. Math. Res. Notices 20 (2001), 1057–1074, DOI 10.1155/S1073792801000502.MR1857595

[LQW3] W.-P. Li, Z. Qin, and W. Wang, Stability of the cohomology rings of Hilbertschemes of points on surfaces, J. Reine Angew. Math. 554 (2003), 217–234, DOI10.1515/crll.2003.007. MR1952174

Page 20: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

BIBLIOGRAPHY 331

[LQW4] , Hilbert schemes and W algebras, Int. Math. Res. Not. 27 (2002), 1427–1456,DOI 10.1155/S1073792802110129. MR1908477

[LQW5] , Ideals of the cohomology rings of Hilbert schemes and their applications, Trans.Amer. Math. Soc. 356 (2004), no. 1, 245–265, DOI 10.1090/S0002-9947-03-03422-6.MR2020031

[LQW6] , Hilbert schemes, integrable hierarchies, and Gromov-Witten theory, Int. Math.Res. Not. 40 (2004), 2085–2104, DOI 10.1155/S1073792804140452. MR2064317

[LQW7] , The cohomology rings of Hilbert schemes via Jack polynomials, Algebraicstructures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc.,Providence, RI, 2004, pp. 249–258. MR2096149

[LQW8] , Hilbert scheme intersection numbers, Hurwitz numbers, and Gromov-Witteninvariants, Infinite-dimensional aspects of representation theory and applications, Con-temp. Math., vol. 392, Amer. Math. Soc., Providence, RI, 2005, pp. 67–81, DOI10.1090/conm/392/07354. MR2189871

[LQZ] W.-P. Li, Z. Qin, and Q. Zhang, Curves in the Hilbert schemes of points onsurfaces, Vector bundles and representation theory (Columbia, MO, 2002), Con-temp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 89–96, DOI10.1090/conm/322/05681. MR1987741

[Mac1] I. G. Macdonald, The Poincare polynomial of a symmetric product, Proc. CambridgePhilos. Soc. 58 (1962), 563–568. MR0143204

[Mac2] , Symmetric functions and Hall polynomials, 2nd ed., Oxford MathematicalMonographs, The Clarendon Press, Oxford University Press, New York, 1995. Withcontributions by A. Zelevinsky; Oxford Science Publications. MR1354144

[Mar1] E. Markman, Generators of the cohomology ring of moduli spaces of sheaves on sym-plectic surfaces, J. Reine Angew. Math. 544 (2002), 61–82, DOI 10.1515/crll.2002.028.MR1887889

[Mar2] , Integral generators for the cohomology ring of moduli spaces ofsheaves over Poisson surfaces, Adv. Math. 208 (2007), no. 2, 622–646, DOI10.1016/j.aim.2006.03.006. MR2304330

[Mat] Y. Matsuo, Matrix theory, Hilbert scheme and integrable system, Modern Phys. Lett.

A 13 (1998), no. 34, 2731–2742, DOI 10.1142/S0217732398002904. MR1660859[Mau] D. Maulik, Gromov-Witten theory of An-resolutions, Geom. Topol. 13 (2009), no. 3,

1729–1773, DOI 10.2140/gt.2009.13.1729. MR2496055[MNOP1] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory

and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285, DOI10.1112/S0010437X06002302. MR2264664

[MNOP2] , Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142(2006), no. 5, 1286–1304, DOI 10.1112/S0010437X06002314. MR2264665

[MO1] D. Maulik and A. Oblomkov, Quantum cohomology of the Hilbert scheme of points onAn-resolutions, J. Amer. Math. Soc. 22 (2009), no. 4, 1055–1091, DOI 10.1090/S0894-0347-09-00632-8. MR2525779

[MO2] , Donaldson-Thomas theory of An × P 1, Compos. Math. 145 (2009), no. 5,1249–1276, DOI 10.1112/S0010437X09003972. MR2551996

[MJD] T. Miwa, M. Jimbo, and E. Date, Solitons, Cambridge Tracts in Mathematics, vol. 135,Cambridge University Press, Cambridge, 2000. Differential equations, symmetries andinfinite-dimensional algebras; Translated from the 1993 Japanese original by Miles Reid.MR1736222

[Mod] L. J. Mordell, On the evaluation of some multiple series, J. London Math. Soc. 33(1958), 368–371, DOI 10.1112/jlms/s1-33.3.368. MR0100181

[Mum] D. Mumford, Towards an enumerative geometry of the moduli space of curves, Arith-metic and geometry, Vol. II, Progr. Math., vol. 36, Birkhauser Boston, Boston, MA,1983, pp. 271–328. MR717614

[MF] D. Mumford and J. Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Math-ematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34,Springer-Verlag, Berlin, 1982. MR719371

[Mu] G. E. Murphy, A new construction of Young’s seminormal representation of the sym-metric groups, J. Algebra 69 (1981), no. 2, 287–297, DOI 10.1016/0021-8693(81)90205-2. MR617079

Page 21: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

332 BIBLIOGRAPHY

[Mur] R. Murphy, A transition matrix for two bases of the integral cohomology of the Hilbertscheme of points in the projective plane, ProQuest LLC, Ann Arbor, MI, 2010. Thesis(Ph.D.)–University of Missouri - Columbia. MR2982352

[Nag] K. Nagao, Quiver varieties and Frenkel-Kac construction, J. Algebra 321 (2009),no. 12, 3764–3789, DOI 10.1016/j.jalgebra.2009.03.012. MR2517812

[Nak1] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody alge-bras, Duke Math. J. 76 (1994), no. 2, 365–416, DOI 10.1215/S0012-7094-94-07613-8.

MR1302318[Nak2] , Gauge theory on resolutions of simple singularities and simple Lie alge-

bras, Internat. Math. Res. Notices 2 (1994), 61–74, DOI 10.1155/S1073792894000085.MR1264929

[Nak3] , Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann.of Math. (2) 145 (1997), no. 2, 379–388, DOI 10.2307/2951818. MR1441880

[Nak4] , Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no. 3,515–560, DOI 10.1215/S0012-7094-98-09120-7. MR1604167

[Nak5] , Lectures on Hilbert schemes of points on surfaces, University Lecture Series,vol. 18, American Mathematical Society, Providence, RI, 1999. MR1711344

[Nak6] , The Heisenberg algebra and Hilbert schemes of points on surfaces (Japanese),Sugaku 50 (1998), no. 4, 385–398. MR1690690

[Nak7] , More lectures on Hilbert schemes of points on surfaces, Development of modulitheory—Kyoto 2013, Adv. Stud. Pure Math., vol. 69, Math. Soc. Japan, [Tokyo], 2016,pp. 173–205. MR3586508

[Naka] S. Nakano, On the inverse of monoidal transformation, Publ. Res. Inst. Math. Sci. 6(1970/71), 483–502, DOI 10.2977/prims/1195193917. MR0294710

[Neg] A. Negut, Exts and the AGT relations, Lett. Math. Phys. 106 (2016), no. 9, 1265–1316,DOI 10.1007/s11005-016-0865-3. MR3533570

[NO] N. A. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Theunity of mathematics, Progr. Math., vol. 244, Birkhauser Boston, Boston, MA, 2006,pp. 525–596, DOI 10.1007/0-8176-4467-9 15. MR2181816

[Nie1] M. A. Nieper-Wisskirchen, Characteristic classes of the Hilbert schemes of points on

non-compact simply-connected surfaces, JP J. Geom. Topol. 8 (2008), no. 1, 7–21.MR2444822

[Nie2] , Twisted cohomology of the Hilbert schemes of points on surfaces, Doc. Math.14 (2009), 749–770. MR2578804

[Obe] G. Oberdieck, Gromov-Witten invariants of the Hilbert scheme of points of a K3 sur-face. Preprint. arXiv:1406.1139

[Ok1] A. Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), no. 4,447–453, DOI 10.4310/MRL.2000.v7.n4.a10. MR1783622

[Ok2] A. Yu. Okun′kov, Hilbert schemes and multiple q-zeta values (Russian, with Russiansummary), Funktsional. Anal. i Prilozhen. 48 (2014), no. 2, 79–87; English transl.,Funct. Anal. Appl. 48 (2014), no. 2, 138–144. MR3288178

[OP1] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, andcompleted cycles, Ann. of Math. (2) 163 (2006), no. 2, 517–560, DOI 10.4007/an-nals.2006.163.517. MR2199225

[OP2] , The equivariant Gromov-Witten theory of P1, Ann. of Math. (2) 163 (2006),no. 2, 561–605, DOI 10.4007/annals.2006.163.561. MR2199226

[OP3] , Quantum cohomology of the Hilbert scheme of points in the plane, Invent.Math. 179 (2010), no. 3, 523–557, DOI 10.1007/s00222-009-0223-5. MR2587340

[OP4] , The quantum differential equation of the Hilbert scheme of points in theplane, Transform. Groups 15 (2010), no. 4, 965–982, DOI 10.1007/s00031-010-9116-3. MR2753265

[OP5] , The local Donaldson-Thomas theory of curves, Geom. Topol. 14 (2010), no. 3,

1503–1567, DOI 10.2140/gt.2010.14.1503. MR2679579[OT] J.-i. Okuda and Y. Takeyama, On relations for the multiple q-zeta values, Ramanujan

J. 14 (2007), no. 3, 379–387, DOI 10.1007/s11139-007-9053-5. MR2357443[PTse] R. Pandharipande, H.-H. Tseng, Higher genus Gromov-Witten theory of the Hilbert

scheme of points of the plane and CohFTs associated to local curves. Preprint.arXiv:1707.01406

Page 22: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

BIBLIOGRAPHY 333

[QT] Z. Qin and Y. Tu, The nef cones of and minimal-degree curves in the Hilbert schemesof points on certain surfaces, Pacific J. Math. 284 (2016), no. 2, 439–453, DOI10.2140/pjm.2016.284.439. MR3544309

[QW1] Z. Qin and W. Wang, Hilbert schemes and symmetric products: a dictionary, Orb-ifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310,Amer. Math. Soc., Providence, RI, 2002, pp. 233–257, DOI 10.1090/conm/310/05407.MR1950950

[QW2] , Integral operators and integral cohomology classes of Hilbert schemes, Math.Ann. 331 (2005), no. 3, 669–692, DOI 10.1007/s00208-004-0602-6. MR2122545

[QW3] , Hilbert schemes of points on the minimal resolution and soliton equations, Liealgebras, vertex operator algebras and their applications, Contemp. Math., vol. 442,Amer. Math. Soc., Providence, RI, 2007, pp. 435–462, DOI 10.1090/conm/442/08541.MR2372578

[QY] Z. Qin, F. Yu, On Okounkov’s conjecture connecting Hilbert schemes of points and mul-tiple q-zeta values. Intern. Math. Res. Notices (to appear). Published online: December16, 2016.

[Reid] M. Reid, La correspondance de McKay, Asterisque 276 (2002), 53–72. Seminaire Bour-baki, Vol. 1999/2000. MR1886756

[Rua1] Y. Ruan, Topological sigma model and Donaldson-type invariants in Gromov the-ory, Duke Math. J. 83 (1996), no. 2, 461–500, DOI 10.1215/S0012-7094-96-08316-7.MR1390655

[Rua2] , The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theoryof spin curves and orbifolds, Contemp. Math., vol. 403, Amer. Math. Soc., Providence,RI, 2006, pp. 117–126, DOI 10.1090/conm/403/07597. MR2234886

[Seg] G. Segal, Equivariant K-theory and symmetric products. Lecture at Cambridge, July1996.

[Sim] C. T. Simpson, Moduli of representations of the fundamental group of a smooth pro-

jective variety. I, Inst. Hautes Etudes Sci. Publ. Math. 79 (1994), 47–129. MR1307297[Tik] A. S. Tikhomirov, Standard bundles on a Hilbert scheme of points on a surface, Al-

gebraic geometry and its applications (Yaroslavl′, 1992), Aspects Math., E25, Friedr.Vieweg, Braunschweig, 1994, pp. 183–203. MR1282029

[Tor] L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303–314, DOI10.2307/2372034. MR0034860

[Tse] H.-H. Tseng, A tale of four theories. Talk at the conference “Geometry of ModuliSpaces”. University of California at San Diego, May 2017.

[UT] K. Ueno and K. Takasaki, Toda lattice hierarchy, Group representations and systemsof differential equations (Tokyo, 1982), Adv. Stud. Pure Math., vol. 4, North-Holland,Amsterdam, 1984, pp. 1–95. MR810623

[Uri] B. Uribe, Orbifold cohomology of the symmetric product, Comm. Anal. Geom. 13

(2005), no. 1, 113–128. MR2154668[VW] C. Vafa and E. Witten, A strong coupling test of S-duality, Nuclear Phys. B 431 (1994),

no. 1-2, 3–77, DOI 10.1016/0550-3213(94)90097-3. MR1305096[Vas] E. Vasserot, Sur l’anneau de cohomologie du schema de Hilbert de C2 (French, with

English and French summaries), C. R. Acad. Sci. Paris Ser. I Math. 332 (2001), no. 1,7–12, DOI 10.1016/S0764-4442(00)01766-3. MR1805619

[Wan1] W. Wang, Equivariant K-theory, wreath products, and Heisenberg algebra, Duke Math.J. 103 (2000), no. 1, 1–23, DOI 10.1215/S0012-7094-00-10311-0. MR1758236

[Wan2] , Algebraic structures behind Hilbert schemes and wreath products, Recent devel-opments in infinite-dimensional Lie algebras and conformal field theory (Charlottesville,VA, 2000), Contemp. Math., vol. 297, Amer. Math. Soc., Providence, RI, 2002, pp. 271–295, DOI 10.1090/conm/297/05102. MR1919822

[Wan3] , The Farahat-Higman ring of wreath products and Hilbert schemes, Adv. Math.187 (2004), no. 2, 417–446, DOI 10.1016/j.aim.2003.09.003. MR2078343

[Wan4] , Vertex algebras and the class algebras of wreath products, Proc. London Math.Soc. (3) 88 (2004), no. 2, 381–404, DOI 10.1112/S0024611503014382. MR2032512

[Wit] E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141(1991), no. 1, 153–209. MR1133264

Page 23: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

334 BIBLIOGRAPHY

[Zas] E. Zaslow, Topological orbifold models and quantum cohomology rings, Comm. Math.Phys. 156 (1993), no. 2, 301–331. MR1233848

[Zhao] J. Zhao, Uniform approach to double shuffle and duality relations of various q-analogsof multiple zeta values via Rota-Baxter algebras. Preprint. arXiv:1412.8044

[Zud] V. V. Zudilin, Algebraic relations for multiple zeta values (Russian, withRussian summary), Uspekhi Mat. Nauk 58 (2003), no. 1(349), 3–32, DOI10.1070/RM2003v058n01ABEH000592; English transl., Russian Math. Surveys 58

(2003), no. 1, 1–29. MR1992130

Page 24: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

Index

N-point function, 238

W algebra, 92τ -function, 242

k-very ample, 16q-trace, 237

ADHM datum, 44adjoint operator, 46

affine Kac-Moody algebra ˜sl�, 45alternating character, 160

arm colength, 4

bi-degree, 46

Borel-Moore homology, 157boson-fermion correspondence, 236

boundary of Hilbert schemes, 15boundary operator, 61

Calogero-Sutherland operator, 155Cartan matrix, 44

Chern character operator, 73Chevalley generators, 45

class algebra, 160Cohomological Crepant Resolution

Conjecture, 322

content, 4convolution product, 160

Crepant Resolution Conjecture, 307

curvi-linear ideals, 12

degeneracy locus, 254, 257degree defect, 152

degree of a permutation, 152degree shift number, 204

Divisor Axiom, 233

dominance ordering, 3

elementary symmetric function, 5equivariant cohomology, 220

equivariant quantum corrected boundaryoperator, 273

Euler class, 151Euler-Poincare characteristic, 151

evaluation map, 232excess dimension, 233

expected dimension, 232Ext operator, 70

FH ring, 173forgetful map, 233forgotten symmetric function, 7Fundamental Class Axiom, 232

graded Frobenius algebra, 150, 322graph defect, 152

Gromov-Witten invariants, 232

Hecke correspondence, 45Heisenberg monomial classes, 48Heisenberg operators, 47Hilbert ring, 147Hilbert scheme of α-points, 301

Hilbert scheme of Λ-points, 301Hilbert scheme of n points, 10Hilbert scheme, punctual, 12Hilbert-Chow morphism, 12Hilbert/Gromov-Witten correspondence,

237, 276Hodge bundle, 261hook length, 4Hurwitz cover, 247

Hurwitz number, 248

incidence Hilbert scheme, 17induction map, 204integral basis, 175integral class, 175integral operator, 175

Jack symmetric function, 7Jucys-Murphy elements, 207

leg colength, 4leg length, 4Lie superalgebra bracket, 46local Gromov-Witten theory, 276

monomial symmetric function, 6multi-point trace function, 240multiple q-zeta value, 99multiple zeta value, 99

335

Page 25: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

336 INDEX

Mumford principle, 141

nef, 16

nef and big, 16normally ordered product, 61, 93

operator product expansion, 96orbifold, 203orbifold cohomology group, 204orbifold cohomology ring, 204

partition, 3partition, d-dimensional, 3partition, generalized, 4Poincare polynomial, 7power symmetric function, 6

quantum corrected boundary operator, 296quantum corrected cohomology ring, 308quantum corrected product, 308quantum differential equation, 278quantum-mechanical Calogero-Sutherland

operator, 278quiver, 43quiver variety, 44

Riemann zeta function, 99ring of symmetric functions, 5

S-property, 171Schur function, 6stable map, 232standard decomposition, 256symmetric product, 7

tautological bundle, 15transfer properties, 77translation operator, 130

universal linear combination, 76, 162

vacuum expectation, 236Virasoro operator, 61virtual fundamental class, 232

weight, 100

Young diagram, 4

Page 26: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

Selected Published Titles in This Series

228 Zhenbo Qin, Hilbert Schemes of Points and Infinite Dimensional Lie Algebras, 2018

227 Roberto Frigerio, Bounded Cohomology of Discrete Groups, 2017

226 Marcelo Aguiar and Swapneel Mahajan, Topics in Hyperplane Arrangements, 2017

225 Mario Bonk and Daniel Meyer, Expanding Thurston Maps, 2017

224 Ruy Exel, Partial Dynamical Systems, Fell Bundles and Applications, 2017

223 Guillaume Aubrun and Stanis�law J. Szarek, Alice and Bob Meet Banach, 2017

222 Alexandru Buium, Foundations of Arithmetic Differential Geometry, 2017

221 Dennis Gaitsgory and Nick Rozenblyum, A Study in Derived Algebraic Geometry,2017

220 A. Shen, V. A. Uspensky, and N. Vereshchagin, Kolmogorov Complexity andAlgorithmic Randomness, 2017

219 Richard Evan Schwartz, The Projective Heat Map, 2017

218 Tushar Das, David Simmons, and Mariusz Urbanski, Geometry and Dynamics inGromov Hyperbolic Metric Spaces, 2017

217 Benoit Fresse, Homotopy of Operads and Grothendieck–Teichmuller Groups, 2017

216 Frederick W. Gehring, Gaven J. Martin, and Bruce P. Palka, An Introduction tothe Theory of Higher-Dimensional Quasiconformal Mappings, 2017

215 Robert Bieri and Ralph Strebel, On Groups of PL-homeomorphisms of the Real Line,2016

214 Jared Speck, Shock Formation in Small-Data Solutions to 3D Quasilinear WaveEquations, 2016

213 Harold G. Diamond and Wen-Bin Zhang (Cheung Man Ping), BeurlingGeneralized Numbers, 2016

212 Pandelis Dodos and Vassilis Kanellopoulos, Ramsey Theory for Product Spaces,2016

211 Charlotte Hardouin, Jacques Sauloy, and Michael F. Singer, Galois Theories ofLinear Difference Equations: An Introduction, 2016

210 Jason P. Bell, Dragos Ghioca, and Thomas J. Tucker, The DynamicalMordell–Lang Conjecture, 2016

209 Steve Y. Oudot, Persistence Theory: From Quiver Representations to Data Analysis,2015

208 Peter S. Ozsvath, Andras I. Stipsicz, and Zoltan Szabo, Grid Homology for Knotsand Links, 2015

207 Vladimir I. Bogachev, Nicolai V. Krylov, Michael Rockner, and Stanislav V.

Shaposhnikov, Fokker–Planck–Kolmogorov Equations, 2015

206 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, JamesIsenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci Flow:Techniques and Applications: Part IV: Long-Time Solutions and Related Topics, 2015

205 Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, TensorCategories, 2015

204 Victor M. Buchstaber and Taras E. Panov, Toric Topology, 2015

203 Donald Yau and Mark W. Johnson, A Foundation for PROPs, Algebras, andModules, 2015

202 Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman,Asymptotic Geometric Analysis, Part I, 2015

201 Christopher L. Douglas, John Francis, Andre G. Henriques, and Michael A.Hill, Editors, Topological Modular Forms, 2014

For a complete list of titles in this series, visit theAMS Bookstore at www.ams.org/bookstore/survseries/.

Page 27: Dimensional Lie AlgebrasDimensional Lie Algebras Zhenbo Qin. Hilbert Schemes of Points and Infinite Dimensional Lie Algebras 10.1090/surv/228. Mathematical Surveys and Monographs Volume

For additional information and updates on this book, visit

Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes X [n ] of collections of n points (zero-dimensional subschemes) in a smooth algebraic surface X . Schemes X [n ] turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others.

This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of X [n ] , including the construction of the action of infinite dimen-sional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of X [n ] and the Gromov–Witten correspondence. The last part of the book presents results about quantum cohomology of X [n ] and related questions.

The book is of interest to graduate students and researchers in algebraic geometry, representation theory, combinatorics, topology, number theory, and theoretical physics.

www.ams.orgSURV/228