Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant...

33
Dijkgraaf-Witten invariants of cusped hyperbolic 3-manifolds Naoki Kimura Waseda University December 23, 2017

Transcript of Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant...

Page 1: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Dijkgraaf-Witten invariants of cuspedhyperbolic 3-manifolds

Naoki Kimura

Waseda University

December 23, 2017

Page 2: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

1 Introduction

2 Main results

2 / 33

Page 3: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

1 Introduction

2 Main results

3 / 33

Page 4: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Introduction

M : a closed oriented 3-manifold

G : a finite group

¸ 2 Z3(BG; U(1)) : a normalized 3-cocycle

The Dijkgraaf-Witten invariant is defined as follows:

Z(M) =1

jGjX

‚2Hom(ı1(M);G)h‚˜[¸]; [M]i 2 C:

Z(M) is a topological invariant (homotopy invariant).

4 / 33

Page 5: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Introduction

The Dijkgraaf-Witten invariant is constructed by using

a triangulation:

Z(M) =1

jGjaX

’2Col(M)

Y

tetrahedron

¸(g; h; k)˚1:

a : the number of the vertices of M

g; h; k 2 G : colors of edges of a tetrahedron

We consider the Dijkgraaf-Witten invariant as

“the Turaev-Viro type invariant”.

5 / 33

Page 6: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Group cohomology

G : a finite group

Cn(G; U(1)) =

8

>

>

<

>

>

:

U(1) (n = 0)

f¸ :n

z }| {

G ˆ ´ ´ ´ ˆ G ! U(1)g (n – 1)

‹n : Cn(G; U(1))! Cn+1(G; U(1))

(‹0a)(g) = 1 (a 2 U(1); g 2 G)

(‹n¸)(g1; : : : ; gn+1) = ¸(g2; : : : ; gn+1)ˆ

nY

i=1

¸(g1; : : : ; gigi+1; : : : ; gn+1)(`1)iˆ¸(g1; : : : ; gn)(`1)

n+1

(¸ 2 Cn(G; U(1)); g1; : : : ; gn+1 2 G; n – 1)6 / 33

Page 7: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Group cohomology

¸ 2 Cn(G; U(1)) is normalized

, ¸(1; g2; : : : ; gn) = ¸(g1; 1; g3; : : : ; gn) = ´ ´ ´

= ¸(g1; : : : ; gn`1; 1) = 1.

(g1; : : : ; gn 2 G)

cocycle condition

¸ 2 C3(G; U(1)),

¸ 2 Z3(G; U(1))

, ¸(h; k; l)¸(g; hk; l)¸(g; h; k) = ¸(gh; k; l)¸(g; h; kl).

(g; h; k; l 2 G)

7 / 33

Page 8: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Local order

Fix a triangulation of M.

Give an orientation to each edge such that

for any 2-face F , the orientations of the three edges of F

are not cyclic.

Then a total order on the set of the vertices of each

tetrahedron is induced by the choice of the orientations.

We call it a local order of M.

8 / 33

Page 9: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

ColoringFix a triangulation of M with oriented edges and oriented faces.

A coloring of M is a map

’ : foriented edges of Mg ! G such that

for any oriented 2-face F ,

’(E3)›3’(E2)›2’(E1)›1 = ’(E2)›2’(E1)›1’(E3)›3

= ’(E1)›1’(E3)›3’(E2)›2 = 1 2 G,

where E1, E2, and E3 are the oriented edges of F and

›i =

8

<

:

1 the orientation of Ei agrees with that of @F

`1 otherwise:

›1 = 1; ›2 = 1; ›3 = `1: 9 / 33

Page 10: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Definition of DW invariant

Correspond ¸(g; h; k)› to the colored tetrahedron T , where

› =

8

>

<

>

:

1 local order of T agrees with the orientation of M

`1 otherwise:

The Dijkgraaf-Witten invariant Z(M) is defined as follows:

Z(M) =1

jGjaX

’2Col(M)

Y

tetrahedron

¸(g; h; k)›:

a : the number of the vertices of M10 / 33

Page 11: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Invariance

The Dijkgraaf-Witten invariant is actually a topological

inavariant, i.e.

it is independent of

(1) a choice of a local order for a fixed triangulation of M

and

(2) a choice of a triangulation of M.

The invariance follows from the following theorem

and the cocycle condition.

( ¸(h; k; l)¸(g; hk; l)¸(g; h; k) = ¸(gh; k; l)¸(g; h; kl) )

11 / 33

Page 12: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Pachner moves

Theorem (Pachner)Any two triangulations of a 3-manifold M can betransformed one to another by a finite sequence of thefollowing two types of transformations.

(1,4)-Pachner move (2,3)-Pachner move

12 / 33

Page 13: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Properties of DW invariant

M : a closed oriented 3-manifold

G : a finite group

¸ 2 Z3(G; U(1))

(1) Z(M) only depends on the cohomology class of ¸.

(2) Z(`M) = Z(M),

where `M is the oriented 3-manifold with the

opposite orientation to M.

13 / 33

Page 14: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Manifold with boundary case

The Dijkgraaf-Witten invariant is also defined for

a compact oriented 3-manifold M with @M 6= ;.

However, Z(M; ) depends on a locally ordered

triangulation of @M and on a coloring of @M.

cf. Dijkgraaf-Witten TQFT

Z(M) : Z(@M)! Z(;) = C : a linear map

Hard to calculate the linear maps and to compare them.

14 / 33

Page 15: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

1 Introduction

2 Main results

15 / 33

Page 16: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Extension of DW invariant

We consider an extension of the Dijkgraaf-Witten invariant

to 3-manifolds with boundary or cusped hyperbolic

3-manifolds using by an ideal triangulation as follows:

Definition (Extended Dijkgraaf-Witten invariant)

Z(M) =X

’2Col(M)

Y

ideal tetrahedron

¸(g; h; k)˚1:

A locally ordered triangulation of @M and a coloring of

@M are unnecessary for this definition.

16 / 33

Page 17: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Invariance

The extended Dijkgraaf-Witten invariant is actually

a topological inavariant, i.e.

it is independent of

(1) a choice of a local order for a fixed ideal triangulation

of M

and

(2) a choice of an ideal triangulation of M.

The invariance follows from the following theorem

and the cocycle condition.

17 / 33

Page 18: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Pachner moves (ideal triangulation)

Theorem (Matveev)Any two ideal triangulations of a 3-manifold M can betransformed one to another by a finite sequence of thefollowing two types of transformations.

(0,2)-Pachner move (2,3)-Pachner move

18 / 33

Page 19: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m003 and m004

m003 m004 ( = S3 n 41)

Vol(m003) = Vol(m004) ı 2:02988.

TV (m003) =X

(a;a;b);(a;b;b)2admwawb

˛

˛

˛

˛

˛

˛

a a b

a b b

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

a a b

a b b

˛

˛

˛

˛

˛

˛

= TV (m004).

H1(m003; Z) = Z˘ Z5; H1(m004; Z) = Z.19 / 33

Page 20: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Extended DW invariant of m004

m004 = S3 n 41

a = ba; b = ab

) a = b = 1 2 G

m004 has only a trivial coloring.

For any G and any ¸,

Z(m004) = 1. 20 / 33

Page 21: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m003

m003

This ideal triangulation of m003 does not admit

a local order.

21 / 33

Page 22: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m003

In order to assign a local order, transform the idealtriangulation of m003 by (2,3)-Pachner moves.

22 / 33

Page 23: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m003

In order to assign a local order, transform the idealtriangulation of m003 by (2,3)-Pachner moves.

23 / 33

Page 24: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m003

In order to assign a local order, transform the idealtriangulation of m003 by (2,3)-Pachner moves.

24 / 33

Page 25: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m003

In order to assign a local order, transform the idealtriangulation of m003 by (2,3)-Pachner moves.

25 / 33

Page 26: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m003

In order to assign a local order, transform the idealtriangulation of m003 by (2,3)-Pachner moves.

26 / 33

Page 27: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m003

In order to assign a local order, transform the idealtriangulation of m003 by (2,3)-Pachner moves.

27 / 33

Page 28: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Extended DW invariant of m003

a = b3; c = b2; d = b4; e = b; f = 1; g = b2; b5 = 1.

Z(m003) =X

b5=1

¸(b; b; b)`1¸(b2; b; b)¸(b3; b3; b3)

ˆ¸(b; b; b3)¸(b; b2; b2)¸(b2; b3; b2).G = Z5, ¸ is a generator of H3(Z5; U(1)) ‰= Z5,Z(m003) = 1

2(5 +

p5 + i

q

10 + 2p5): (Z(m004) = 1:)

28 / 33

Page 29: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

m006 and m007

m006

m007

Vol(m006) = Vol(m007) ı 2:56897.

TV (m006) =X

wawbwc

˛

˛

˛

˛

˛

˛

a b c

a b a

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

a b c

a c a

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

a b c

a c a

˛

˛

˛

˛

˛

˛

= TV (m007).

H1(m006; Z) = Z˘ Z5; H1(m007; Z) = Z˘ Z3. 29 / 33

Page 30: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Extended DW invariants of m006 and m007

Z(m006) =X

a5=1

¸(a; a; a)3¸(a; a2; a)¸(a3; a3; a3):

Z(m007) =X

a3=1

¸(a; a; a)¸(a`1; a`1; a`1):

G = Z5, ¸ is a generator of H3(Z5; U(1)) ‰= Z5,

Z(m006) = `p52; Z(m007) = 1.

30 / 33

Page 31: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

s778 and s788

The previous two pairs of cusped hyperbolic 3-manifolds

with the same hyperbolic volumes and the same Turaev-

Viro invariants are distinguished by their homology groups.

The following pair of cusped hyperbolic 3-manifolds with

the same hyperbolic volumes and the same homology

groups have the distinct Dijkgraaf-Witten invariants.

Vol(s778) = Vol(s788) ı 5:33349.

H1(s778; Z) = H1(s788; Z) = Z˘ Z12.

Z(s778) 6= Z(s788):

31 / 33

Page 32: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

Extended DW invariants of s778 and s788

Z(s778) =X

a12=1

¸(a; a; a2)¸(a2; a; a)¸(a2; a; a2)

ˆ¸(a3; a2; a3)¸(a3; a10; a3)¸(a5; a5; a10)

ˆ¸(a10; a5; a5)¸(a10; a5; a10):

Z(s788) =X

a12=1

¸(a5; a; a2)¸(a6; a2; a3)¸(a8; a; a2)

ˆ¸(a8; a; a8)`1¸(a8; a5; a8)`1¸(a8; a9; a8)`1

ˆ¸(a9; a5; a3)`1¸(a9; a8; a)`1¸(a9; a9; a5):

G = Z12, ¸ is a generator of H3(Z12; U(1)) ‰= Z12,

Z(s778) = `6; Z(s788) = 3` 2p3.

32 / 33

Page 33: Dijkgraaf-Witten invariants of cusped hyperbolic 3- · PDF filethe Turaev-Viro type invariant . 5 / 33. Group cohomology G: a ˝nite group Cn(G;U(1)) = ... a choice of a local order

References

[1] B.A.Burton, R.Budney, W.Pettersson, et al., Regina: Softwarefor low-dimensional topology, http://regina-normal.github.io/,1999-2016.

[2] M.Culler, N.M.Dunfield, M.Goerner, and J.R.Weeks, SnapPy,a computer program for studying the geometry and topology of3-manifolds, http://snappy.computop.org/.

[3] R.Dijkgraaf and E.Witten, Topological gauge theories andgroup cohomology, Comm. Math. Phys. 129 (1990), no. 2,393-429.

[4] S.V.Matveev, Algorithmic topology and classification of3-manifolds, Algorithms and Computation in Mathematics, vol. 9,Springer, 2003.

[5] V.G.Turaev and O.Y.Viro, State sum invariants of 3-manifoldsand quantum 6j-symbols, Topology 31 (1992), 865-902.

[6] M.Wakui, On Dijkgraaf-Witten invariant for 3-manifolds,Osaka J. Math. 29 (1992), no. 4, 675-696.

33 / 33