DIGITALIZING EXTRACTIVE INDUSTRIES: STATE-OF-THE-ART … · STATE-OF-THE-ART TO THE...

68
INNOVATION POLICY WHITE PAPER SERIES 2017-04 DIGITALIZING EXTRACTIVE INDUSTRIES: STATE-OF-THE-ART TO THE ART-OF-THE-POSSIBLE: OPPORTUNITIES AND CHALLENGES FOR CANADA Ray Gosine and Peter Warrian

Transcript of DIGITALIZING EXTRACTIVE INDUSTRIES: STATE-OF-THE-ART … · STATE-OF-THE-ART TO THE...

INNOVATIONPOLICYWHITEPAPERSERIES2017-04

DIGITALIZINGEXTRACTIVEINDUSTRIES: STATE-OF-THE-ARTTOTHEART-OF-THE-POSSIBLE:

OPPORTUNITIESANDCHALLENGESFORCANADA

RayGosineandPeterWarrian

1

TableofContents

AbouttheAuthors...........................................................................................................................2

Glossary...........................................................................................................................................3

ExecutiveSummary.........................................................................................................................5

(1.0)BriefIntroductiontoDigitalization.........................................................................................8

(2.0)Canada’sExtractiveIndustriesandDigitalization...................................................................8

(3.0)MiningContext.....................................................................................................................14

(3.1)DigitalizationinMining.....................................................................................................17

(4.0)OilandGasContext..............................................................................................................20

(4.1)DigitalizationinOilandGas..............................................................................................23

(5.0)OtherConsiderations............................................................................................................28

(5.1)RegulationandTechnologicalProgress............................................................................28

(5.2)Technology,EmploymentImpacts,andEducationandTraining......................................32

(5.3)TechnologyfromOtherSectors........................................................................................40

(5.4)TheRoleofSmallandMedium-sizedEnterprises(SMEs).................................................42

(5.5)OtherApproachestoInnovation......................................................................................43

(6.0)MiningandOilandGas:DigitalSynergy...............................................................................47

(7.0)ConclusionsandNextSteps..................................................................................................49

(8.0)References............................................................................................................................51

Pleasecitethisdocumentas:

Gosine,R.,&Warrian,P.(2017).Digitalizingextractiveindustries:thestate-of-the-arttotheart-of-the-possible.MunkSchoolofGlobalAffairsInnovationPolicyLabWhitePaperSeries2017-004.RetrievedfromInnovationPolicyLabWebSite:https://munkschool.utoronto.ca/ipl/publications/type/white-paper-series/

2

AbouttheAuthors

Dr.RayGosineisaVisitingProfessorattheMunkSchoolofGlobalAffairs,Universityof

Toronto,andaProfessorofEngineering,MemorialUniversityofNewfoundland.Hehas

heldvariousseniorrolesatMemorialUniversity,includingVice-PresidentResearch(pro

tempore),DeanofEngineering,andtheJ.I.Clark/C-COREChairofIntelligentSystemsfor

OperationsinHarshEnvironments.HealsoheldanNSERCChairinIndustrial

AutomationattheUniversityofBritishColumbia.Dr.GosineisaFellowoftheCanadian

AcademyofEngineering(FCAE)andaFellowofEngineersCanada(FEC).

Dr.Gosine’sresearchisintheareasofintelligentsystems,robotics,andautomation

withaparticularinterestintheapplicationsofthesetechnologiestonaturalresource

industries.Heisinterestedinthebroaderimplicationsofadvancedtechnologies,andhe

recentlychairedaPublicReviewPanel(www.nlhfrp.ca)thatconsideredthescientific,

technical,socio-economic,publicpolicy,regulatory,environmental,andpublichealth

issuesassociatedwithunconventionaloilandgasdevelopment(i.e.,fracking).

Dr.PeterWarrianisaSeniorResearchFellowattheMunkSchoolofGlobalAffairs,

UniversityofToronto.HeisCanada’sleadingacademicexpertonthesteelindustry,and

hewasformerlytheResearchDirectoroftheUnitedSteelworkersofAmericaandthe

ChiefEconomistoftheProvinceofOntario.

Dr.Warrian’scurrentresearchisonknowledgenetworks,supplychains,anddigital

manufacturing.AsamemberoftheInnovationSystemsResearchNetwork(ISRN),

fundedbytheSocialSciencesandHumanitiesResearchCouncilofCanada(SSHRC),he

hasworkedontheinterfacebetweenthesteelindustryandtheautoindustry,

particularlyintheareaoflightweightmaterialsandtheinteractionofsoftwareand

advancedmaterials.

3

Glossary(AdaptedfromWikipediaandtheGartnerITGlossary)

Analytics:thediscovery,interpretation,andcommunicationofmeaningfulpatternsin

data

Automation:theuseofcomputer-controlledsystemstooperateequipmentwith

minimalorreducedhumanintervention

AutomationAnxiety:fearabouttheimpactsofautomationonpeoples’workanddaily

life,includingfearaboutthesafetyofautomationtechnologyanditscapacitytoreplace

humanlabourandexpertise

BigData:largeand/orcomplexdatasetsthatcannotbeprocessedusingtraditionaldata

processingsoftware

ArtificialIntelligence(AI):intelligenceexhibitedbymachinestomimicthecognitive

functionsthathumansassociatewithotherhumanminds,suchaslearningand

problem-solving

AutonomousVehicles:avehiclethatcandriveitselfusingvariousdigitaltechnologiesforrouteplanning,navigation,environmentalsensing,andobstacleavoidance

DARPA:DefenseAdvancedProjectsResearchAgencyintheUnitedStates

DigitalTechnology:computerizeddevices,systems,andprocesses

Digitalization:ongoingadoptionofdigitaltechnologiesacrosssociety

DisruptiveTechnology:technologytypicallyproducedbyoutsidersandentrepreneursratherthanmarket-leadingcompaniesthatcreatesanewmarketandvaluenetwork

andeventuallydisruptsanexistingmarketandvaluenetwork,displacingestablished

marketleadingfirms,products,andalliances

E&P:explorationandproductionwithintheoilandgasindustry

GeomaticSurvey:usinginstrumentationtogathergeographicorspatiallyreferenced

information

GrossDomesticProduct(GDP):thetotalvalueofallgoodsandservicesproducedwithinacountryoraregion,whichgivesanindicationofthesizeofaneconomy

Human-computerInteraction:theinterfacebetweenpeople(users)andcomputers

Human-robotInteraction:theinterfacebetweenpeople(users)androbotsIndustry4.0:thecurrenttrendofautomationanddigitalizationacrossindustries

Innovation:theapplicationofbettersolutionstomeetnewrequirements,unarticulated

needs,orexistingmarketneedsthroughmore-effectiveproducts,processes,services,

technologies,orbusinessmodels

IntelligentSystems:aphysicalsystemthatincorporatesartificialintelligenceintoits

function

4

InternetofThings(IoT):thenetworkofphysicaldevices,vehicles,andotheritems

embeddedwithelectronics,software,sensors,andactuatorsthatenabletheseobjects

tocollectandexchangedata

LHD:Load-Haul-Dumpminingvehiclethatissimilartoafront-endloader

Metocean:thecombinationofwind,wave,andclimateconditions

MobileComputing:human–computerinteractionusingacomputertransportedduring

normalusage

NSERC:NaturalSciencesandEngineeringResearchCouncilwhichfundsacademic

researchinCanada

PeakOilDemand:correspondstothetimewhentheglobaldemandforoilreachesits

maximumlevel,afterwhichdemanddecreases

Production:theprocessofextractingmineralsandoilandgasresources

R&D:ResearchandDevelopment

RemotelyOperatedVehicle(ROV):atetheredunderwatermobiledevicethatis

unoccupied,highlymaneuverable,andoperatedbyacrewaboardavessel

Robots:computer-programmablemachinesthatcantaketheplace,partiallyorfully,of

humanstocarryoutacomplexseriesofactionsautomatically

SeismicSurvey:generatingsoundwavesandmeasuringtheirreflectionsfromwithin

thesurfaceoftheearthinordertobuildupanimageofthesubsurface

SmallandMedium-sizedEnterprise(SME):inCanadaasmallormedium-sized

enterpriseisabusinessthathaslessthan500employees,with98%ofSMEshaving

fewerthan100employees

SupplyChain:systemoforganizations,people,activities,information,andresources

involvedinmovingaproductorservicefromsuppliertocustomer

Tele-operation:operationofasystemormachine,typicallyarobot,atadistance

Transportation-as-a-Service(TaaS):describesashiftawayfrompersonallyowned

modesoftransportationandtowardsmobilitysolutionsthatareconsumedasaservice-

alsoknownasMobility-as-a-Service(MaaS)

UpstreamOilandGasIndustry:companiesthatsearchforpotentialundergroundor

underwatercrudeoilandnaturalgasfields,drillexploratorywells,andsubsequently

drillandoperatethewellsthatrecoverandbringthecrudeoilorrawnaturalgastothe

surface

ValueChain:setofactivitiesthatafirmoperatinginaspecificindustryperformsin

ordertodeliveravaluableproductorserviceforthemarket

WearableTechnology:digitaltechnologywornbyahumaninordertocarryouta

particularfunction,suchastocollectdataorprovidesensoryaugmentation

5

ExecutiveSummary

Industriesbasedonextractiveresources,primarilymineralsandoilandgasresources,

areimportanttotheCanadianeconomyintermsoftheircontributionstoemployment,

grossdomesticproduct(GDP),capitalexpenditure,construction-relatedinvestment,

revenuestogovernments,exportvalue,andinvestmentinCanadiancompanies.

Extractivesindustriesaretrulypan-Canadianandimportantfrombothanational

perspectiveandaregionalperspective,especiallyforresourceregions.Thecompanies

aremultinationalinscope,withglobalworkforces,supplychains,andconsumersof

theircommodities.

Asmoreaccessibleresourcesarefullyexploited,therearetechnicalandscientific

challengestobeovercometodigdeeperorextractlowergrademineralsandtodrillin

moreremoteorchallengingareastoproduceoilandgas.Therearealsochallenges

arisingfromthecomplexityoftheunderlyingeconomicsofextractiveindustries,which

areexacerbatedbyprotractedcommoditypricevariability,interspersedwithoccasional

andsurprisingpriceshocks.Thesedifficulteconomicsarefurthercompoundedbythe

increasingchallengesresultingfromsatisfyingtheperceivedandrealentitlementsof

variousstakeholders.Thereisarequirementtoachieveandmaintainwin-win-win

relationshipsamongcommunities,governments,andindustrystakeholders,allofwhich

are`invested’inresourcedevelopmentprojectsandhaveincreasedexpectationswith

respecttoreturns.

Extractiveindustries,likemanyothersectorsoftheeconomy,willbesignificantly

impactedbydisruptivedigitaltechnologies,variouslyreferredtoasdigitalization,

Industry4.0,andtheFourthIndustrialRevolution.Thesetechnologiesincludeadvanced

robotics,bigdataandanalytics,artificialintelligence,mobilecomputing,wearable

technology,internetofthings(IoT),andautonomousandnear-autonomousvehicles.

Whilethereiswidespreadbeliefthatdigitalizationwilltransformextractiveindustries,

thetimelinesandconsequencesforsuchatransformationarelessclear.

6

Lookingforward,extractiveindustriesoperatinginCanadamustaddresschallengesby

developing,adopting,integrating,andapplyingrecentandemergingdigital

technologies.Itisonlythroughinnovationthatthechallengesexperiencedbyextractive

industriesinrecentyears,andwhichareexpectedtopersistorworsenintothefuture,

canbeaddressedsuccessfully.Inadditiontohelpingtoaddresschallenges,anembrace

ofdigitaltechnologycouldleadtonewandcurrentlyunknownopportunities.

Forbothminingandoilandgascompanies,thefuturecouldincludeheavilydigitalized

assets(i.e.,oilrigs,miningequipment),capableofhighlevelsofautonomyandinter-

assetcooperation,operatingwithinchallengingnaturalenvironments(e.g.,adeepor

remotemineorfaroffshoreoilfield)monitoredusingadvancedembeddedandremote

intelligentsensortechnology.Thesedigitalizedassetsandintelligentsensor

technologiescouldbeconnectedviainnovativecommunicationsystemstodigital

enterprises(i.e.,missioncontrolcentresandotherremotecentresofexcellence),where

expertswouldmonitorproductionoperationsremotely,interactviatechnologywitha

limitednumberoffieldworkersatproductionsites,andperformcomputationalanalysis

ondatacollectedfromremoteoperationstooptimizeproduction,equipment

maintenance,andassetutilization,whilesimultaneouslyensuringregulatory

compliance.Thedigitalenterprisecouldbepartofadigitalworldinwhichtechnology

wouldbedeployedtoimprovesupplychainmanagementandresourcemanagement,to

balancesupplyanddemandforproduct,tomanagecontractingamongprojectpartners,

andtohelpsecureandmaintainpublicconfidence.

Globally,digitaltechnologywilltransformextractiveindustries.ForCanada,this

providesanopportunitytoleadindevelopingandcommercializingtheenabling

technologies,inintegratingthesetechnologiesintoglobaloperations,andin

consideringthebroadersocio-economicandregulatoryconsequencesofdigitalization

oftheseextractiveindustries.

7

DigitalizationofextractiveindustriesinCanadawillposeopportunitiesandchallenges

foradiverserangeofstakeholders.Inadditiontotheoperatingandsupplyandservice

companies,individualsandcommunitieswillbeaffectedbydigitalization,aswill

governmentsandinstitutions(e.g.,educationsystems,regionaldevelopment

organizations,unions,andregulators).Successfullyaddressingtheopportunitiesand

challengeswillrequireearlyandeffectiveengagementofallstakeholdersthatis

informedbyrealisticdigitalizationscenarios,timeframesfortheirimplementation,and

assessmentofthebroaderissuesandimpacts.

8

(1.0)BriefIntroductiontoDigitalization

Disruptivedigitaltechnologies,includingadvancedrobotics,artificialintelligence,

mobilecomputing,internetofthings(IoT),andautonomousandnear-autonomous

vehicles,wereassessedtobeamongthetop12emergingtechnologiesthatare

expectedtotransformpeoples’livesandthenatureofwork(Manyika,Chui,Bughin,

Dobbs,Bisson,&Marrs,2013).Variouslyreferredtoasdigitalization,Industry4.0,and

theFourthIndustrialRevolution,suchtechnologieswilllikelybeubiquitous,with

applicationsacrossindustrialandconsumermarkets(BDC,2017).

Asdigitalizationisadvancedandappliedacrossindustries,thedevelopmentofthese

digitaltechnologieswill,bynecessity,includediverseplayers,manyofwhichhavenot

traditionallybeenpartofthesupplychainforlargeindustry.Thecompetitiveadvantage

offirms“mighterodeorbeenhancedadecadefromnowbyemergingtechnologies—

howtechnologiesmightbringthemnewcustomersorforcethemtodefendtheir

existingbasesorinspirethemtoinventnewstrategies”(Manyika,Chui,Bughin,Dobbs,

Bisson,&Marrs,2013).ThisistrueforCanada’snaturalresourceindustries,in

particular`extractive’industriesbasedonmineralandoilandgasresources.

(2.0)Canada’sExtractiveIndustriesandDigitalization

Canada’snaturalresourceindustriesareimportanttotheCanadianeconomyintermsof

theircontributionstoemployment,grossdomesticproduct(GDP),capitalexpenditure,

construction-relatedinvestment,revenuestogovernments,exportvalue,and

investmentinCanadiancompanies(NRCan,2017a).Furthermore,theyhelpCanada

contributetowardmeetingtheprojectedglobaldemandforenergy.Onanannual

basis,theeconomicimpactsofnaturalresourceindustriesincludeapproximately1.75

milliondirectandindirectjobs(~11%ofnationalemployment),16%ofGDP,38%of

non-residentialcapitalinvestment,$25billioningovernmentrevenues,$201billionin

9

exportvalue,and$582billioninpubliclytradedcompanyvalue.Themajorityofthese

contributionsareassociatedwithdevelopmentofmineralandoilandgasresources.

AccordingtoStatisticsCanada,“mining,quarrying,andoilandgasextraction”are

amongthetopcontributorstoCanada’sGDP,withacombinedannualcontributionof

approximately$150billionandalmost25%growthinthe12monthspriortoMay2017

(StatisticsCanada,2017a).In2016,therewereapproximately260,000peopledirectly

employedintheseextractiveindustries(StatisticsCanada,2017b).Thereismineral

productioninallprovincesandterritoriesofCanada,withOntario,Quebec,andBritish

Columbialeadingintermsofproductionvalue,followedbySaskatchewan,Alberta,and

NewfoundlandandLabrador(NRCan,2017b).Thereisoilandgasproductioninseven

Canadianprovinces,includingNewfoundlandandLabrador,NovaScotia,New

Brunswick,Manitoba,Saskatchewan,Alberta,andBritishColumbia,withprospectsfor

resourcesinNorthernCanada,Quebec,andPrinceEdwardIsland(CAPP,2017a).These

industriesaretrulypan-Canadianandimportantfrombothanationalperspectiveanda

regionalperspective,especiallyforresourceregions.Thecompanies,however,are

multinationalinscope,withglobalworkforces,supplychains,andconsumersoftheir

commodities.

Whileitisimportanttorecognizethesignificanceofextractiveindustriestoallregions

ofCanada,itisequallyimportanttoappreciatethatthefutureoftheseindustries

entailsconsiderableuncertainty.Asmoreaccessibleresourcesarefullyexploited,there

aretechnicalandscientificchallengestobeovercometodigdeeperorextractlower

grademineralsandtodrillinmoreremoteorchallengingareastoproduceoilandgas.

Therearealsochallengesarisingfromthecomplexityoftheunderlyingeconomicsof

extractiveindustries,whichareexacerbatedbyprotractedcommoditypricevariability,

interspersedwithoccasionalandsurprisingpriceshocks.Thesedifficulteconomicsare

furthercompoundedbytheincreasingchallengesresultingfromsatisfyingtheperceived

andrealentitlementsofvariousstakeholders.Thereisarequirementtoachieveand

10

maintainwin-win-winrelationshipsamongcommunities,governments,andindustry

stakeholders,allofwhichare`invested’inresourcedevelopmentprojectsandhave

increasedexpectationswithrespecttoreturns.

Ingeneral,miningandoilandgascompanieshaveadoptedaconservativeapproachto

investinginresearchanddevelopment(R&D)inCanadacomparedwithotherindustrial

sectors(ResearchInfosource,2017a).Bywayofillustration,withtheexceptionof

CanadianNaturalResourcesLimited,therewerenooilandgasorminingcompaniesin

thetop15corporateR&DspendersinCanadain2016.Inaddition,foralloilandgas

andminingcompanies,theR&Dexpendituresasapercentageoftotalrevenueswere

amongthelowestofanyindustries.Inmanycases,theirR&Dexpenditureswerelower

byafactorof10ormore.ItisimportanttoappreciatethatweakR&Dinvestmentby

extractiveindustriesinCanadapredatesthecurrentdepressionincommodityprices.In

fact,thepositionofextractiveindustriesamongCanada’scorporateR&Dspenders

remainssimilartotheirpositionin2010(ResearchInfosource,2010).

Thereisalsoconsiderablediscussionabouttheappetiteforminingandoilandgas

companiestoadoptnewtechnologies.Canada’sminingindustrywasoncethoughttobe

aworldleaderintermsofembracingnewtechnology.Forinstance,a2001report

preparedfortheMiningAssociationofCanadanoted“theCanadianminingindustryhas

undergoneaprofoundtransformationtoahigh-techindustryandisnowoneofthe

world’smostdynamicandtechnologicallyadvanced.Withitsstronglinkstootherhigh

technologyindustriesbothasauseroftheirtechnologiesandasasupplierofinputs,it

isadrivingforceinCanada’snewknowledge-basedeconomy”(GlobalEconomics,

2001).Fastforwardto2017whenBarrick’sChiefInnovationOfficer,reflectingonthe

roleofdigitaltechnologyintheminingindustry,stated“theminingindustryistheleast

digitizedindustryintheworld.Itisalsoanindustrythathasbeenslowtoadoptchange

andinnovation”(Barrick,2017).Arecentreviewofthestart-of-the-artofrobotic

miningtechnologyalsonotedthat“theresourceindustryhasaconservativehistoryand

11

theimplementationofnewtechnologiesandprocessesmustoftenovercomesignificant

resistancetochange”(Marshall,Bonchis,Nebot,&Scheding,2016).Thisresistanceis

thoughttoresultfrom“skepticismabouttechnologyandfearoflosingone’sjob”.

Someanalystsbelievetheslowpaceoftechnologyadoptionisnotduetoalackof

receptivitytonewtechnology,sincethereareexamplesof`digitalmining’datingback

tothe1950s.Rather,practicalissueschallengeminingcompanies,includingthe

perceptionofahighcostofimplementation,poorly-definedbusinesscases,andalack

ofdigitaleducationandunderstanding(EY,2017a).Others,however,feelthemining

industryissimplycontenttoutilizethesametechnologyandprocessesthatare

standardacrossthesector(Koven,2014).Preliminaryworktocomparetheadoptionof

digitaltechnologyinCanada’sagricultureandpotash/uraniumminingindustries

suggestedagriculturefollowsstandardadoptiontheorywhenitcomestodigital

technology,whilethatisnotthecaseforthepotash/uraniummining(Phillips&Wixted,

2017).

AsdiscussedbySteenetal,thenatureofinnovationintheminingsectormaybe

“differentfromotherindustries”andwouldnotbe“wellcapturedbytraditional

innovationmeasuressuchasR&Dexpenditureandpatents”(Steen,Macaulay,Kunz,&

Jackson,2017).Innovationtendstooccurinthesupplychains,andunderstandingthe

relationshipsbetweenminingcompaniesandthesupplychainsisimportantfor

understandinghowinnovationoccursintheminingsector.

Concernshavealsobeenexpressedwithrespecttotheadoptionofnewtechnologiesby

theoilandgasindustry.Inparticular,itwassuggestedthe“speedofadoptionlags

behindotherindustriesthataresubjecttothesamerashofsafety,legal,commercial

andfinancialpressuresfacedbyenergycompanies”(LR,2015a).Others,however,see

thecurrentlow-priceoilenvironmentasprovidingtheimpetusforoilandgas

12

companiesthathavebeenslowtoadoptthelatestinnovationstoembraceinnovative

technology-basedsolutions(Constas,2017).

Thereareheightenedexpectationsrelatedtothehealth,safety,andenvironment(HSE)

performanceofextractiveindustriesandtotheachievementofshared-valuesamong

extractiveindustriesandthecommunitiesandregionswheretheseresourcesare

exploited.Bytheirnature,extractiveindustriesmodifytheenvironmentinwhichthey

operate,oftenimpactingtheenvironmentnegatively.Withgrowingpoliticalandpublic

awarenessaboutanthropogenicclimatechangeandtheneed,fromcountriesto

individuals,tocountertheeffectsofclimatechange,extractiveindustriesarechallenged

tominimizethenegativeenvironmentalimpactsfromtheiroperations.

Increasedconcernaboutriskstopublichealthandworkersafetyfromtheprocesses

usedbyextractiveindustrieshavefurtherraisedthestakesforminingandoilandgas

companies.Addressingpublicconcernabouttheimpactsontheenvironment,public

health,andworkersafetywillbeaprerequisiteforsecuringthepublicconfidence

requiredtoinitiatefutureresourcedevelopmentprojects,toincreaseproductivityand

theefficiencyofexistingoperations,andtobecompetitiveandwell-positionedto

exportCanadiancommoditiesintovolatileworldmarkets.Moreover,thiscannotbe

achievedbya`business-as-usual’approach.Forexample,cost-cuttingasatacticfor

achievingproductivityimprovementisthoughttohavereachedapointofdiminishing

returnsfortheoilandgasindustry(Farah,2016).AsproposedbyE&Y,“thepresent

lowoilpriceisdisruptivebynatureandcallsformorethanjustrapidreductionofcost

throughdownsizingorbudgetcutsacrosstheorganization”(EY,2015b).

ExtractiveindustriesoperatinginCanadamust`disrupt’thewaytheydobusiness.This

couldincludethedevelopment,integration,andcreativewide-spreadapplicationof

recentandemergingdisruptivetechnology,particularlydigitaltechnology.Itisonly

throughinnovationthatthechallengesexperiencedbyextractiveindustriesinrecent

13

years,andwhichareexpectedtopersistorworsenintothefuture,canbeaddressed

successfully.

Inadditiontohelpingaddresschallenges,anembraceofdigitaltechnologycouldleadto

newandcurrentlyunknownopportunities.Adigitaltransformationcouldgiveriseto

potentialbenefitsofcapitalizingonnewrevenueopportunities,loweringcosts,and

improvingefficiency(Geissbauer,Vedso,&Schrauf,2016).Digitaltechnologymayalso

helpextractiveindustriesmeetcorporatesocialresponsibilityexpectations(Roscoe,

2015).Forexample,digitaltechnologymayenableimprovedtraceabilityofthesocial

andenvironmentalimpactsofglobalsupplychainsforextractiveindustries.

Furthermore,useofdigitaltechnologycouldhelpincreasetransparencyandimprove

communicationsamongdiversestakeholders.

Communities,companies,andgovernmentsthathavetraditionallybenefitted(e.g.,

employment,royalties,taxes,revenues,andprofits)fromCanada’sextractiveresources

needtounderstandhowdisruptivetechnologiescouldaffectthefuturebenefitsthat

maybederivedfromexploitingtheseresources.Thequestionaboutwhoisbenefitting

fromresourceextractionprojectsisanemergingissueforresourcedevelopment,with

concernaboutdecouplingvaluecreationfromthesiteofproduction.Forexample,in

thecaseofemploymentbenefitsinminingregions,theintroductionofremote

operationscentres,dependingontheirlocations,couldleadtoanurbanizationofthe

miningworkforce,withareductioninruralemploymentopportunities(McNab,Onate,

Brereton,Horberry,Lynas,&Franks,2013).Itisalsoimportanttounderstandand

acknowledgethatdigitalizationhasthepotentialtofacilitateagreaterdecouplingof

valuecreationfromthesiteofproductionand,asaresult,furtherchangethenature

anddistributionofbenefits.

Canada’sextractiveresourcesareexploitedbymultinationalcorporationsthatrequirea

competitiveadvantagetooperateinCanada.Anycompetitiveadvantagearisingfrom

14

digitalizationthatmaybenefitCanadawilldependonanumberofcriticalfactors,

includingacorporateculturethatsupportsinnovation;effectiveandefficientregulation

thatcanaccommodatetechnologicalchange;accesstohighlyqualifiedpeoplewhocan

supportadigitalizedindustry;andinnovativewin-win-winrelationshipsamong

communities,governments,andindustry.Technologyalonewillnotprovidethe

competitiveadvantagethatwillkeeptheseindustriesoperatinginCanada.

(3.0)MiningContext

Canada’sminingindustry“suppliestherawmaterialsneededtoproducemanyofthe

consumergoodswerelyoninourdailylives,aswellasthoseofthefuture,from

utensilsandhandtoolstosmartphonesandelectriccars”(NRCan,2017b).TheMining

AssociationofCanadareportedtheCanadianminingindustryprovidedover550,000

directandindirectjobs,contributed$56billiontowardsGDP,andaccountedfor19%of

thevalueofgoodsexportedfromCanada(MAC,2016).

Overthepast10years,Chinaemergedasthesinglelargestconsumerofmanybase

metals(Armbrecht,2015).Thesebasemetalsareessentialforglobalindustrial

productionandconstruction,withcommoditypricesservingasanimportantindicator

ofglobaleconomicchanges(Matsumoto,2015).Thepricesforironoreandbasemetals,

includingcopperandnickel,generallydeclinedbetween2011-2016,butshowedsome

modestincreasesin2017(InfoMine,2017).Concernsaboutwhethertherewouldbe

sustaineddemandforbasemetalsbyChina,coupledwithincreasesinsuppliesfrom

developingcountries,arethoughttobebehindthedeclineinbasemetalpricesafter

2011(Matsumoto,2015).Copper,however,ralliedattheendof2016basedonan

increaseinimportsbyChinaand,followingtheU.S.election,basedonthemistaken

beliefthatthePresident-elect’s$500billioninfrastructureplanwouldsignificantly

increasedemand(Jamasmie,2017).Whilepricesforpreciousmetals,suchasgold,are

subjecttodifferentforcesthanthoseinfluencingbasemetalprices,goldpriceshave

declinedsignificantlysince2011(InfoMine,2017).

15

In2016,Canada’sprimarymineralproductsbyproductionvalueincludedgold,copper,

potash,ironore,coal,andnickel,representing60%ofthetotalmineralsproduction

value.Commoditypricesandproductionvolumes,however,canchangerapidly,as

illustratedbysignificantchangesinproductionvaluesbetween2015and2016for

Canada’sprimarymineralproducts.Formetalproduction,ironoreandgoldproduction

valuesincreasedbyover30%andalmost9%,respectively.Nickelproductionvaluewas

downapproximately16%,whilecopperproductionvaluewasdownbyjustover9%.

Metalproductionvolumeswerecomparablebetween2015and2016.Theproduction

volumeofpotashdeclinedbyjustover11%,whiletheproductionvaluedecreasedby

almost37%.Canadaalsoaspirestobeamajorproducerofrareearthelementsthatare

increasinglyimportantformanufacturingcomponentsanddevices,suchaswind

turbines,hybridandelectricvehicles,batteries,medicalimagingequipment,speciality

glass,lasers,andcomputers(NRCan,2016).

Ingeneral,mineralpricesarebasedonacomplexsetoffactors,includinggeopolitics,

speculativeinvestment,andsupplyanddemand,inparticulartheevolvingdemandsof

emergingeconomies.Asaconsequence,pricesarepronetoshocksandcyclesresulting

inlong-termuncertaintywithintheglobalminingindustry.Thedownturninmineral

pricesbetween2011-2016forcedtheminingindustrytodrivedowncoststothepoint

wherefurthercost-cuttingwouldresultindiminishingreturns(Deloitte,2017).

Embracingnewtechnologies,manyofwhichwouldbefoundbeyondthemining

industry,couldenablesignificantproductivitygainsbyminingcompaniesinthefuture.

AsnotedbyMcKinsey,lowergradeoresandlongerhauldistanceshavecontributedto

decreasingproductivitylevelsacrossworldwideminingoperations,withadropbyas

muchas28%over10years(Durrant-Whyte,Geraghty,Pujol,&Sellschop,2015).Other

factorscontributingtothedeclineinproductivityincludeadecreaseinlabour

productivityduetoinexperiencedteams,highturnover,anagingworkforce,andafocus

16

onvolumeratherthanefficiency;adecreaseincapitalproductivityduetopoor

equipmentutilizationandalackofinnovativetechnology;andafailuretocapitalizeon

economiesofscaleasminesexpanded,leadingtoincreasedoverheadcostsand

managementinefficiencies(EY,2017b).Ingeneral,therehasbeenlittleincentiveto

investininnovationinitiativesduringperiodsofhighcommoditypricesandlittle

capacitytodosoduringtimesoflowprices.

Forsomeminerals,extractiondependsonbeingabletomineefficientlyandsafelyat

greatdepth.SomeofthedeepestminesintheworldaregoldminesinSouthAfricaat

depthsofapproximately4kilometres(WorldAtlas,2017).Canada’sdeepestminesare

theKiddCreekcopper/zincmineinTimmins,Ontarioatadepthofalmost3kilometres,

andtheCreightonnickelmineinSudbury,Ontarioatadepthofapproximately2.6

kilometres.Deepminingexacerbatestheefficiencyandsafetychallengesfor

undergroundmining.InthecaseofdeepmininginSudbury,atdepthsbelow2.5

kilometrestherearechallengesfromheatandrockstressconditionsthatcannegatively

impactonthesafetyandstabilityoftheundergroundenvironment,requiringincreased

ventilationandotherinfrastructuretosupportpeopleandequipment(VellaH.,2017).

Themovetowardsourcesofrenewableenergyraisestheprospectforseabedminingto

meetthedemandformineralsrequiredtomanufacturerenewableenergysystems.For

example,highefficiencysolarpanelsaremanufacturedusingtellurium(DOE,2016)

(Shukman,2017).OnetelluriumdepositneartheCanaryIslandsisthoughttorepresent

one-twelfthoftheworld’ssupplyatconcentrationsvastlyhigherthanland-based

deposits.TheInternationalSeabedAuthority,ofwhichCanadaisamemberstate,is

developingaMiningCodetosupporttheregulationofmarinemineralsprospecting,

exploration,andexploitationinseabedareasoutsideofnationaljurisdiction(ISA,2017).

Developmentandapplicationofautomationtechnologiesfeatureprominentlyina

Norwegianpilotprogrammeondeepseamining,particularlyinrelationtomineral

17

explorationandextraction(NTNU,2017).Automationcouldhelpminimizethenegative

environmentalimpactsofsuchindustrialactivity.

(3.1)DigitalizationinMining

Ithasbeenproposedthatdigitalizationwouldenableabreakthroughinimproving

productivity,safety,andenvironmentalperformancefortheminingindustry(Arnoldi,

2017).Initspredictionofthetoptrendsfor2017fortheminingindustry,Deloitterated

thedigitalrevolutionamongthetopissueswiththepotentialtotransformtheindustry

(Deloitte,2017).Whiletheminingindustryhasadoptedadvancedmineplanningand

modelingsoftwaretoolstooptimizeminedesignsandproductionoperations,these

toolstendtogeneratedesignsthatarebasedonastandardsuiteofminedesignsor

thatuseexistingoperatingequipmentandmethods.

Formanyyears,undergroundminershavebeenworkingwithtele-operateddrillingand

loadingmachines(Cosbey,Mann,Maennling,Toledano,Geipel,&Brauch,2016).Early

advancesincludedtele-operatedLoad-Haul-Dump(LHD)vehiclesthatutilizedline-of-

sightremoteoperation.TheoperatorstoodatasafedistancefromtheLHDasitwas

beingloadedunderunsupportedground.Inthisapplication,theoperatorusedachest-

mountedconsoletoguidetheLHDthroughtheloadingprocessandinbackingaway

fromtheorepile.TheoperatorwouldthengetbackontheLHDandmanuallydrivethe

vehicletoitsunloadingpoint,unloadthevehicle,andreturntotheloadingpointwhere

thetele-operatedloadingprocesswasrepeated(Caterpillar,2017).Marshalletal

providedanoverviewofmodernminingpracticeandastate-of-the-artreviewofmining

roboticsforbothsurfaceandundergroundminingoperations(Marshall,Bonchis,Nebot,

&Scheding,2016).

Inlate1990sandearly2000s,CanadianindustryandacademiawereleadersinR&D

relatedtotele-operatedminingwiththesupportofPRECARN,anindustryconsortium

designedtotranslateadvancedresearchinroboticsandintelligentsystemsinto

18

practicaluse(TheScientist,1987).In1998,CanadiannickelminingcompanyInco

articulatedavisionforautomatedminingwhereby“fromanylocationintheworld,a

tele-operatorcaninstructintelligent,automatedminingequipmenttoexecutetheir

missions.Iftheequipmentencountersanunexpectedsituationbeyonditsabilityto

manage,itwillaskforhelp.Thetele-operatorwillrespondimmediatelytorequestsfor

helpfromawiderangeofintelligent,automatedminingequipment”(Inco,1998).

WiththesupportofPRECARN,Incoalongwithtechnologyprovidersandacademic

partnerspursuedaseriesoftechnologydevelopmentprojectstoautomatevarious

typesofminingvehiclesandoperationsinordertoimproveproductivity(Werniuk,

2001).In2007,OricaLtd.,incollaborationwiththeCommonwealthScientificand

IndustrialResearchOrganisation(CSIRO)fromAustraliaandC-COREfromCanada,

demonstratedtele-operationofanexplosiveemulsionloader(C-CORE,2007).Dueto

thetechnologylimitationsofthetime,theseprojectsgenerallyfocusedonsingle-point,

ratherthansystem-wide,solutions.Today’stechnologycansupportmoreradical

innovation,targetingtheentirevaluechainandprovidingthegreatestprospectfor

transformationinproductivity.PRECARNwasalsoinstrumentalinsupportingindustry-

universitycollaborationrelatedtohuman-machineinteractionforheavyequipment,

leadingtothespin-offofMotionMetricsInternationalfromtheUniversityofBritish

Columbiain2000(ICICS,2010).Today,MotionMetricsInternationalcontinuesto

developmachinevisionandsensorsystemsdirectedtowardimproving“safety,

efficiency,andproductivityinmining”(MMI,2017).

Duringthisperiod,therewerealsoresearchchairsatCanadianuniversitiesfocusedon

miningautomation,includingtheNSERC/NorandaChairinMiningAutomationatEcole

PolytechniquedeMontrealandaCanadaResearchChair(CRC)inRoboticsandMine

AutomationatLaurentianUniversity.PenguinASI,atechnologycompanybasednear

Sudbury,Ontarioanddevelopingautomationtechnologies,isaspin-offfromthework

oftheCRCatLaurentian(MiningGlobal,2014).

19

Otherrecentadvanceshavebeendemonstratedforundergroundmineoperations,

includinglocatingminersonthesurface,orawayfromtheminesite,andoutofdanger,

withadvancedhuman-machineinterfacetoolsforremotesupervisionandcontrolof

multiplehighly-automatedminingrobotshavingauto-pilotandnavigationcapability.

Thecurrentstate-of-the-artinvolvesautomationofdiscretephasesoftheminingcycle

ratherfullautomationoftheminesite(Watkins,2017).

InSeptember2016,BarrickandCiscoannouncedanambitiouspartnershiptointegrate

digitaltechnologyacrossallofitsmineoperationsatCortez,Nevada(Barrick,2016).

MiningandconstructionequipmentmanufacturerAltasCopcoofferstele-operatedand

autonomousvehicles,withtheprimarydriversforautomationbeingsafety,

productivity,qualifiedlabor,andproductioncosts(AtlasCopco,2015).Sandvik,another

manufacturerofautomatedLHDs,reporteda30%improvementinhaulageproductivity

throughuseoftheirsystems(Sandvik,2017).Therehavebeenreportsofconsiderable

advancesinthedevelopmentandapplicationofautonomoustrucksforsurfacemining

applicationsatBHPBillitonandRioTintomines,andatSuncoroilsandsoperations

(Simonite,2016)(Gershgom,2016)(Topf,2016).

Inthefuture,manydirectproductionjobsinminingcouldbecarriedoutfromoperation

centresdistantfromproductionsites.Suchoperationscouldbesaferbecauseof

reducedexposureofworkerstodangerousandinhospitableenvironments,with

increasedproductivity,lowerenvironmentalimpact,reducedenergyrequirements,and

lowercapitalandoperatingcosts.Forexample,whilelocatingequipmentoperatorsata

distancefromproductionsitesmaydecreaseproductivitybyremovingsomeofthecues

(i.e.,visual,audible,tactileandolfactory)theyhaveattherockface,thereareefficiency

gainsfromsignificantlydecreasedtransittimestotheproductionsites.

20

Overall,disruptivetechnologies,suchastheinternetofthings(IoT),bigdataand

analytics,automatedvehicletechnology,robotics,advancedimagingandsensing

systems,wearablecomputing,andotherintelligentsystemstechnology,couldbecome

commonplacewithintheminingindustry.Theirwidespreadapplicationwouldfacilitate

greaterconnectivityandautonomyofassets,withincreasedamountsofdatacollected

andprocessedinreal-timetoaidinplanning,optimization,andexecutionofoperations.

Thesetechnologiescouldhelpmanageandcoordinatevariousmanually-operated,

remotely-controlled,semi-automated,andautomatedvehiclesandmachineryworking

simultaneouslyataproductionsite.

Whilethebenefitsofemergingdigitaltechnologiesmayberealizedbythemining

industry,thiswouldrequirecompaniestoembraceIndustry4.0,achoicethat“couldbe

themostimportantstrategicdecisionthatcompaniesmake”(Yeates,2017).Currently,

fewerthan10%ofminingcompaniesarethoughttohavedevelopedadigitalstrategy.

(4.0)OilandGasContext

Canada’soilandgasindustryisthefifthlargestproducerofoilandgasintheworld,

withsignificantresourcesexportedtointernationalmarkets(NRCan,2017c).Canada

ranksthirdintermsoflargestcrudeoilreserves.Thecontributionofoilandgasto

Canada’sGDPwasestimatedtobe7.5%,oraround$135billionannually(Ivey,2016).

TheCanadianAssociationofPetroleumProducers(CAPP)estimatedthedirectand

indirectemploymentinCanada’soilandgasindustrywasapproximately425,000people

(CAPP,2017b).Furthermore,everyprovinceinCanadabenefittedfromthedirectand

indirectjobscreatedbytheoilandgasindustry,withOntario,aprovincecurrently

withoutoilandgasproduction,experiencing12%oftheemploymentimpact(CERI,

2017).Thereisconcerntherecentlossoftalentfromtheoilandgasindustrytoother

industriesasaresultofthedownturninoilpriceswillmakeitdifficulttoattract

qualifiedemployeeswhentheoilandgasindustryrebounds.Thecontributionsbyoil

21

andgasworkerstoGDPsignificantlyexceedsthenationalaverageofGDPcontributions

fromworkersinotherindustries(Ivey,2016).

Aswithprojectionsofdemandformineralresources,thereisalsoconsiderable

uncertaintyanddebateregardingthelong-termdemandforpetroleumresources.

Currently,gasolineconsumptionforautomobilescountsforalmost50%ofpetroleum

consumption(EIA,2017).Disruptivetechnologiesandchangesindriverhabits,suchas

improvedelectricvehicles(EVs)capableofgreaterdistances,autonomousvehicles,and

Transportation-as-a-Servicemodelsofpersonaltransportation,couldleadtoa

reductioninfuelconsumptionbyownersoflightvehicles,ascoulddecisionsby

governmentstobanorlimitthenumberofvehiclesusinginternalcombustionengines.

TheUnitedKingdomandFrancerecentlyannouncedbansonthesaleofnewvehicles

withinternalcombustionengines(ICEs),effective2040(UK,2017)(Chrisafis&Vaughan

,2017).Volvoalsoannouncedthat,effective2019,allofitsnewvehicleswouldbe

hybridorelectricvehicles(MarshallA.,2017b).Ithasbeenproposed,however,that

theremaybeinsufficientdifferentiationbetweentheperformanceofelectricvehicles

andconventionalICE-basedvehiclestocauseconsumerstomoveawayfromICE-based

vehiclesinsignificantnumbers(TertzakianP.,2017a).Thedecisionsbysomecountries

toannouncebans,therefore,areattemptstooverridemarketforces.Thisisnotto

minimizetheimmediateimpactofEVsontheoilandgasindustry.Thebansandplans

ofcompanieslikeVolvoarethoughttobeimpactingthe“psychologyofinvestorswho

financeoilassets,servicesandinfrastructure”suchthat“theresultofallthisnext-

decadeconfusionisthatlessmoneyisgoingtobeflowingintotheoilbusiness”

(TertzakianP.,2017b).

Whileoilcompanieshavestartedtodiscussthenotionof‘peakoildemand’,thereis

disagreementamongmajoroilcompanieswithrespecttowhenthiswilloccur.Itis

importanttonotethattherecentdiscussionsaroundpeakoildemandareincontrastto

22

previousreferencesto`peakoil’,whichreferredtothetimewhenmaximumoil

productionwouldbereached,afterwhichproductionwoulddeclinedespitecontinuing

strongdemand(Rapier,2017).Earlierpeakoilconcernspredatedthesurgeinthe

developmentofunconventionaloilresourcesintheU.S.usinghydraulicfracturing

technologyandthepushtowardalternativesourcesoffuel.TheWallStreetJournal

recentlyreportedStatoilandShellareprojectingpeakoildemandwilloccurby2025-

2030,whileExxonandChevrondonotbelievepeakoildemandisinsight(Cook&

Cherney,2017).

Inits2017OutlookforEnergy,ExxonMobilprojecteda25%increaseintheglobal

demandforenergyoverthenext23years,drivenbyanincreaseinpopulationandin

thestandardoflivingindevelopingcountries(ExxonMobil,2017).Thisgrowthwould

bepredominantlyfromIndiaandChina,anditwouldalsobedrivenbya50%increasein

theenergydemandfromcommercialtransportationandbynaturalgasreplacingcoalas

afuelsource.BPprojectedasimilarincreaseinglobalenergydemand,withanincrease

by30%overthenext20years,primarilyfromrisingprosperityinemergingeconomies

(BP,2017).IntheBPforecast,thedemandforoilwouldcontinuetogrow,butata

slowerpacethanrecentlyexperiencedandwithdemandgrowthdrivenbynon-

combusteduseofoil.BPalsoprojectedreductionsinfueldemandfromimprovedfuel

efficiencyandelectrificationwouldbeoverpoweredbyincreaseddemandforcartravel

asthemiddleclassgrowsinemergingeconomies.

Regardlessoftheirprojectedtimeframesforpeakoildemand,majoroilandgas

companiesseerenewablesasafastgrowingcomponentoftheenergysectorandare

positioningtheircompaniesinthatspaceaccordingly.Therealsoappearstobea

consensusthatlow-costoilproducerswillhaveasignificantcompetitiveadvantage

duringperiodsofslowdemandgrowth.Withtheanticipatedslowdowninthedemand

foroil,someanalystspredictnaturalgaswillemergeasthedominantenergysource

23

overthenext20years,supplying27%oftheenergydemand,withvariousrenewable

sourcessupplyingapproximately50%(Ambrose,2017)(DNVGL,2017).

Asdiscussedpreviouslyformineralcommodityprices,theworldpriceofoilisbasedon

acomplexsetoffactors,includingsupply,demand,geopolitics,andspeculative

investment.Oilprices,likemineralprices,arepronetopriceshocksandcyclesleading

tolong-termuncertainty.Unlikeoil,however,challengestodatewithtransportation

havelimitedthescopefornaturalgastobeaglobalcommodityandforconvergenceto

aglobalpricefornaturalgas.ThiscouldchangewithLiquefiedNaturalGas(LNG),which

facilitatesmarinetransportationofnaturalgasandrepresentsa“supplysourcemobile

enoughtoplugsupplyanddemandgapsininternationalmarkets”(Bresciani,Inia,&

Lambert,2014).

From2002-2008,theworldpriceforoilsawagenerallysteadyincreasefrom

approximately$25/barreltoahighofapproximately$145/barrelinmid-2008

(Macrotrends,2017).Overthefollowing6months,oilpricesdeclineddramaticallytoa

lowofapproximately$35/barrel.Oilpricesreboundedfrom2009-2011andleveledout

near$100/barreluntilJune2014.ByJan2015,priceshaddroppedtoapproximately

$45/barrel.Inearly2016,thepriceofoildroppedfurthertojustunder$30/barrel,and

inthesecondhalfof2017pricesrosetoapproximately$65/barrel.Thereisdebate

amonganalystsaboutwhethertherecentoilpricechangesarecyclical,ashadbeen

thoughttobethenatureoftheoilindustry,orstructural,correspondingtoaperiod

whenoilpriceswillbelowerformuchlonger(Fattoch,2016).

(4.1)DigitalizationinOilandGas

Withthistumultuousbackdrop,digitalizationoftheoilandgasindustryhasbeen

proposedasanecessaryradicaltransformationoftheindustry(PwC,2016a).Digital

technologiesareseenaskeytotransformingoperationsinordertocreatenew

opportunitiesforprofitsfollowingthelatestperiodofoilpricedecline(Choudhry,

24

Mohammad,Tan,&Ward,2016).Ithasbeensuggestedthatdigitaltechnologyhas

traditionallybeenemployedbytheoilandgasindustryasameansofcostreduction

(PwC,2016a).Itcould,however,providemuchmore,includingenablingnew

approachestooperationsthatwouldallowcompaniestocontinuetoproduce“oiland

gas,butinwaysthatwillbevirtuallyunrecognizable”.

Otherdriversofadigitaltransformationintheoilandgasindustryincludeapushof“oil

andgasoperatorsintonewfrontiers–deeperwaters,moreremotereservoirsand

unconventionalplays–thatwereonceoutofreach”(EY,2016).IntheCanadian

context,digitalizationmaybeessentialfordevelopingdeep-water,far-offshoreoiland

gasresources,suchasthosebeingpursuedbyStatoilandHuskyEnergyintheFlemish

PassBasin,locatedapproximate500kilometresoffCanada’seastcoast(Statoil,2017b)

(Husky,2017).Forsuchfar-offshoredevelopment,itwillnotbepracticaltotransport

thelargenumbersofworkersbackandforthfromproductionplatformsasrequired

usingconventionalapproachestooperations.

AsignificantcollaborationbasedinNorway,whichincludedStatoil,BP,IBM,andother

industryandacademicpartners,wascarriedoutfrom2006-2014withtheobjectiveto

“developnewmethodsandtoolsfor‘integratedoperations’,whichcanbeembeddedin

improvedworkprocessesintheoilcompaniesandenhancedproductsandservices

fromthesuppliers”(CIOPI,2006).In2016,StatoilopenedaJointOperationsCentrein

Bergen,Norwaytoutilizeintegratedoperationsinsupportofsafety,vessel

optimization,emergencyresponse,supplylogistics,andmachineryconditionmonitoring

acrossmultipleoperatingoilfields.PetroleumResearchNewfoundlandandLabrador

(PRNL),anorganizationthatfundsandcoordinatesresearchonbehalfoftheeast-coast

offshoreoilandgascompanies,identifiedintegratedoperationsasapriorityareafor

researchanddevelopmentinvestmentbyitsmembercompanies(PRNL,2017).Inthe

caseofNewfoundlandLabrador,PRNLhighlightedanopportunitytoleverageexpertise

25

locallyinareassuchasoceanandsubseatechnology,remotesensing,andautonomous

underwatervehicles(AUVs).

ArecentreportbyAccenturehighlighteddigitalizationasakeyenablerfortheoiland

gasindustrywithrespecttovaluecreationinthefuture(Accenture,2017).

Digitalizationcouldhelpindustrydealwithincreasingchallengesinattractingtalentand

inmeetinghigherexpectationstoreduceclimatechangeimpacts.Whiletheoilandgas

industryhasadopteddigitaltechnologyasithasmatured,thereisconsiderable

variabilityamongupstreamoperatorswithrespecttotheextenttowhichdigitalization

hasoccurred(PwC,2016b).

Regardlessoftheuptaketodate,digitalizationintheoilandgasindustryisanticipated

tobringstructuralchangessimilarinimpactoncostsandoperationstothatfeltbythe

introductionofhorizontaldrillingandhydraulicfracturing(EndressA.,2017a).Itis

expectedoilandgasoperationswillevolvefromprimarilymanualoperationsrequiring

largenumbersofpeopleonaproductionplatformtomoreautomatedoperations,

whereasmallnumberofhighlytrainedgeneralistsworkonaremoteplatform

connectedtosophisticatedmissionsupportinmuchthesamewayasastronautswork

onthespacestation.

Digitaltechnologycouldenableimprovedreal-timemonitoringoftheoffshore

operatingenvironment,leadingtobetteroperationaldecision-making;lower

operationalrisk;positiveimpactsonhealth,safety,andenvironment;andenhanced

productivity.Inthenearterm(i.e.,3-5years),thetopdigitaltechnologyfocusareas

areanticipatedtoincludebigdata,analytics,internetofthings(IoT),andmobile

devices,whilethesubsequent5-yearperiodisexpectedtoseeafocusonrobotics,

autonomousvehicles,artificialintelligence(AI),andwearabletechnology(Accenture,

2017).

26

Statoilrecentlyarticulatedavisionofbeingaglobaldigitalleaderandoutlineda

roadmapforsevenspecificdigitalizationprojectstobeexecutedunderaDigitalCentre

ofExcellence(Statoil,2017a).ForStatoil,theareasofparticularinterestunderitsdigital

roadmapincludedigitalizationofworkprocesses,advanceddataanalytics,robotics,and

remotecontrol.Similarly,Shellembraceddigitalinnovationwithpriorityareasfor

upstreamoilandgasoperations,including3-Dprinting,robotics,advancedanalytics,

andhighperformancecomputing(Shell,2017a).ForBP,artificialintelligencecould

makeitpossibleto“combinedatasetsaboutareassuchasflowratesandpressuresand

equipmentvibrationwithdatafromthenaturalenvironment,suchasseismic

informationandoceanwaveheight,totransformthewaywerunandoptimizeour

operations”(BP,2016a).Chevronseesautomationoftheiroperations,generating

betterdata,andtranslatingthatdataintousefulinformationasenablingthecompany

to“operatemoresafely,reliablyandefficiently;reducecosts;recovermoreresources;

andbettermanagerisks”,therebyhelpingtorealizethepotentialvaluefrombillionsof

dollarsofassetsacrossthecompany(Chevron,2017).

Remotecontrolofoilproductionsystemsisnotnew.In1975,Exxondemonstrated

remotecontrolofasubmergedproductionsystemintheGulfofMexico(NewScientist,

1975).Modernremotedrillingoperations,whichutilizedistributedsensors,high-speed

communications,anddata-miningtechniquestofacilitateaccesstodeeper,more

remote,andmorecomplexresources,havebeendemonstratedoverthelastdecade

(Leber,2012).Chevronestimatedsuchtechnologycouldleadtoproductivity

improvementsof8%andrecoveryimprovementsof6%(Chevron,2017).Collaborative

workenvironments,whichutilizehigh-qualityvideoconferencing,smartwells,reservoir

surveillancesolutions,fibreoptics,andreal-timeproductionmonitoring,are

commonplaceintheoilandgasindustry(Shell,2017b).Thistechnologyallowsfield

workerstointeractwithspecialistcolleagueswhoremotelymonitorfieldconditionsin

ordertooptimizeoperations.ThePerdidoprojectintheGulfofMexicowasShell’sfirst

fullyintegrateddigitaloilfield(Perrons,2010).

27

Therearealsoexamplesofrobotic-typesystemsbeingusedwithintheupstreamoiland

gasindustry.Theseincludetele-operated“ironroughnecks”whichallowdrillersto

handledrillingoperationsremotelyaspipesegmentsareconnectedordisconnected

automatically,increasingthesafetyandefficiencyofaoncedangerousjob(RIA,2017).

Thisequipmentoperatesinmuchthesamewayasthetele-operatedLHDdescribedfor

theundergroundminingindustry.Schlumberger,amajoroilandgasserviceprovider,

offersarangeofroboticandautonomousvehicleservicesrelatedtodatacollectionin

theoffshoreenvironment(Schlumberger,2016).Applicationsincludehydrocarbon

detectionandmapping,marinegeomaticsurveys,seismicsurveys,metoceandata

collection,seamammalmonitoring,andenvironmentalmonitoring.Robotsand

unmannedvehicleshavealsobeenreportedformonitoring,inspecting,andmapping

applicationsbytheoilandgasindustry(BP,2014)(ExxonMobil,2016)(Torres,2016).BP

andOceaneeringpartneredonalarge-scaleAUVtrialintheGulfofMexicoforsurveying

pipelinesandsubseainfrastructureusingavarietyofmarineautonomoussystems,

includingremotelyoperatedvehicles(ROVs),waveandunderwatergliders,and

autonomoussurfaceandunderwatervehicles(BP,2016b).

Advancedroboticoffshoredrillingsystemshavealsobeendeveloped,althoughthereis

reluctanceonthepartofindustrytoembracefullautomation.Instead,“smart

automationtechnologyinformshumandrillerswhoultimatelytakeallkeydecisions”

(VellaH.,2016).Oneofthelimitingfactorsfortheuptakeofautomateddrilling

technologyisthelargenumberofcapitalintensive,butunderutilized,conventional

floatingrigs.Fullyautomateddrillingwouldrequirenewlydesignedandconstructed

drillingrigswhicharenotlikelytobebuiltintheforeseeablefuture.

Asdiscussedpreviouslyfortheminingindustry,managingthechallengesand

opportunitiesofdigitalizationrequiresoilandgascompaniestohavedigitalstrategies,

ratherthanad-hocdigitalinitiatives.Animportantsteptowarddevelopingeffective

28

digitalstrategiesisleadershipcommitment.Arecentsurveyshowedonly3%ofoiland

gascompanieshaveestablishedseniorexecutive-levelpositionsto“navigatetheopen

seaofthedigitaltransformation”(EndressA.,2017b).InthecaseoftheShellPerdido

digitaloilfieldproject,digitalization“happenedmorecompletelyandquicklythan

expectedbecauseoftheemergenceofchampionswhounderstoodthevalueofthese

technologies”(Perrons,2010).Itwasalsoobservedthatthe“journeytowardbecoming

anintegrateddigitaloilfieldwouldnothaveyieldedthehighlypositiveoutcomesthatit

didwithoutthestrongsupportwithinthePerdidoteam,therelevantShellE&P

communities,andbothBPandChevron”.

(5.0)OtherConsiderations

Thereareanumberofotherimportantfactorstobeconsideredfordigitalizationof

Canada’sminingandoilandgasindustries.First,theseindustriesaresubjectto

extensiveregulation,bothprovincialandfederal,thatmayaffecttherateof

technologicalprogressandinnovation.Secondly,digitalizationwillhaveanimpacton

thelevelandnatureofemployment,withimplicationsforeducationandtraining

programsrequiredforthefutureworkforce,forthe`valueproposition’forcommunities

inresourceregions,andforlevelsof`technologicalanxiety’amongthegeneralpublic.

Thirdly,advancesindigitaltechnologiesareexpectedtocomeprimarilyfromoutsideof

theextractiveindustries,andthiswillrequirereconsiderationoftraditionalsupply

chainsandtheroleofsmallandmedium-sizedenterprises(SMEs)andotherinnovators

andapproachestoinnovation.

(5.1)RegulationandTechnologicalProgress

Theminingandoilandgasindustriesaresubjecttoheavyregulationbecausesomeof

theiractivitieshavethepotential,ifnotcarriedoutproperly,toresultinseriousand

lastingharmtotheenvironmentandtoworkerhealthandsafety.Inaddition,there

couldbeharmtonearbycommunitiesandtopublichealth.Thereinliesaconundrum.

Therearecompetingpressurestoinnovate,astheoperatingenvironmentsfor

29

extractiveindustriesbecomemorechallengingandbeyondconventionalapproaches,

andtostrengthenregulationstomanagetheincreasedrisksassociatedwithoperations

inthosemorechallengingenvironments(LR,2015b).Therateofregulatorychangeis

generallymuchslowerthantherateoftechnologicalchange.

Asaconsequenceofthepotentialforsignificantharm,extractiveindustriesareoften

subjectedto`prescriptive’regulationsthatdetailhowtheiractivitiesmustbecarried

out.Thisisincontrasttomore`performance-based’or`outcomes-based’regulations

thatdefinedesiredoutcomesorlevelsofperformanceandleaveindustrytodetermine

howtocarryouttheiractivitieswhileensuringperformancetargetsaremet.Thelatter

approachtoregulationhasbeenproposedasbeingmoreamenabletotheadoptionof

newtechnologies(NRCan,2013).

In1996,theGovernmentofCanadaconfirmedprovincialjurisdictionforregulationof

miningdevelopmentsthroughitsMineralsandMetalsPolicy(NRCan,1996).Whilethe

MineralsandMetalsPolicycallsforregulationtobeperformance-basedratherthan

prescriptive,approachestoregulationofminingactivitiesvarywidelyacrossCanada.

InCanada,thereisaninitiativeunderway–FrontierandOffshoreRegulatoryRenewal

Initiative(FORRI)–tomodernizetheregulatoryprocessforoilandgasactivitiesthatare

underthejurisdictionofthefederalgovernment(NRCan,2017d).InputfromCanadian

industryintotheFORRIconsultationprocesscalledforacommitmenttoeffective

implementationofaperformance-basedregulatorysystemsupportedbyguidelinesand

othertoolsconsistentwithaperformance-basedmanagementapproach(CAPP,2016).

ForonshoreoilandgasinCanada,regulationisunderprovincialjurisdiction.InAlberta,

newanduniquescientificandtechnologicalchallengesofunconventionaloilandgas

development,aswellastheneedfornewtechnologiesandapproachestooperations,

providedtheimpetustoconsider“risk-basedandplay-focused”approachesto

30

regulationofunconventionalresourcedevelopments(ERCB,2012).Apublicreviewof

potentialunconventionaloilandgasdevelopmentinWesternNewfoundland

recommendedaregulatoryframeworkwithanappropriatemixofperformance-based

andprescriptiveregulations(Gosine,Dusseault,Gagnon,Keough,&Locke,2016).Such

anapproachwouldallowforevolutionofregulationsasnewknowledgeandexperience

aregained,andwouldbesupportiveofinnovationandtheadoptionofnewtechnology.

Astudyofgreenminingtechnologyhighlightedthatthe“potentialfordelaysinthe

environmentalassessmentprocesswithintroducinganewtechnologythatdoesnot

haveademonstratedtrackrecordactsasadeterrentforsomeminingcompanies”

(MNP,2011).Furthermore,thestudyhighlightedthatmanyminingcompaniesmay

notbeabletoaffordthetimeandresourcesneededtogeneratetheverifiableevidence

requiredbyregulatorsabouttheperformanceofanewtechnology.Asaconsequence,

industrytendstouseproventechnologies,ratherthanriskdelaysornon-approvalof

innovativetechnologyapplications.Astudyoftheimpactofenvironmentalregulations

oninnovationintheAustralianoilandgasindustrysuggested“thelessprescriptive

natureoftheregulatoryapproachtakenbytheQueenslandgovernmentissupporting

innovation”andthatcompaniesare“strivingtomaketheiroperationsvery

environmentallyrobustandgoingbeyondcompliance”(Ford,Steen,&Verreynne,

2014).

Inthecontextofoilandgasregulations,itwasproposedthat“regulatorsmustcreatean

environmentthatenablesinnovation”andthey“mustengagewithtechnicalexperts

fromindustrytoidentifynewideasforsupportinginnovations,beopenandflexibleto

pilottestingactivitiesandemployingamoreoutcomes-basedapproachtoregulationin

ordertosupportinnovation“(EY,2015a).Thiscallforclosercooperationbetween

regulatorsandotherstakeholdersinordertoimprovetheregulatoryframeworkandto

facilitatetherequiredinnovationisnotuniquetoCanada.Lloyd’sRegister,aglobal

engineeringorganization,proposed“ablendofthebestexpertisefrombusiness,

31

academics,regulatorsandgovernments”wouldleadtoabetterunderstandingofrisks,

while“ablendofdesignskills,applicationofscience,operations,riskappetiteand

consequencetogetherwithlegislationregimes”wouldleadtomoreappropriate

regulations(LR,2015b).

Withintheoffshoreoilandgasindustry,internationalclassificationsocieties,suchas

Lloyd’sRegister,theAmericanBureauofShipping,andDNV-GL,setandmonitor

standardsforthedesign,construction,operation,inspection,andmaintenanceof

offshorestructuresandvessels.TheseclassificationsocietiesfeatureinCanadian

offshorepetroleumregulationsandtheyplayacriticalroleinensuringsafetyand

environmentalperformanceofoffshoreoperations.

RecentforesightexercisesbytheLloyd’sRegisterFoundation(LRF)consideredthe

emergenceofbigdata,analytics,robotics,andautonomoussystems(LRF,2014)(LRF,

2016).TheseexercisesreviewedtheimplicationsfortheindustriesLloyd’sRegister

servesandfortheworkdonebyLloyd’sRegisterinthecertificationandassuranceof

industryassets.

Withrespecttobigdataandanalytics,LRFproposedaparadigmshifttowardsdata-

centricengineeringwhere“dataconsiderationsareatthecoreofengineeringdesign”

withresultingimprovementsin“performance,safety,reliabilityandefficiencyofassets,

infrastructuresandcomplexmachines”(LRF,2014).Arangeofdatamanagement

issues,includingstandards,collection,storage,andsecurity,wouldbepartofthe

engineeringlife-cycleandwouldimpactonapproachestodesigning,manufacturing,

maintaining,anddecommissioningassets.Thedataitselfwouldbeanasset,requiring

verificationofthepedigree,quality,andaccuracyofdata.Thecertificationandquality

assurancerolesplayedbyorganizationssuchasLloyd’sRegisterwouldneedtoadapt

accordinglyifadata-centricengineeringapproachwasadoptedbyindustry.

32

Intermsofroboticsandautonomoussystems(RAS),LRFhighlightedcriticalissuessuch

asthedependabilityandappropriatenessofactionofRAS,methodsofRAS`learning’,

exchangeofcontrolbetweenhumanoperatorsandRAS,systemsecurity,publictrust

andethicalframeworksforapplicationsofRAS,andanxietyaboutemployment

disruption(LRF,2016).Also,theneedfor“livinglaboratoriesinexistinginfrastructure”

washighlightedasameansofprovidingthenecessaryfocustoundertakebasicR&D,

performfirstdemonstrationsofprototypes,andde-riskandcertifysystemsthatcould

beputintonormaloperation.Thisrequiresregulatoryframeworksthataresupportive

ofinnovationandapproachestounderstandingandmanagingtheassociatedrisks.

(5.2)Technology,EmploymentImpacts,andEducationandTraining

Thefusionofadvancedtechnologiesandthe“transformationofentiresystemsof

production,management,andgovernance”maydisruptlabourmarkets(Schwab,2016).

Atthispointthereisconsiderableuncertaintyabouttheimpactsonthenumberofjobs

andthetimingofsuchimpacts,althoughthereisgeneralagreementthatthenatureof

workwillchangesignificantly.Therearealsogrowingconcerns,or`automation

anxiety’,aboutthe“replacementofcomplexcognitivetasksandhumandecisionmaking

byalgorithms,machinelearningandothercomputationaltechniques”(Sussex,2017).

Schwabnotedthatifautomationsubstitutesforlabour,“thenetdisplacementof

workersbymachinesmightexacerbatethegapbetweenreturnstocapitalandreturns

tolabor”(Schwab,2016).Someresearchersbelievetheimpactofautomationonjobs

wouldbeconsiderablylargerthanwhatmanyanalystshavebeenprojecting(Ticoll,

2017).Schwabalsonoted,however,theimpactsareunclearandtheapplicationof

automationcouldleadtoanoverallincreaseinsaferandmorerewardingemployment

opportunities(Schwab,2016).Keyissues,however,includethelocationsofthesenew

jobs,aswellastherequirededucationandskilllevels.Forextractiveindustries,thereis

aquestionaboutwhethernewjobsthatcouldresultfromdigitalizationwouldbenefit

individualsinresourcecommunitiesandregions.

33

ArecentreportfromtheInternationalFederationofRobotics(IFR),anadvocacygroup

forrobotics,proposed“robotscomplementandaugment,ratherthansubstitutefor,

labourandindoingso,raisethequalityofworkandthewagesofthosefulfillingnew

tasks”and“automationhasledoveralltoanincreaseinlabourdemandandpositive

impactonwages”(IFR,2017).TheIFRreportproposedthatlessthan10%ofjobs

involvingmanuallaborcouldbefullyautomated,androbotsmaycomplementand

augmentmanuallabourforsomejobs.Middle-income/middle-skilljobswouldbeprone

tolossthroughautomation,whilethedemandforhigh-skilljobswouldincrease,as

wouldwages.Thisisconsistentwiththeperspectivethat“automationdoesindeed

substituteforlabor—asitistypicallyintendedtodo.However,automationalso

complementslabor,raisesoutputinwaysthatleadtohigherdemandforlabor,and

interactswithadjustmentsinlaborsupply”(Autor,2015).Between2010-2015,theIFR

reportedthattheU.S.automotiveindustryinstalled60,000newrobots,whiletherewas

anoverallincreaseinemploymentof230,000jobsintheindustryoverthesameperiod

(IFR,2016).Thereport,however,didnotdiscussotherfactors,suchasincreasesin

production,thatmayhaveinfluencedoverallemploymentnumbers.

Somepractitionersrefertothenextgenerationofmachinesthatworkwithandassist

workers,ratherthanreplacethem,as`cobots’orcollaborativerobots(Hollinger,2016).

Collaborativeroboticsisparticularlyattractiveforworkactivitiesforwhichhuman

judgmentisrequiredandwherethephysicalenvironmentpresentsergonomic

challenges.Forcertainjobactivities,studieshaveshownhuman-robotteamsaremore

productivethanhumansorrobotsworkingalone(Tobe,2015).

Inautomobileassemblyplants,someindustrialrobotshavebeenreplacedbycobots

withtheprimaryobjectivetoimprovethesafetyandeaseoftasksforworkerson

assemblylines.Cobotshavebeenproposedaspartofthesolutiontoattractingand

retainingtherequiredworkersforthemanufacturingindustryatatimewhenmany

34

currentworkersareretiring(Gonzalez,2016).Cobotscouldalsobeaviabletechnology

tosupportthemanufacturingoperationsofsmallersuppliersthatneedgreater

flexibilityandportabilityoftechnologythanistypicallyprovidedbylarge-scale,fixed-in-

placeroboticmanufacturingsystems.

Autorstated“journalistsandevenexpertcommentatorstendtooverstatetheextentof

machinesubstitutionforhumanlaborandignorethestrongcomplementarities

betweenautomationandlaborthatincreaseproductivity,raiseearnings,andaugment

demandforlabor”(Autor,2015).HeadlinesinCanadianpopularpress,suchas

“Driverlesstruckscouldmean‘gameover’forthousandsofjobs”,fuelconcernsabout

theimpactsofautomationonemployment(Grant,2015).Thearticlehighlighted

Canadianminingandoilandgascompaniesasearlyadoptersofautomatedtruck

technology.

Anotherrecentstudysuggestedthatwhilealmosthalfofallworkactivitiesacrossthe

economycouldbeautomated,lessthan5%ofalloccupationscouldbeautomatedusing

existingtechnologies(Manyika,etal.,2017).Itwasestimated60%ofalloccupations

haveatleast30%oftheiractivitiesthatcouldbeautomated,with“physicalactivitiesin

highlystructuredandpredictableenvironments,aswellasthecollectionandprocessing

ofdata”,beingtheactivitiesmosteasilyautomated.

Manyikapresentedacasestudyofthepotentialforautomationinanoilandgascontrol

room.Theproposedadvantagesofautomationincluded“betterpersonnelsafety,

greaterefficiency,higherthroughput,improvedagility,andcostreductionsfrom

relocatingoperatorsfromremotesitestocentralizedoffices”.Furthermore,

technologiessuchasintelligentsensorsandanalyticscould“enablepredictive

maintenance,whichisjustone-quarterthecostofreactivemaintenance”.Itwas

estimated80%ofthevaluecreatedfromautomationofthecontrolroomwouldresult

fromperformancegains,while20%wouldresultfromlaboursubstitution.

35

Otheranalystssuggestedbetterutilizationofexistingcomputingtechnologyintheoil

andgasindustrycouldseepositivefinancialimpactsofupto$3billionforamajoroil

andgascompany(Ward,2016).Ofthisamount,$1billioninsavingswouldaccruefrom

moreefficientdeploymentofengineeringresources,allowingcompaniestostayahead

oftheincreasingchallengetofindtalent.

Whilesomejobswithinoilandgascompanieswouldbeeliminatedbyautomation,

therewouldbeanincreaseindemandfordigitallyliterateemployees,suchasdata

analystsandengineers(Kline,2017).Alongasimilartheme,Accenturepredicted

digitalizationwillbothdemandandenableafundamentallydifferentworkforceinthe

oilandgasindustryand,whilesomemanualjobswillbereplacedbydigitaltechnology,

other“moredigitally-orientedjobswillbecreatedtotaketheirplace”(Sloman,

Holsman,&Cantrell,2014).TheLloyd’sRegisterFoundation(LRF)proposedthe

changingnatureoftheworkforcewouldfurtherchallengealllevelsoftheeducation

system,fromtheprimaryandsecondaryschoolsystem,throughpost-secondary

institutions,toorganizationsofferingongoingtrainingandeducationtoprofessionalsin

industry(LRF,2016).

Fortheminingindustry,theoverallemploymentimpactsasaresultofdigitalizationare

alsosubjecttodebate(Davis,2017).Inthefuture,asaresultofwidespread

digitalizationoffieldoperationsandback-officeprocesses,someanalystsbelievedigital

miningwillinvolvefarfewerpeople(Deloitte,2017).Thefutureworkerswouldalso

havedifferentskillsetsthanrequiredtodaybytheminingindustry.Currently,local

employmentisacriticalpartofthevaluepropositionthatminingcompaniesare

expectedtodeliveruponthroughouttheiroperationsincommunitieswithextractive

resources.

36

Whethera25-yearvisionforautonomousminingcanberealizedisanopenquestion.A

studyledbytheUniversityofQueenslandconsideredthesocialdimensionsof

autonomousandremoteoperationsandconcludedthat"autonomoustechnologies

seemlikelytoreduceadditionaljobscreatedthroughminingindustrygrowth,rather

thanleadingtoanetreductioninminingemployment”(McNab,Onate,Brereton,

Horberry,Lynas,&Franks,2013).Thestudyfindingsnotedthatsomejobs,suchas

drivingtrucksormanuallyoperatingundergroundequipment,woulddisappear,while

newjobs,whichwouldbeincreasinglyconcentratedinurbanareas,wouldrequire

differentcompetencies.Benefitsofautomationwereproposedtoincludeimproved

safetyandreducedriskforworkers.

Onechallengeforautomationistheintegrationofautomatedtechnologyintoexisting

minesites(Jensen,2016).Othershavenotedtherewillalwaysbeaneedfor

infrastructuretosupportpeopleworkingundergroundsince“soonerorlaterequipment

alwaysbreaksdownandsomebodyhastogoandfixit”(VellaH.,2017).Within

existingundergroundminingoperations,largeequipmentisdismantledandrebuilt

undergroundsothereisaneedforin-siturepairandmaintenanceofequipment,

includingautomatedvehicles.

Dramaticadjustmentstoemploymentinanindustrycanprovidetheimpetusfor

innovationandentrepreneurshipbythosewhoaredisplaced.Followingamajor

downsizingbytheminingindustryinSudburyin1981,anumberof“unemployed

miners,armedwithtacitknowledgeofthemajorminingcompanies,createdsmalland

medium-sizedenterprises(SMEs)toservethelocalminingindustry”(Hall,2017).Today,

thereareover300supplyandservicecompaniesintheSudburyarea,employing

approximately13,500people.

WhethertheSudburyexperiencewillholdupthroughaworkforcedisruptionfrom

digitalizationisanopenquestion.Areleaseoflabourasaresultofwidespread

37

digitalizationoftheminingandoilandgasindustrieswouldbecomplicatedbya

significantknowledgegapwithrespecttodigitaltechnologyanddigitalinnovation

amongthosedisplaced.Itisunlikelythatknowledgeofapre-digitalizedindustrywould

beasufficientbaseuponwhichtoofferadvancedtechnicalservicestoadigitalized

industry.UnliketheSudburyexperience,theexpertiseneededbyextractiveindustries

followingdigitaldisruptionwouldbefound,toasignificantextent,outsideofthe

extractiveindustries,inothersectorsandlocationsthataremoreproactiveinadvancing

digitaltechnologiesandtheirapplications.Furthermore,thecurrentalignmentof

educationandtrainingprogramsatsomepost-secondaryinstitutionstomeetthe

currentemploymentneedsofextractiveindustriesmayfallshortintermsofpositioning

youngpeoplewithanaffinitytoresourceregionsforcareersindigitalizedextractive

industries.

Aswithprojectionsaboutthechangingnatureofemploymentintheoilandgas

industry,miningindustryanalystshavepointedtotheneedto“buildaworkforceofthe

futurebyattractinghighlydiversepeoplewithanewsetofdigitalskills”(Deloitte,

2017).Theminingindustry“willincreasinglyfindthemselvescompetingforscarce

technicaltalentwithmoreattractivepureplaydigitaldisruptors”.

Arecentsurveyofover2000companiesin26countriesaboutIndustry4.0identifiedthe

lackoftrainingandadigitalculturedeficitamongexistingworkforcesasthetop

challengesfacedbycompanies(Geissbauer,Vedso,&Schrauf,2016).Theneedto

addresseducationandtrainingrequirementsincludesupgradingknowledgeandskills

forexistingworkforces,aswellaspreparinguniversityandcollegegraduatesbetterfor

careersindigitalizedindustries.

Understandingtheemploymentimpactsofdigitalizationoftheminingandoilandgas

industrieswillbeimportant,bothtothecompaniesandtothecommunitiesandregions

inwhichthereareresourcedevelopments.Forminingandoilandgasdevelopments,

38

animportantelementofthehistoricalvaluepropositionislocalemployment,including

direct,indirect,andinducedemployment,acrossalleducationandskilllevels.Other

elementsincludetheconsumptionoflocalgoodsandservicesandrevenuesfromtaxes

androyalties.

ForextractiveresourcedevelopmentprojectsinCanada,therearenegotiatedbenefits

agreementsthatdefinehowcommunitiesandregionsparticipateintheemployment

andeconomicactivitiesarisingfromresourcedevelopmentprojects.Asanexample,

fortheHebronoffshoreoilandgasdevelopmentproject,thebenefitsagreement

stipulatedaminimumnumberofperson-hoursofengineeringandconstructionwork

hadtobedoneinNewfoundlandandLabrador(NL)priortothestartofoilproduction

(Hebron,2008).OtherrequirementsincludedfinancialsupportfortheNLsupplyand

servicesectortoengagewiththeengineeringofficesoftheproponentsortheirout-of-

provincesuppliers,andadefinedlevelofR&DexpenditurebytheproponentswithinNL

overthelifetimeoftheproject.Theproponent’sbenefitscommitmentsaremonitored

bytheCanada-NewfoundlandOffshorePetroleumBoard(C-NLOPB)andtheproponents

filepublicquarterlyandannualreportsregardingtheirperformanceinmeetingtheir

commitments(HMDC,2017).

InthecontextofmininginCanada,impactandbenefitsagreements(IBAs)are

negotiatedbetweenminingcompaniesandAboriginalcommunitiesto“documentina

contractualformthebenefitsthatalocalcommunitycanexpectfromthedevelopment

ofalocalresourceinexchangeforitssupportandcooperation”(IBARN,2006).The

IBAstypicallyaddressissuessuchasenvironmentalprotection,includingspecial

concernsaboutwildlife;protectionofAboriginalsocialandculturalvalues;education,

training,andemployment;healthandsafety;businessopportunities;Aboriginalaccess

totheprojectsite;financialarrangements;anddisputeresolutionmechanisms(Vale,

2017).Aboriginalcommunities“holdinherentrightsintheirtraditionalterritories,and

thusshouldshareinemploymentandfinancialbenefitsfromdevelopmentprojectson

39

thoselands”(Kielland,2015).Generally,IBAsareinadditiontoresourcerevenue

sharingarrangementsbetweenprojectproponentsandgovernments.

Whilebenefitsagreementstypicallydealwithdirectemploymentrequirements,the

second-ordereffectsassociatedwithchangesinemploymentlevelsasaresultof

digitalizationalsoneedtobeunderstood.Forexample,therewouldbeincometax

impactsassociatedwithchangesinemploymentlevelsorchangestolocalsalariespaid

byindustryasaresultofincreasedautomation(Balch,2016).Areductionindirect

employmentinaregionwouldalsoresultinareductionininducedemploymentinthat

region.

Withtheriseoftheconceptof‘sociallicencetooperate’(SLO),whichissometimes

referredtoas`sociallicence’or`publicconfidence’,theimpactofdigitalizationon

employmentandotherelementsofthevaluepropositionwillbeparticularlyimportant

tounderstand(Mann&Cosbey,2016).Forbothminingandoilandgascompanies,

developingandmaintainingatrustrelationshipwiththecommunitiesinwhichthey

operateisrecognizedasarealityofdoingbusinessinthefuture(Sanyal,2012)(Latimer,

2015).AUniversityofQueenslandstudyidentifiedkey“socialdimensionsof

automation”,includingthestructureoftheworkforceandworkforcemanagement

practices;workplaceandpublichealthandsafety;mining-relatedregionaldevelopment

opportunities;andAboriginalemploymentandcommunityrelations(McNab,Onate,

Brereton,Horberry,Lynas,&Franks,2013).

Dependingontheultimateimpactofdigitalizationofextractiveindustriesonthe

employmentcomponentofthevalueproposition,theremayneedtobearebalancing

oftheweightingontheotherhistoricalcomponentsortheintroductionofnew

componentsofthevalueproposition.Newcomponentscouldincludeintroducingmore

localdownstreamprocessingofextractedresources,developingvalue-addedproducts

thatwouldbemanufacturedlocally,supportingmorewidespreadinfrastructure

40

improvementsthatbenefitcommunitiesandoperations,andincreasingknowledgeand

technologytransfertolocalcommunitiesthatcouldbemorewidelyutilizedinother

sectorsoftheeconomy(Cosbey,Mann,Maennling,Toledano,Geipel,&Brauch,2016).

Policymakerswillneedtobeengagedearlyinordertomitigatethenegativesocial

impactsofemploymentloss(LRF,2016).Giventheincreasedattentiongenerallyinthe

media,includingsocialmedia,regardingtheimpactsofautomationonthefutureof

work,securingpublicconfidenceforextractiveresourceprojectswillbefurther

complicatedbyautomationanxiety.

(5.3)TechnologyfromOtherSectors

Theenablingdigitaltechnologiesandapproachestotheirintegrationintosystemsare

commonacrossmanyindustrysectors,albeitwithsomeadaptationstailoredtosectoral

differences.Learningfromotherindustriesthathaveadoptednewtechnologiesand

approachestotheirapplicationwillbeimportant(Jacquand,2017).Inparticular,

technologiesdevelopedanddeployedforthemanufacturing,forestry,agriculture,

automotive,aerospace,biotechnology,financialtechnology,andgamingsectorsmaybe

adaptedandadoptedforapplicationsbyextractiveindustries.

Bywayofillustration,newfinancialtechnologiesbeingemployedinthefinancialsector

mayplayimportantrolesinthefutureofextractiveindustries(Koeppen,Shrier,&

Bazilian,2017).Specifically,blockchaintechnologymaybeutilizedinapplicationsto

increasetransparencyandprovideefficiencyinregulatorycompliance,toenhancedata

security,tofacilitatesmartcontracts,andtoimprovelogistics.Suchtechnologyhasthe

potentialtoimprovemanagementofsupplychainsforextractiveindustries(IBM,2016).

Thistechnologymayalsomakeitpossibleforaprovenorereservetobeconvertedinto

digitizedassetspriortoitbeingmined.Thiscouldincludeorebitsthatcanbebought

andsoldelectronically(BusinessWire,2017).

41

Suchtechnologymayalsofacilitatenewvaluepropositionsforcommunitiesinwhich

extractiveindustriesoperateinordertosecurethesocialandeconomicfuturesofthose

communities.Inotherwords,itmaybepossibletogeneratefinancialrevenuestreams

intocommunitiesintheabsenceofcurrentproduction.Inthetraditionalmining

lifecycle,miningcompanypensions,whichguaranteerevenuebeingpaidtoformer

companyemployeeslongafteractivemininghasceasedandtheminingcompanyhas

leftthecommunity,havebeenacriticalsocialandeconomicstabilizerforsingle-

industryminingtowns.Insomecases,thesepensionsmayhavehelpedavoid`ghost-

town’outcomesforcommunities.Astherequirementforongoingpublicconfidencein

extractivesindustriesinCanadabecomesmorewidespread,digitaltechnologymay

supportindustryindeliveringanearlyvaluepropositiontocommunitiesandinhaving

newvaluepropositionoptionsatlaterstagesofprojects.

Unlike20yearsagowhenautonomousvehicletechnologywasbeingpioneeredbythe

miningindustrytoimproveproductivityandsafetyinanichemarket,todaythis

technologyisbeingadvancedbytheautomotiveindustryandbytechnologycompanies,

suchasFord,GeneralMotors,Tesla,Uber,Google,Blackberry,andApple,formuch

largerconsumermarkets(Davies,2017)(Tesla,2016)(MarshallA.,2017a)(Blackberry,

2017)(Moren,2017).Inparticular,researchdirectedtowardsystemsthatenhancethe

safetyofhumans(e.g.,otherdriversandpedestrians)onroadsutilizedbyautonomous

automobilescouldalsobeusefulforintroducingautomatedminingrobotsinto

establishedminesthatuseconventionalapproachestoproduction(Condliffe,2016).

Theexperienceoftheautomotiveandmanufacturingindustryintheapplicationof

collaborativerobotics,orcobots,isalsoparticularlyrelevantandimportanttoconsider.

Regardlessofwhetherfullautomationcanultimatelybeachieved,thecomplexnature

ofthephysicalenvironmentsforbothminingandoffshoreoilandgasdevelopmentwill

necessitatecloseinteractionandcollaborationbetweenhumansandmachinesforthe

foreseeablefuture.

42

(5.4)TheRoleofSmallandMedium-sizedEnterprises(SMEs)

Withtheexceptionofthemineralexplorationsector,modernextractiveindustriestend

tobedominatedbylargeglobalfirms.Thelastcommoditiesboomescalatedmergers

andacquisitionsamongalreadyhighlyconcentratedcompanies.Manyofthesedeals

wereover-leveragedandbasedonunrealisticexpectationsforcommoditymarkets.In

somecases,individualunitsandpropertiesfromtheseventureshavebeendismantled

andsoldoff.Historically,conservativeandrisk-averseminingandoilandgas

companieslookedtowardsimilarlyconservativeandrisk-aversesupplyandservice

providers.Thesecharacteristicsarenotconducivetoinnovationandmayimpedethe

adoptionandadaptionofdisruptivetechnologiesbyextractiveindustries(Brownlee,

2016).

Inthecaseofsomelargecorporations,suchasLockheedandApple,a“skunkworks”

approachhasbeenusedtoprovidekeytechnicalandscientificstaffwiththetimeand

resourcestoengageinbreakthroughinnovationawayfromnormalcompanyoperations

(May,2012).Itisalsothecasethatdisruptivetechnologiesareoftendrivenbysmaller,

moreagile,andlesstraditionalfirms,manyofwhicharenotpartofthesupplychains

forlargeextractiveindustries.Asaresult,largeextractiveindustriesmaynotbenefit

fromthedisruptivetechnologiesoriginatingfromthesesmallerinnovativecompanies.

Unfortunately,manySMEsdonothaveagoodunderstandingofneedsofthelarger

companiesnortheirprocurementprocesses.Thislackofunderstandingisperpetuated

bythefacttherearelimitedmechanismsforinteractionbetweenSMEsandthelarge

operatingcompaniesandtheirsuppliers.Similarly,decision-makersinextractive

industriesandamongtheirlargersuppliersareoftenunawareofthetechnologyand

capacityavailablethroughSMEs.

Giventheprospectforwidespreadapplicationofdisruptivetechnologiesinconsumer

productsandacrossindustrysectors,thereispotentialforhigherlevelsofinnovation

43

andentrepreneurship,leadingtonewopportunitiesforSMEsandforthecreationof

newtechnology-basedcompanies(Manyika,Chui,Bughin,Dobbs,Bisson,&Marrs,

2013).Theneedforextractiveindustriestoembracedisruptivetechnologymayleadto

better,moreeffectiveengagementbetweenextractiveindustriesandtechnology

developers,includingSMEsandotherinnovators,traditionallyoperatingoutsideofthe

supplychainsforminingandoilandgascompanies.Newwaysofestablishing

collaborationsamongkeyplayersneedtobeexploredbyextractiveindustries.

DigitalizationprovidesanopportunityforinnovativeCanadiantechnologytoenhance

theviabilityofCanada’sextractiveindustriesandtocreateexportopportunitiesfor

Canada’stechnologycompanies,particularlySMEs.Withrespecttoenablingexport

opportunitiesforSMEs,however,Canadaischallenged.AsnotedbytheAdvisory

CouncilonEconomicGrowth,“ingeneral,Canadiancorporationsarerelativelyslowto

adoptnewtechnologyandseemreluctanttobuyfromyoungorsmallerfirms”(ACEG,

2017).TheAdvisoryCouncilwentontosuggestthatlargercompaniescouldsupport

growthofSMEs,bothbyactingasearlycustomersandbyconnectingSMEswithother

companiesintheirsupplychains.InorderforCanadianSMEstobesuccessfulin

participatinginaglobalsupplychainfortheenergyindustry,itwasproposed

governmentmust“usepolicytoensurestable,robustdomesticdemandintarget

energysectorsandconsequentlyspurindustryinnovation”(McKinsey,2013).

(5.5)OtherApproachestoInnovation

Ithasbeenlongarguedthatinnovationisasocialprocesswithinwhichpeopleinteract

todevelopideasandknowledgethatunderpinmarketableproductsandservices

(Maxwell,2003).AsdiscussedbySmithetal.,“successfulinnovativefirmsareusually

thosewhichareopentotheirenvironments.Thatis,theyengageininteractivelearning

involvingotherinstitutions:partners,rivals,andawiderangeofotherknowledge-

creatingandknowledge-holdinginstitutions”(Smith,Dietrichs,&Nas,2015).The“easy

wins”withrespecttoincrementalimprovementshavelargelybeenachieved,and

44

ground-breaking,transformativeinnovationswillcome“fromlookingattheworldfrom

severalperspectivesatonce-engineering,finance,design,marketing,moral,legal,and

soforth-andsynthesizingthemintosomethingthat’sgreaterthanthesumofthe

parts”(Jarvis,2016).

Innovationapproachesfromothersectorsneedtobeconsidered,suchastheHacking

Healthmovement,establishedin2012inMontrealandsubsequentlyexpanded

internationally.This`openinnovation’approachbringsfreshthinkingtoaddressing

challengesinthehealthcaresectorandtoengagingpeoplewiththeknowledgeand

skills,oftenfromoutsidethesector,neededtoadvancehealthcareintothe21stcentury

(Lindeman,2015).A`hackathon’bringstogetherhealthprofessionals,policymakers,

technologyproviders,technologydevelopers,studentsandfaculty,entrepreneurs,and

investorstogeneratefreshideas,toshareinsights,andtodevelopcreativesolutions

(HackingHealth,2017).Extractiveindustriesrecentlystartedtoexplorethismoreopen

andcreativeapproachtoinnovation(OGA,2016)(CMIC,2017a).Anupcoming54-hour

openinnovationhackathoninVancouverwillconsiderthree`challenges’involvingthe

useofdigitaltechnologyandanalyticstoimprovetheperformanceofdiscrete

componentsofminingoperations(Unearthed,2017).

Anotheropeninnovationapproachinvolves`crowdsourcing’solutionstomajor

challengesbyengagingabroadrangeofexpertiseandunconventionalthinking.Inthe

caseoftheoilandgasindustry,Sweden’sDraupnerEnergywasestablishedin2015to

“leveragecrowdsourcingandnetworkedinnovationoveraninternetplatformto

identifyanddelivernovelideas,innovativeprojectsolutions,developenergyandcarbon

captureandstorageprojects,andmovethemtomarket”(Draupner,2017).In2015and

2016,StatoilandGeneralElectricco-sponsoredglobalopeninnovationchallengesto

solicitconceptsforreducingtheamountofsandandwaterusedinunconventionaloil

andgasdevelopment(GE-Statoil,2015)(Statoil-GE,2016).Statoilrecentlyissuedan

45

openinnovationchallengetoconsiderhowdigitalizationcouldchangehowenergyis

producedandconsumed(Statoil,2017c).

WithintheCanadianminingindustry,theCEOofGoldcorp,inspiredbytheopen-source

softwaremovement,believedthatcrowdsourcingnewideasaboutwheretodigcould

“speedupexplorationandimprovehisoddsofdiscovery”atanunderperformingmine

inOntario(Tischler,2002).Goldcorplaunchedaninnovativechallengethatmadeallof

thecompany’sproprietarygeologicaldataavailableonthecompany’swebsite.The

challengeletoutsideexpertshaveaccesstothedatatoidentify“wherethenextsix

millionouncesofgold”wouldbefoundinreturnfora$575,000prize(ideaconnection,

2009).Itwasestimatedthatthechallenge“cuttwo,maybethreeyearsoffthe

company’sexplorationtime.Andtheworthofthisgoldhassofarexceeded$6billionin

value”.In2007,BarrickGoldlauncheditsUnlocktheValueProgramtochallenge

researchersfromaroundtheworldtoliberate180millionouncesofsilverthatwas

containedingoldreservesintheVeladeromineinArgentina(Barrick,2007).The

Barrickchallengestatedthat“experienceinminingisnotrequiredbecauseweare

lookingforinnovationandnewapproaches”.

In2015,IntegraGoldCorporation,whichisnowownedbyEldoradoGold,announcedit

wasmaking70yearsofprospectingdataavailableontheinternetinorderto“let

peoplewhoaren’tusuallyinvolvedinexplorationbringcreativedataanalysismethods

tothetable”andto“injectsomemuch-neededinnovationintoanindustrythat’s

strugglingwithhighcostsandlowcommodityprices”(FP,2015).Datacollectedfroma

growingnumberofdigitaldevicesdeployedacrossoilandgasandminingoperations

couldprovidearichsourceofrawmaterialforcrowdsourcingnewinternetofthings

(IoT)productsandservices(Ratzesberger,2015).

Othermodelsforpromotinginnovationincludelonger-term(e.g.,12-18months)design

competitionstodevelopanddemonstrategame-changingtechnology.Anearly

46

exampleofthe“prizechallengemodel”wastheDARPAGrandChallenge,an

autonomousvehiclechallenge,withavisionto“encouragenewwavesofresearchand

developmentthatwillspurcontinuedinnovation,encouragecommercialinvestment,

andlowerthecostofadvancedtechnologies”(DARPA,2014).Reflectingontheimpact

ofthechallengeprogram10yearsafteritwaslaunched,DARPAconcluded“thefresh

thinkingtheybroughtwasthesparkthathastriggeredmajoradvancesinthe

developmentofautonomousroboticgroundvehicletechnologyintheyearssince”.

AmorerecentexampleoftheprizechallengemodelistheHyperloopPodinternational

competitionthattargetedanew`fifthmode’oftransportation(SpaceX,2017).This

internationalstudentcompetitionwaslaunchedinresponsetoaproposaltobuilda

conventionalbullettrainasasolutiontostatewidemasstransitinCalifornia(Musk,

2013).Fromover1000teamsthatinitiallyappliedforthecompetition,115teams

submitteddesignsinJanuary2016and30wereselectedtobuildtheirdesignsandtodo

preliminarytestingontheHyperlooptrackinJanuary2017.Afullcompetitionamong

24teamswasheldinAugust2017,andafurthercompetitionissetformid-2018.

Anotherillustrationofthisapproachisthe8thAnnualRoboticMiningCompetitionthat

willbehostedbytheU.S.NationalAeronauticsandSpaceAdministration(NASA).This

competitionwillbringtogether50U.S.universityteams(NASA,2017).

In2017,theGovernmentofCanadalaunchedtheInnovationSuperclustersInitiative(ISI)

to“acceleratethegrowthanddevelopmentofbusiness-ledinnovationsuperclustersin

Canada,translatingthestrengthsofourinnovationecosystemsintonewcommercial

andglobalopportunitiesforgrowthandcompetitiveness”(ISI,2017).Boththemining

andoilandgasindustriesaspiretoleadsuperclusters,includingaminingcleantech

clusterandadigitaloceansclusterinvolvingtheoilandgasindustry(CMIC,2017b)

(ResearchInfosource,2017).

47

Bothofthesesuperclusterinitiativeswouldseemajorinvestmentsbyindustryand

governmenttobringtogetheranarrayofcollaboratingcompaniesandorganizationsto

advanceinnovationandmoveCanadianindustryintoaworld-leadingposition.For

example,theminingcleantechsuperclusterisan“industry-led,multi-stakeholder

consortiumcomprisedoffourexistingclusters,which,combined,represent11large

companies(includingeightresourcecompanies),13post-secondaryinstitutions,42

SMEsand25othersupportorganizations”(CMIC,2017b).Thedigitaloceans

superclusterwouldbringtheoffshoreoilandgasindustrytogetherwithotherocean

industriestoadvancetechnologiesthatcouldbedevelopedandadaptedacross

industries(ResearchInfosource,2017).

(6.0)MiningandOilandGas:DigitalSynergy

Intermsofexploringtheopportunitiesandchallengesrelatedtodigitalizationof

extractiveindustries,thereistremendoussynergybetweentheminingindustryandthe

oilandgasindustry,particularlybetweenminingandoffshoreoilandgasproduction

operations.Bothminingandoffshoreoilandgasareglobalindustriesinvolvedin

increasinglyremoteproductionoperationsinharshenvironmentsthat,bytheirvery

nature,modifytheenvironment.Boththesupplierstotheseindustriesandthe

customersareinternationalinscope.

MiningandoilandgasactivitiesgeneratesignificantexportvalueforCanadaand

employ,directlyandindirectly,alargenumberofpeoplewithawidearrayofexpertise

andskill.Employmentrepresentsamajorpartofthevaluepropositionbetweenthe

industriesandresourcecommunities.Theemploymentimpactsarenationalinscope

andparticularlyimportanttoregionswherethereisresourcedevelopment.

Digitaltechnologyhasthepotentialtoimprove,expedite,andreducethecostfor

evaluationofresources.Thiscouldleadtonewresourcedevelopmentprojectsthat

maynothavebeenevaluatedintheabsenceofimprovedresourceassessmenttools

48

thatprovideforthecollectionandprocessingofdatathatwouldpreviouslynothave

possible.

Theneedtolooktodigitaltechnologytoincreaseoperationalefficiencyinorderto

remaingloballycompetitivecouldsignificantlychangethelevelsandnatureof

employmentinextractiveindustries,and,hence,thevaluepropositionforgovernments

andresourcecommunities.This,coupledwithageneralanxietyamongthepublicabout

impactsofautomationtechnologies,furthercomplicatesthepublicconfidencedynamic.

Boththeminingandoilandgasindustriesarealreadysubjectedtoincreasingchallenges

withrespecttoachievingandmaintainingthepublicconfidencenecessarytocarryout

resourcedevelopmentprojects.

Bothsectorsarecapitalintensivewithlongpaybackperiodsoninvestments.The

financialrisk,coupledwiththecyclicalnatureofcommoditypricingandpriceshocks,

hascontributedtoweakinvestmentinR&Dandslowuptakeofnewtechnology

comparedwithotherinnovativesectorsoftheeconomy.

Bothindustrieshaverecognizedtheneedtoembracedigitaltechnologyiftheyareto

survive,letaloneflourish.Thereisanopportunityfortheseindustriestoworktogether

tounderstandtheirdigitalfutures,andthoseoftheiremployeesandtheresource

communitiesandregionsinwhichtheseindustrieswishtooperate.

Forbothminingandoilandgascompanies,thefuturecouldincludeheavilydigitalized

assets(i.e.,oilrigs,miningequipment),capableofhighlevelsofautonomyandinter-

assetcooperation,operatingwithinchallengingnaturalenvironments(e.g.,adeepor

remotemineorfaroffshoreoilfield)monitoredusingadvancedembeddedandremote

intelligentsensortechnology.Thesedigitalizedassetsandintelligentsensor

technologiescouldbeconnectedviainnovativecommunicationsystemstodigital

enterprises(i.e.,missioncontrolcentresandotherremotecentresofexcellence),where

49

expertswouldmonitorproductionoperationsremotely,interactviatechnologywitha

limitednumberoffieldworkersatproductionsites,andperformcomputationalanalysis

ondatacollectedfromremoteoperationstooptimizeproduction,equipment

maintenance,andassetutilization,whilesimultaneouslyensuringregulatory

compliance.Thedigitalenterprisecouldbepartofadigitalworldinwhichtechnology

wouldbedeployedtoimprovesupplychainmanagementandresourcemanagement,to

balancesupplyanddemandforproduct,tomanagecontractingamongprojectpartners,

andtohelpsecureandmaintainpublicconfidence.

(7.0)ConclusionsandNextSteps

Thenextgenerationofminingsharesanemergingvisionofincreaseddigitalizationof

productionoperationswiththeoffshoreoilandgasindustryofthefuture.Giventhe

importanceoftheminingandoilandgasindustriestotheCanadianeconomy,itis

criticalthatCanadapreparesforthedigitalfutureoftheseextractiveindustries.

Challengesresultingfromdigitalizationoftheseindustries,however,mustbeidentified,

understood,andaddressedbyadiverserangeofstakeholders.Someofthese

challengesincludeintegrationwithlegacyproductionoperations,impactson

employmentandthenatureofwork,securingtalentwiththerequirededucationand

skills,morecomplicatedrelationshipswithgovernmentsandcommunities,andbeing

innovativewhilecomplyingwithregulatoryrequirements.

Whilederivingeconomicbenefitfromminingandtheoilandgasresourcescould

continuetobeimportanttoCanada,itwillbecriticalforresourcesindustries,andthe

supportingsupplierandservicecompanies,tounderstandemergingdigitaltechnology,

asinnovators,consumers,andexportersofsuchtechnology.Aspartofthedigital

economy,modernminingandoilandgascompaniesmayaccruebenefitsincluding

increasingthesafetyofworkers,improvingenvironmentalperformance,protecting

publichealth,improvingproductivityandefficiencyofoperations,shorteningthe

50

exploration-development-productioncycletime,increasingreliabilityofequipment,and

reducingcapitalinfrastructurecosts.

Thechallengesandopportunitiesfromdigitalizationcomeatatimeofconsiderable

mediahypeabouttechnologiessuchasartificialintelligenceandautomation.Some

pioneersinthefield,suchasRodneyBrooks,havelamentedthe“hysteriaabouthow

powerfultheywillbecome,howquickly,andwhattheywilldotojobs”(Brooks,2017).

Brooksdidnotsuggestthattherewillnotbechallengesandimpactsfromthese

technologies,butthesewillnotbeassuddenorunexpectedassomepredict.Finally,as

notedbyBrooks,“almostallinnovationsinroboticsandAItakefar,far,longertobe

reallywidelydeployedthanpeopleinthefieldandoutsidethefieldimagine”.Thisis

nottosaythatstakeholdersinCanada’sextractiveindustriescanaffordtodelay

preparingforadigitalfuture.

Globally,digitaltechnologywilltransformextractiveindustries.ForCanada,this

providesanopportunitytoleadindevelopingandcommercializingtheenabling

technologies,inintegratingthesetechnologiesintoglobaloperations,andin

consideringthebroadersocio-economicandregulatoryconsequencesofdigitalization

oftheseextractiveindustries.

DigitalizationofextractiveindustriesinCanadawillcertainlyposeopportunitiesand

challengesforadiverserangeofstakeholders.Inadditiontotheoperatingandsupply

andservicecompanies,individualsandcommunitieswillbeaffectedbydigitalization,as

willgovernmentsandinstitutions(e.g.,educationsystems,regionaldevelopment

organizations,unions,andregulators).Successfullyaddressingtheopportunitiesand

challengeswillrequireearlyandeffectiveengagementofallstakeholdersthatis

informedbyrealisticdigitalizationscenarios,timeframesfortheirimplementation,and

assessmentofthebroaderissuesandimpacts.

51

(8.0)References

Accenture.(2017).Digitaltransformationinitiative:Oilandgasindustry.Retrievedfrom

WorldEconomicForumWebSite:http://reports.weforum.org/digital-

transformation/wp-content/blogs.dir/94/mp/files/pages/files/white-paper-2017-dti-oil-

gas.pdf

ACEG.(2017).Unlockinginnovationtodrivescaleandgrowth.Retrievedfrom

GovermentofCanadaWebSite:http://www.budget.gc.ca/aceg-ccce/pdf/innovation-2-

eng.pdf

Ambrose,J.(2017).BigOiltobeusurpedbygasinlittlemorethanadecade,expertswarn.RetrievedfromTheTelegraphWebSite:

http://www.telegraph.co.uk/business/2017/09/04/big-oil-usurped-gas-little-decade-

experts-warn/

Armbrecht,A.(2015).Chinaisstillkingofcommodityconsumption.Retrievedfrom

WorldEconomicForumWebSite:https://www.weforum.org/agenda/2015/09/china-

king-of-commodity-consumption/

Arnoldi,M.(2017).Digitalisedminingcanallowfordeepermining.Retrievedfrom

MiningWeeklyWebSite:http://www.miningweekly.com/article/digitalised-mining-can-

allow-for-deeper-mining-2017-04-07/rep_id:3650

AtlasCopco.(2015).Insightonautomation.RetrievedfromAtlasCopcoWebSite:

http://www.atlascopcogroup.com/en/media/innovation-stories/2015/insight-on-

automation

Autor,D.(2015).Whyaretherestillsomanyjobs?Thehistoryandfutureofworkplaceautomation(inJournalofEconomicPerspectives29(3)3-30).RetrievedfromMITWeb

Site:https://economics.mit.edu/files/11563

Balch,O.(2016).Automatedminingwillcostjobsandtaxincome:It'stimeforgovernmentstoact.RetrievedfromTheGuardianWebSite:

https://www.theguardian.com/sustainable-business/2017/jan/20/autonomous-mining-

will-cost-jobs-and-tax-income-its-time-for-governments-to-act

Barrick.(2016).BarrickandCiscopartnerforthedigitalreinventionofmining.RetrievedfromBarrickWebSite:http://www.barrick.com/investors/news/news-

details/2016/Barrick-and-Cisco-Partner-for-the-Digital-Reinvention-of-

Mining/default.aspx

Barrick.(2007).BarrickoffersUS$10millionforinnovationtounlockthesilver.RetrievedfromBarrickWebSite:http://www.barrick.com/investors/news/news-

details/2007/BarrickOffersUS10MillionforInnovationtoUnlocktheSilver/default.aspx

52

Barrick.(2017).Whyminersshouldembracechange.RetrievedfromBarrickBeyond

BordersWebSite:http://barrickbeyondborders.com/mining/2017/06/why-miners-

should-embrace-change/

BDC.(2017).Industry4.0:Thenewindustrialrevolution.RetrievedfromBusiness

DevelopmentCanadaWebSite:

https://www.bdc.ca/EN/Documents/analysis_research/bdc-etude-manufacturing-

en.pdf?utm_campaign=manufacturing-2017--Studies--

EN&utm_medium=email&utm_source=Eloqua

Blackberry.(2017).Innovation:Newideastoproducts.RetrievedfromBlackberryQNX

Website:http://www.qnx.com/content/qnx/en/blackberry-qnx-autonomous-vehicle-

innovation-centre.html

BP.(2016a).Artificialintelligence:Turningfantasyintoreality.RetrievedfromBritish

PetroleumWebSite:http://www.bp.com/en/global/corporate/bp-

magazine/innovations/artificial-intelligence-in-the-energy-industry.html

BP.(2017).BPenergyoutlook.RetrievedfromBritishPetroleumWebSite:

https://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-

2017/bp-energy-outlook-2017.pdf

BP.(2014).DronesprovideBPwitheyesintheskies.RetrievedfromBritishPetroleum

WebSite:http://www.bp.com/en/global/corporate/bp-magazine/innovations/drones-

provide-bp-eyes-in-the-skies.html

BP.(2016b).Howanewrobotfleetismonitoingtheunderwaterworld.Retrievedfrom

BritishPetroleumWebSite:http://www.bp.com/en/global/corporate/bp-

magazine/innovations/ocean-monitoring-with-robot-technology.html

Bresciani,G.,Inia,D.,&Lambert,P.(2014).Capturingvalueinglobalgas:Preparenowforanuncertainfuture.RetrievedfromMcKinsey&CompanyWebSite:

https://www.mckinsey.com/industries/oil-and-gas/our-insights/capturing-value-in-

global-gas

Brooks,R.(2017).ThesevendeadlysinsofAIpredictions.RetrievedfromMIT

TechnologyReviewWebSite:https://www.technologyreview.com/s/609048/the-seven-

deadly-sins-of-ai-predictions/

Brownlee,J.(2016).Canadaasaglobalminingleader:Withthecurrentdownturn,nowisthetimefortheindustrytoinnovate.RetrievedfromEnergywiseWebSite:

http://exportwise.ca/canada-global-mining-leader-now-time-industry-innovate/

BusinessWire.(2017).Orebits&Symbiontdeploydistributedledgertechnologytodigitizegoldownership.RetrievedfromBusinessWireWebSite:

53

http://www.businesswire.com/news/home/20170315005332/en/Orebits-Symbiont-

Deploy-Distributed-Ledger-Technology-Digitize

CAPP.(2016).CAPPcommentsontheFrontierandOffshoreRegulatoryRenewalInitiative's(FORRI)proposedpolicyintentionsforphase1oftheframeworkregulations.RetrievedfromNaturalResourceCanadaWebSite:

http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/pdf/CAPP_Comments_on_

FORRI_Phase1.pdf

CAPP.(2017a).IndustryacrossCanada.RetrievedfromCanadianAssociationof

PetroleumProducersWebSite:http://www.capp.ca/canadian-oil-and-natural-

gas/industry-across-canada

CAPP.(2017b).Labour.RetrievedfromCanadianAssociateofPetroleumProducersWeb

Site:http://www.capp.ca/canadian-oil-and-natural-gas/economic-

competitiveness/labour

Caterpillar.(2017).AutomationkeepingundergroundworkerssafeatLKABMalmbergetmine.RetrievedfromCaterpillarWebSite:http://www.cat.com/en_US/by-

industry/mining/articles/automation-keeps-workers-safe.html

C-CORE.(2007).ORICA&C-CORE:Aidingautomationdownunder.RetrievedfromC-

COREWebSite:https://www.c-core.ca/cms_content/files/files/C-

CORE%20News%20Vol30%20No2%20(Winter%202007).pdf

CDO.(2014).Creatingdigitialopportunity-Goalandprojectdescription.Retrievedfrom

MunkSchoolofGlobalAffairsWebSite:

http://munkschool.utoronto.ca/ipl/files/2014/08/CDO_Project-Description.pdf

CERI.(2017).EcomonicimpactsofCanadianoilandgassupplyinCanadaandtheUS(2017-2027).RetrievedfromCanadianEnergyResearchInstituteWebSite:

http://resources.ceri.ca/PDF/Pubs/Studies/Study_166_Full_Report.pdf

Chevron.(2017).Automationensuringsafeandreliableoperations.Retrievedfrom

ChevronWebSite:https://www.chevron.com/technology/managing-our-assets

Choudhry,H.,Mohammad,A.,Tan,K.T.,&Ward,R.(2016).Thenextfrontierfordigitaltechnologiesinoilandgas.RetrievedfromMcKinsey&CompanyWebSite:

http://www.mckinsey.com/industries/oil-and-gas/our-insights/the-next-frontier-for-

digital-technologies-in-oil-and-gas

Chrisafis,A.,&Vaughan,A.(2017).Francetobansalesofpetrolanddieselcarsby2040.RetrievedfromTheGuardianWebSite:

https://www.theguardian.com/business/2017/jul/06/france-ban-petrol-diesel-cars-

2040-emmanuel-macron-volvo

54

CIOPI.(2006).CentreforIntegratedOperationsinthePetroleumIndustry.RetrievedfromIOCenterWebSite:http://www.iocenter.no

CMIC.(2017b).CLEER:Poweringcleangrowththroughmininginnovation.RetrievedfromCanadaMiningInnovationCouncilWebSite:http://cmic-ccim.org/powering-clean-

growth-mining-innovation/

CMIC.(2017a).Hackmining.RetrievedfromCanadianMiningInnovationCouncilWeb

Site:http://hackmining.cmic-ccim.org

Condliffe,J.(2016).Humanswillbullymild-manneredautonomouscars.Retrievedfrom

MITTechnologyReviewWebSite:

https://www.technologyreview.com/s/602786/humans-will-bully-mild-mannered-

autonomous-cars/

Constas,J.(2017).Thesecondwaveofinnovationintheoilpatch.RetrievedfromOil&

GasFinancialJournal:http://www.ogfj.com/articles/print/volume-14/issue-

3/features/exciting-times-in-oilfield-technology.html

Cook,L.,&Cherney,E.(2017).Getreadyforpeakoildemand.RetrievedfromWall

StreetJournalWebSite:https://www.wsj.com/articles/get-ready-for-peak-oil-demand-

1495419061

Cosbey,A.,Mann,H.,Maennling,N.,Toledano,P.,Geipel,J.,&Brauch,M.D.(2016).

Miningamirage?RetrievedfromInternationalInstituteforSustainableDevelopment

WebSite:https://www.iisd.org/sites/default/files/publications/mining-a-mirage.pdf

DARPA.(2014).TheDARPAgrandchallenge:Tenyearslater.RetrievedfromDefence

AdvancedResearchProjectsAgency(DARPA)WebSite:https://www.darpa.mil/news-

events/2014-03-13

Davies,A.(2017).DetroitisstompingSiliconValleyintheself-drivingcarrace.RetrievedfromWiredWebSite:https://www.wired.com/2017/04/detroit-stomping-silicon-valley-

self-driving-car-race/

Davis,R.(2017).Robotsandrecruitment:Theimpactofautomationonminingjobs.Retrievedfrommining-technology.comWebSite:http://www.mining-

technology.com/features/featurerobots-and-recruitment-the-impact-of-automation-on-

mining-jobs-5864897/

Deloitte.(2017).Trackingthetrendsfor2017.RetrievedfromDeloitteWebSite:

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-

Resources/gx-er-tracking-the-trends-2017.pdf

55

DNVGL.(2017).Thegasvaluechain:Anenergysourceforthefuture.Retrievedfrom

DNVGLWebSite:https://www.dnvgl.com/oilgas/natural-gas/gas-energy-of-the-

future.html

DOE.(2016).Cadmium-telluriumsolarcells:Formulaoptimized.RetrievedfromScience

DailyWebSite:https://www.sciencedaily.com/releases/2016/08/160803151207.htm

Draupner.(2017).DraupnerEnergy:Aboutus.RetrievedfromDraupnerEnergyWeb

Site:http://draupnerenergy.com

Durrant-Whyte,H.,Geraghty,R.,Pujol,F.,&Sellschop,R.(2015).Howdigitialinnovationcanimproveminingproductivity.RetrievedfromMcKinsey&CompanyWebSite:

http://www.mckinsey.com/industries/metals-and-mining/our-insights/how-digital-

innovation-can-improve-mining-productivity

EIA.(2017).Crudeoilandpetroleumproductsexplained:Useofoil.RetrievedfromU.S.

EnergyInformationAdministration:

https://www.eia.gov/energyexplained/index.cfm?page=oil_use

Endress,A.(2017a).ExxonMobil’sHalsey:Oilpatch’sdigitaltransformationwillbecomparabletohorizontaldrilling’stechrevolution.RetrievedfromWorldOilWebSite:

http://www.worldoil.com/blog/2017/05/15/exxon-mobil-s-halsey-oil-patch-s-digital-

transformation-will-be-comparable-to-horizontal-drilling-s-tech-revolution

Endress,A.(2017b).Oilandgasindustrylagsnewtrendofchiefdigitalofficers.RetrievedfromWorldOilWebSite:http://www.worldoil.com/blog/2017/06/27/oil-and-

gas-industry-lags-new-trend-of-chief-digital-officers

ERCB.(2012).RegulatingunconventionaloilandgasinAlberta:Adiscussionpaper.RetrievedfromAlbertaEnergyRegulatorWebSite:

http://www.aer.ca/documents/projects/URF/URF_DiscussionPaper_20121217.pdf

ExxonMobil.(2016).Acollaborationincuriosity:ExxonMobilandMITexploretheoceans.RetrievedfromExxonMobilWebSite:

https://energyfactor.exxonmobil.com/news/mit-collaboration/

ExxonMobil.(2017).Outlookforenergy:Journeyto2040.RetrievedfromExxonMobil

WebSite:http://corporate.exxonmobil.com/en/energy/energy-outlook/highlights/

EY.(2015a).Alberta'soilandgassectorregulatoryparadigmshift:Challengesandopportunities.RetrievedfromEYWebSite:

http://www.ey.com/Publication/vwLUAssets/EY-Alberta-oil-gas-regulatory-paradigm-

shift/$FILE/EY-Alberta-oil-gas-regulatory-paradigm-shift.pdf

56

EY.(2015b).Drivingoperationalperformanceinoilandgas.RetrievedfromEYWebSite:

http://www.ey.com/gl/en/industries/oil---gas/ey-driving-operational-performance-in-

oil-and-gas-1-low-oil-price-highlights-the-need-for-operational-excellence

EY.(2017b).Productivityinmining:Nowcomesthehardpart.RetrievedfromEYWeb

Site:http://www.ey.com/Publication/vwLUAssets/EY-productivity-in-mining-now-

comes-the-hard-part/$FILE/EY-productivity-in-mining-now-comes-the-hard-part.pdf

EY.(2017a).Thedigitaldisconnect:Problemorpathway.RetrievedfromEYWebSite:

http://www.ey.com/Publication/vwLUAssets/EY-the-digital-disconnect-problem-or-

pathway/$FILE/EY-digital-disconnect-in-mining-and-metals.pdf

EY.(2016).Whyit'stimetoinvestindigitaloil.RetrievedfromEYWebSite:

http://www.ey.com/us/en/industries/oil---gas/ey-why-the-time-is-right-for-digital-oil-

companies

Farah,A.(2016).Cost-cuttingnotenoughtohitIOCgrowthtarget.RetrievedfromOil&

GasJournalWebSite:http://www.ogj.com/articles/print/volume-114/issue-8/drilling-

and-processing/cost-cutting-not-enough-to-hit-ioc-growth-target.html

Fattoch,B.(2016).Adjustmentintheoilmarket:Structural,cyclicalorboth?RetrievedfromOxfordInstituteforEnergyStudiesWebSite:

https://www.oxfordenergy.org/wpcms/wp-content/uploads/2016/05/Adjustment-in-

the-Oil-Market-Structural-Cyclical-or-Both.pdf

Ford,J.,Steen,J.,&Verreynne,M.-L.(2014).HowenvironmentalregulationsaffectinnovationintheAustralianoilandgasindustry:goingbeyondthePorterHypothesis.RetrievedfromJournalofCleanerProduction(Elsevier)WebSite:

https://doi.org/10.1016/j.jclepro.2013.12.062

FP.(2015).Canadianmineroffers$1milliontoanyonewhocanstrikegoldinsixterabytesofdata.RetrievedfromFinancialPostWebSite:

http://business.financialpost.com/commodities/mining/canadian-miner-offers-1-

million-to-anyone-who-can-strike-gold-in-six-terabytes-of-data

Geissbauer,R.,Vedso,J.,&Schrauf,S.(2016).Industry4.0:Buildingthedigitialenterprise.RetrievedfromPricewaterhouseCoopersWebSite:

https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-

building-your-digital-enterprise-april-2016.pdf

Gershgom,D.(2016).Self-driving416-tontrucksarehaulingrawmaterialsaroundAustralia.RetrievedfromQuartzWebSite:https://qz.com/874589/rio-tinto-is-using-

self-driving-416-ton-trucks-to-haul-raw-materials-around-australia/

GE-Statoil.(2015).GEANDStatoilcollaborationannounceswinnersofinauguralopeninnovationchallenge.RetrievedfromGeneralElectricWebSite:

57

http://www.genewsroom.com/press-releases/ge-and-statoil-collaboration-announces-

winners-inaugural-open-innovation-challenge

GlobalEconomics.(2001).Mininginnovation:AnoverviewofCanada'sdynamic,technologicallyadvancedminingindustry.RetrievedfromGlobalEconomicsLimited

WebSite:http://global-economics.ca/mining_innovation.pdf

Gonzalez,C.(2016).Advancedroboticsystems:Themanufacturinglaborforceoftomorrow.RetrievedfromMachineDesignWebSite:

http://www.machinedesign.com/robotics/advanced-robotic-systems-manufacturing-

labor-force-tomorrow

Gosine,R.,Dusseault,M.,Gagnon,G.,Keough,K.,&Locke,W.(2016).Unconventionalopportunitesandchallenges:ResultsofthepublicreviewoftheimplicationsofhydraulicfracturingoperationsinWesternNewfoundland.RetrievedfromNewfoundlandand

LabradorHydraulicFracturingReviewPanelWebSite:http://nlhfrp.ca

Grant,T.(2015,July26).Driverlesstruckscouldmean'gameover'forthousandsofjobs.RetrievedfromGlobeandMailWebSite:https://beta.theglobeandmail.com/report-on-

business/autonomous-trucks-could-transform-labour-market-eliminate-driver-

jobs/article25715184/?ref=http://www.theglobeandmail.com&

Guillen,M.(2017).Fivewaystechnologywillchangethemining,oilandgasindustries.RetrievedfromWorldEconomicForumWebSite:

https://www.weforum.org/agenda/2017/05/five-ways-in-which-technology-will-

change-the-extractive-industries/

HackingHealth.(2017).HackingHealth.RetrievedfromHackingHealthWebSite:

http://hacking-health.org

Hall,H.(2017).ExploringinnovationinNorthernCanadawithinsightsfromthemininginnovationsysteminGreaterSudbury,Ontario.RetrievedfromTheNorthernReview

WebSite:http://journals.sfu.ca/nr/index.php/nr/article/view/660/674

Hebron.(2008).Hebronbenefitsagreement.RetrievedfromHebronProjectWebSite:

http://www.hebronproject.com/docs/benefits/finalexecutedbenefits.pdf

HMDC.(2017).HiberniaManagementandDevelopmentCompanyLtd.Canada–NewfoundlandandLabradorBenefitsReportApril1st–June30th,2017.Retrievedfrom

HiberniaManagementandDevelopmentCompanyWebSite:

http://www.hibernia.ca/Q2Benefits2017.pdf

Hollinger,P.(2016).Meetthecobots:Humansandrobotstogetheronthefactoryfloor.RetrievedfromFinancialTimesWebSite:https://www.ft.com/content/6d5d609e-02e2-

11e6-af1d-c47326021344

58

Husky.(2017).HuskyEnergy-Operations/Atlantic.RetrievedfromHuskyEnergyWeb

Site:http://www.huskyenergy.ca/operations/atlantic.asp

IBARN.(2006).Impactsandbenefitsagreements:Background.RetrievedfromIBA

ResearchNetworkWebSite:http://www.impactandbenefit.com

IBM.(2016).Trustintrade:Towardstrongsupplychains.RetrievedfromIBMInstitute

forBusinessValueWebSite:

https://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03771usen/GBE03771USEN.P

DF

ICICS.(2010).ICICS-incubatedstart-upcompanyaninternationalsuccess.Retrievedfrom

UBCLibraryWebSite:

https://open.library.ubc.ca/media/download/pdf/focus/1.0115147/0

ideaconnection.(2009).Openinnovation:Goldcorpchallenge.Retrievedfrom

ideaconnectionWebSite:https://www.ideaconnection.com/open-innovation-

success/Open-Innovation-Goldcorp-Challenge-00031.html

IFR.(2017).Theimpactofroboticsonproductivity,employmentandjobs.RetrievedfromInternationalFederationofRoboticsWebSite:

https://ifr.org/img/office/IFR_The_Impact_of_Robots_on_Employment.pdf

IFR.(2016).US-Industry:135,000newrobotsbringjobsbackhome.Retrievedfrom

InternationalFederationofRoboticsWebSite:https://ifr.org/ifr-press-

releases/news/us-industry-135000-new-robots-bring-jobs-back-home

Inco.(1998).Startingtheprocesstocompleteremotemining(unpublishedreport).IncoLimitedandpartners.

InfoMine.(2017).Commodityandmetalsprices.RetrievedfromInvestmentMineWeb

Site:http://www.infomine.com/investment/metal-prices/

ISA.(2017).InternationalSeabedAuthority.RetrievedfromInternationalSeabed

AuthorityWebSite:https://www.isa.org.jm

ISI.(2017).Innovationsuperclustersinitiative(ISI):Programguide.Retrievedfrom

GovernmentofCanadaWebSite:

https://www.ic.gc.ca/eic/site/093.nsf/eng/00003.html#toc-01.01

Ivey.(2016).EnergyinCanada:Astatisticaloverview.RetrievedfromIveyBusiness

SchoolWebSite:https://www.ivey.uwo.ca/cmsmedia/2110828/energy-in-canada-a-

statistical-overview.pdf

Jacquand,R.(2017).Usandthem.RetrievedfromMiningMagazingWebSite:

http://www.miningmagazine.com/opinion/industry-comment/us-and-them/

59

Jamasmie,C.(2017).Coppertobethebestperformingcommodityof2017-analysts.RetrievedfromMining.comWebSite:http://www.mining.com/copper-best-performing-

commodity-2017-analysts/

Jarvis,C.(2016).Innovationisasocialprocess-whichmeanscollaborationiskey.RetrievedfromVirginWebSite:https://www.virgin.com/entrepreneur/innovation-

social-process-which-means-collaboration-key

Jensen,S.(2016).Thegrowingpotentialforfullyautonomousmines.Retrievedfrom

OEMOff-HighwayWebSite:http://www.oemoffhighway.com/electronics/smart-

systems/automated-systems/article/12243110/autonomous-mining-equipment

Kielland,N.(2015).SupportingAboriginalparticipationinresourcedevelopment:Theroleofimpactandbenefitsagreements.RetrievedfromLibraryofParliamentWebSite:

https://lop.parl.ca/content/lop/ResearchPublications/2015-29-e.pdf

Kline,C.(2017).Digitaltransformationinoil&gas:Transformingtheexperience.RetrievedfromPennEnergyWebSite:

http://www.pennenergy.com/articles/pennenergy/2017/04/digital-transformation-in-

oil-gas-transforming-the-experience.html

Koeppen,M.,Shrier,D.,&Bazilian,M.(2017).Isblockchain'sfutureinoilandgastransformativeortransient?RetrievedfromDeloitteWebSite:

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-

Resources/gx-blockchain-report.PDF

Koven,P.(2014).Inrisk-averseminingsector,innovationbeginswithtakingtheguessworkoutofsortingrock.RetrievedfromFinancialPostWebSite:

http://business.financialpost.com/executive/smart-shift/in-risk-averse-mining-sector-

innovation-begins-with-taking-the-guesswork-out-of-sorting-rock

Latimer,C.(2015).Riocallsforfocusonsociallicencetooperate.Retrievedfrom

AustralianMiningWebSite:https://www.australianmining.com.au/news/rio-calls-for-

focus-on-social-licence-to-operate/

Leber,J.(2012).Bigoilgoesminingforbigdata.RetrievedfromMITTechnologyReview

WebSite:https://www.technologyreview.com/s/427876/big-oil-goes-mining-for-big-

data/

Lindeman,T.(2015).HackingHealthdriveshealthcareintothe21stcenturywithnewaccelerator.RetrievedfromMontrealGazetteWebSite:

http://montrealgazette.com/business/hacking-health-drives-healthcare-into-21st-

century-with-new-accelerator

60

LR.(2015a).Fiveissuesaffectingtheoilandgassector:Failureorinabilitytoadopttechnology.RetrievedfromLloyd'sRegisterWebSite:http://www.lr.org/en/news-and-

insight/articles/failure-or-inability-to-adopt-technology.aspx

LR.(2015b).Fiveissuesaffectingtheoilandgassector:Regulationandlegislation.RetrievedfromLloyd'sRegisterWebSite:http://www.lr.org/en/news-and-

insight/articles/regulation-and-legislation-issues.aspx

LRF.(2014).Foresightreviewofbigdata.RetrievedfromLloyd'sRegisterFoundation

WebSite:http://www.lrfoundation.org.uk/publications/bigdata.aspx

LRF.(2016).Foresightreviewofroboticsandautonomoussystems:Servingasaferworld.RetrievedfromLloyd'sRegisterFoundationWebSite:

http://www.lrfoundation.org.uk/news/2016/foresight-review-of-robotics-and-

autonomous-systems.aspx

MAC.(2016).F&F2016-FactsandfiguresoftheCanadianminingindustry.RetrievedfromMiningAssociationofCanadaWebSite:

http://mining.ca/sites/default/files/documents/Facts-and-Figures-2016.pdf

Macrotrends.(2017).Brentcrudeoilprices-70yearhistoricalchart.Retrievedfrom

MacrotrendsWebSite:http://www.macrotrends.net/2480/brent-crude-oil-prices-10-

year-daily-chart

Mann,H.,&Cosbey,A.(2016).Asminesbecomemoreautomated,whathappenstothesociallicencetooperate?RetrievedfromInternationalInstituteforSustainable

DevelopmentWebSite:https://www.iisd.org/blog/mines-become-more-automated-

what-happens-social-licence-operate

Manyika,J.,Chui,M.,Bughin,J.,Dobbs,R.,Bisson,P.,&Marrs,A.(2013).Disruptivetechnologies:Advancesthatwilltransformlife,businessandtheglobaleconomy.RetrievedfromMcKinsey&CompanyWebSite:http://www.mckinsey.com/business-

functions/digital-mckinsey/our-insights/disruptive-technologies

Manyika,J.,Chui,M.,Miremadi,M.,Bughin,J.,George,K.,Willmott,P.,etal.(2017).Afuturethatworks:Automation,employment,andproductivity.RetrievedfromMcKinsey

&CompanyWebSite:http://www.mckinsey.com/global-themes/digital-

disruption/harnessing-automation-for-a-future-that-works

Marshall,A.(2017a).AsUberflails,itsself-drivingtechrollson.RetrievedfromWired

WebSite:https://www.wired.com/story/uber-crisis-self-driving-pittsburgh/

Marshall,A.(2017b).Volvo'selectriccarplanisn'tasboldorcrazyasitseems.RetrievedfromWiredWebSite:https://www.wired.com/story/volvos-electric-car-plan/

61

Marshall,J.,Bonchis,A.,Nebot,E.,&Scheding,S.(2016).RoboticsinMining.InSpringerHandbookofRobotics.DOI:10.1007/978-3-319-32552-1_59.

Matsumoto,A.(2015).Whatisaffectingmetalsprices?RetrievedfromWorldEconomic

ForumWebSite:https://www.weforum.org/agenda/2015/09/what-is-affecting-metals-

prices/

Maxwell,J.(2003).Innovationisasocialprocess.RetrievedfromStatisticsCanadaWeb

Site:http://www.statcan.gc.ca/pub/88f0006x/88f0006x2003006-eng.pdf

May,M.(2012).Therulesofsuccessfulskunkworksprojects.RetrievedfromFast

CompanyWebSite:https://www.fastcompany.com/3001702/rules-successful-skunk-

works-projects

McKinsey.(2013).OpportunitiesforCanadianenergytechnologiesinglobalmarkets.RetrievedfromNaturalResourcesCanadaWebSite:

https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/files/pdf/2013/McK-

Report-eng.pdf

McNab,K.,Onate,B.,Brereton,D.,Horberry,T.,Lynas,D.,&Franks,D.(2013).Exploringthesocialdimensionsofautonomousandremoteoperationmining:Applyingsociallicenceindesign.RetrievedfromTheUniversityofQueenslandSustainableMinerals

InstituteWebSite:https://www.csrm.uq.edu.au/publications/exploring-the-social-

dimensions-of-autonomous-and-remote-operation-mining-applying-social-license-in-

design

MiningGlobal.(2014).PenguinASItakesminingautomationtothenextlevel.RetrievedfromMiningGlobalWebSite:http://www.miningglobal.com/technology/penguin-asi-

takes-mining-automation-next-level

MMI.(2017).MotionMetricsInternationalCorporation.RetrievedfromMotionMetrics

International(MMI)WebSite:http://www.motionmetrics.com/about/

MNP.(2011).Regulatorybarrieridentificationandanalysis-Greenmining.RetrievedfromNaturalResourcesCanadaWebSite:

http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/mineralsmetals/files/pdf/pub-

pub/reg-reg-eng.pdf

Moren,D.(2017).Apple'sdrivetowardanautonomouscar.RetrievedfromMacworld

WebSite:https://www.macworld.com/article/3201051/car-tech/apples-drive-towards-

an-autonomous-car.html

Musk,E.(2013).Hyperloopalpha.RetrievedfromSpaceXWebSite:

http://www.spacex.com/sites/spacex/files/hyperloop_alpha.pdf

62

NASA.(2017).NASA'sroboticminingcompetition.RetrievedfromKennedySpaceCenter

WebSite:https://www.kennedyspacecenter.com/events/events-

calendar/2017/may/event-nasas-robotic-mining-competition

NewScientist.(1975).Exxonsinksitsoilproduction(NewScientist,February6,1975).RetrievedfromGoogleBooksWebSite:

https://books.google.ca/books?id=pnV6UYEkU4YC&pg=PA317&lpg=PA317&dq=remote

+drilling+exxon&source=bl&ots=m5rB5nZzIS&sig=yLVht6XjU7X1H1mqHbzInSQHQkE&hl

=en&sa=X&ved=0ahUKEwjWh_mn6ITWAhWLz4MKHVq7BlsQ6AEIYTAJ#v=onepage&q&f

=false

NRCan.(2017a).10keyfactsonCanada'snaturalresources.RetrievedfromNatural

ResourcesCanadaWebSite:

https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/files/pdf/10_key_facts_nrcan_20

17_en.pdf

NRCan.(2017b).Canadianmineralproduction:Informationbulletin,March2017.RetrievedfromNaturalResourcesCanadaWebSite:http://www.nrcan.gc.ca/mining-

materials/publications/17722#table1

NRCan.(2017c).Energysourcesanddistribution.RetrievedfromNaturalResources

CanadaWebSite:http://www.nrcan.gc.ca/energy/energy-sources-distribution

NRCan.(2017d).Frontierandoffshoreregulatorrenewalinitiative.Retrievedfrom

NaturalResourcesCanadaWebSite:http://www.nrcan.gc.ca/energy/crude-

petroleum/17729

NRCan.(2013).Literaturereviewtoassesstherelevanceofoutcome-basedregulationstoinnovation.RetrievedfromNaturalResourcesCanadaWebSite:

http://www.nrcan.gc.ca/mining-materials/publications/11732#e0

NRCan.(2016).Rareearthelements(REE)andchromite.RetrievedfromNatural

ReseourcesCanadaWebSite:http://www.nrcan.gc.ca/mining-materials/green-

mining/18274

NRCan.(1996).ThemineralsandmetalspolicyoftheGovernmentofCanada.RetrievedfromNaturalResourcesCanadaWebSite:

http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/mineralsmetals/pdf/mms-

smm/poli-poli/pdf/mmp-eng.pdf

NTNU.(2017).NTNUoceanspilotondeepseamining.RetrievedfromNTNUWebSite:

https://www.ntnu.edu/oceans/deep-sea-

mining#Environmental%20aspects%20of%20deep%20sea%20mining

OGA.(2016).Hackathonidentifiesmorethan60ideastotransformwellconstructiononUKCS.RetrievedfromUKOilandGasAuthorityWebSite:

63

https://www.ogauthority.co.uk/news-publications/news/2016/hackathon-identifies-

more-than-60-ideas-to-transform-well-construction-on-ukcs/

Perrons,R.(2010).PerdidotiestogetherShelldigitaloilfieldtechnologies.RetrievedfromWorldOilWebSite:http://www.worldoil.com/magazine/2010/may-

2010/features/perdido-ties-together-shell-digital-oilfield-technologies

Phillips,P.,&Wixted,B.(2017).DifferentialadoptionofdigitaltechnologyintheCanadianagricultureandminingsectors.RetrievedfromMunkSchoolofGlobalAffairs

WebSite:http://munkschool.utoronto.ca/ipl/files/2017/05/PhillipsP-Sess5-Day3-

Presentation.pdf

PRNL.(2017).Integratedoperations.RetrievedfromPetroleumResearchNewfoundland

andLabradorWebSite:http://petroleumresearch.ca/index.php?id=176

PwC.(2016a).Notyourfather'soilandgasbusiness:Reshapingthefuturewithupstreamdigitization.RetrievedfromPricewaterhouseCooperWebSite:

https://www.strategyand.pwc.com/media/file/Not-your-fathers-oil-and-gas-

business.pdf

PwC.(2016b).Unrealizedpotentialofdigital.RetrievedfromPricewaterhouseCooper

(PwC)WebSite:https://www.pwc.com/us/en/energy-mining/publications/assets/pwc-

unrealized-potential-of-digital.pdf

Rapier,R.(2017).Peakoilandpeakdemandhaveentirelydifferentoutcomes.RetrievedfromForbesWebSite:https://www.forbes.com/sites/rrapier/2017/08/15/peak-oil-

and-peak-demand-have-entirely-different-outcomes/#a7d75bf74f01

Ratzesberger,O.(2015).HackingIoT:Fast-trackingtransformationalIoTsolutions.RetrievedfromTeradataWebSite:http://bigdata.teradata.com/US/Articles-

News/Hacking-IoT--Fast-Tracking-Transformational-IoT-Solutions/

ResearchInfosource.(2017).AquacultureandenergyfirmsteamuptobidforoceanssuperclusterinAtlanticCanada.RetrievedfromResearchInfosourceWebSite:

https://researchmoneyinc.com

ResearchInfosource.(2010).Canada'stop100corporateR&Dspenders2010.RetrievedfromResearchInfosourceWebSite:https://researchinfosource.com/pdf/2010-top100-

sup.pdf

ResearchInfosource.(2017a).Canada'stop100corporateR&Dspenderslist2016.RetrievedfromResearchInfosourceWebSite:

https://researchinfosource.com/top100_corp.php

64

RIA.(2017).Robotsintheoilandgasindustry.RetrievedfromRoboticIndustry

AssociationWebSite:https://www.robotics.org/blog-article.cfm/Robots-in-the-Oil-and-

Gas-Industry/40

Roscoe,A.(2015).Thedigitalfutureofcorporateresponsibility.RetrievedfromStanford

SocialInnovationReviewWebSite:

https://ssir.org/articles/entry/the_digital_future_of_corporate_responsibility

Sandvik.(2017).Equipmentautomationandteleoperationsystems.Retrievedfrom

SandvikWebSite:https://mining.sandvik.com/en/products/equipment/mine-

automation-systems/equipment-automation

Sanyal,D.(2012).Obtainingasociallicencetooperate–Achallengefortheindustry.RetrievedfromBritishPetroleumWebSite:

http://www.bp.com/en/global/corporate/media/speeches/obtaining-social-license-to-

operate.html

Schlumberger.(2016).Schlumbergerroboticsservices.RetrievedfromSchlumberger

WebSite:http://www.slb.com/services/additional/robotics-services.aspx

Schwab,K.(2016).Thefourthindustrialrevolution:Whatitmeans,howtorespond.RetrievedfromWorldEconomicForumWebSite:

https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-

means-and-how-to-respond/

Shell.(2017a).Digitialinnovaton.RetrievedfromShellWebSite:

http://www.shell.com/energy-and-innovation/overcoming-technology-

challenges/digital-innovation.html

Shell.(2017b).Unlockingoilandgas.RetrievedfromShellWebSite:

http://www.shell.com/energy-and-innovation/overcoming-technology-

challenges/unlocking-oil-and-gas.html

Shukman,D.(2017).Renewables'deep-seaminingconundrum.RetrievedfromBBCWeb

Site:http://www.bbc.com/news/science-environment-39347620

Simonite,T.(2016).Mining24hoursadaywithrobots.RetrievedfromMITTechnology

ReviewMagazineWebSite:https://www.technologyreview.com/s/603170/mining-24-

hours-a-day-with-robots/

Sloman,C.,Holsman,R.,&Cantrell,S.(2014).Thefutureofworkintheoilandgasindustry.RetrievedfromAccentureWebSite:

https://www.accenture.com/t20150523T022425__w__/us-

en/_acnmedia/Accenture/Conversion-

Assets/DotCom/Documents/Global/PDF/Dualpub_1/Accenture-Digitizing-Energy-

Future-Work-Oil-Gas-Industry.pdf

65

Smith,K.,Dietrichs,E.,&Nas,S.O.(2015).TheNorwegianNationalInnovationSystem:Apreliminaryoverviewandassessment.RetrievedfromOrganizationforEconomicCo-

operationandDevelopmentWebSite:http://www.oecd.org/sti/inno/2373824.pdf

SpaceX.(2017).2018SpaceXhyperlooppodcompetition.RetrievedfromSpaceXWeb

Site:http://www.spacex.com/sites/spacex/files/2018_hyperloop_competition_rules.pdf

StatisticsCanada.(2017a).Grossdomesticproductatbasicprices,byindustry(monthly).RetrievedfromStatisticsCanadaWebSite:http://www.statcan.gc.ca/tables-

tableaux/sum-som/l01/cst01/gdps04a-eng.htm

StatisticsCanada.(2017b).Labourforcesurveyestimates(LFS),byNorthAmericanIndustryClassificationSystem(NAICS),sexandagegroup.RetrievedfromStatistics

CanadaWebSite:

http://www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=2820008&&patter

n=&stByVal=1&p1=1&p2=-1&tabMode=dataTable&csid=

Statoil.(2017a).Digitalisationdrivingvaluecreation.RetrievedfromStatoilWebSite:

https://www.statoil.com/en/news/digitalisation-driving-value-creation.html

Statoil.(2017c).Statoilinnovate.RetrievedfromStatoilWebSite:

https://www.statoil.com/en/how-and-why/innovate.html

Statoil.(2017b).Wherearewe-Canada.RetrievedfromStatoilWebSite:

https://www.statoil.com/en/where-we-are/canada.html

Statoil-GE.(2016).GEandStatoilannouncewinnersofopeninnovationchallenge.RetrievedfromStatoilWebSite:https://www.statoil.com/en/news/winners-innovation-

challenge.html

Steen,J.,Macaulay,S.,Kunz,N.,&Jackson,J.(2017).Understandingtheinnovation

ecosysteminminingandwhatthedigitalrevolutionmeansforit.InExtractingInnovations:Mining,Energy,andTechnologicalChangeintheDigitalAge(toappear).

Sussex.(2017).Automationanxiety.RetrievedfromAutomationAnxietyAHRCNetwork

WebSite:http://blogs.sussex.ac.uk/automationanxiety/

Tertzakian,P.(2017b).Commentary-HowEVsjolttheoilbusiness.RetrievedfromARC

EnergyResearchInstituteWebSite:https://www.arcenergyinstitute.com/commentary-

how-evs-jolt-the-oil-business/

Tertzakian,P.(2017a).Commentary–Whybantheengine?RetrievedfromARCEnergy

ResearchInstituteWebSite:https://www.arcenergyinstitute.com/commentary-why-

ban-the-engine/

66

Tesla.(2016).AllTeslacarsbeingproducednowhavefullself-drivinghardware.RetrievedfromTeslaWebSite:https://www.tesla.com/en_CA/blog/all-tesla-cars-being-

produced-now-have-full-self-driving-hardware

TheScientist.(1987).Canadianconsortiumformed(Novemeber1987issue).RetrievedfromTheScientistWebSite:http://www.the-

scientist.com/?articles.view/articleNo/9078/title/Canadian-Consortium-Formed/

Ticoll,D.(2017).Jobsimpactofautomation:Biggerthanthethoughtleaderssayitis.RetrievedfromMunkSchoolofGlobalAffairsWebSite:

http://munkschool.utoronto.ca/ipl/files/2017/05/Ticoll-Sess3-Day2-Presentation1-1-

1.pdf

Tischler,L.(2002).Hestruckgoldonthenet(really).RetrievedfromFastCompanyWeb

Site:https://www.fastcompany.com/44917/he-struck-gold-net-really

Tobe,F.(2015).Whyco-botswillbeahugeinnovationandgrowthdriverforroboticsindustry.RetrievedfromIEEESpectrumWebSite:

https://spectrum.ieee.org/automaton/robotics/industrial-robots/collaborative-robots-

innovation-growth-driver

Topf,A.(2016).Canadianoilsandsgianttestingautonomoushaultrucks.RetrievedfromMining.comWebSite:http://www.mining.com/canadian-oil-sands-giant-testing-

autonomous-haul-trucks/

Torres,N.(2016).ThePetrobotproject:Chevronfieldteststankinspectionrobots.RetrievedfromPetroGlobalNewsWebSite:

https://petroglobalnews.com/2016/09/the-petrobot-project-chevron-field-tests-tank-

inspection-robots/

UK.(2017).PlanforroadsideNO2concentrationpublished.RetrievedfromGovernment

ofUnitedKingdomWebSite:https://www.gov.uk/government/news/plan-for-roadside-

no2-concentrations-published

Unearthed.(2017).Vancouver2017.RetrievedfromUnearthedSolutionsWebSite:

https://unearthed.solutions/hackathons/unearthed-vancouver-2017/

Vale.(2017).Impactsandbenefitsagreements.RetrievedfromValeWebSite:

http://www.vale.com/canada/EN/business/mining/nickel/vale-canada/voiseys-

bay/Pages/Impacts-and-Benefits-Agreements.aspx

Vella,H.(2016).Canfully-automateddrillingtechnologyfinallywinovertheoffshoreoilindustry?Retrievedfromoffshore-technologyWebSite:http://www.offshore-

technology.com/features/featurecan-fully-automated-drilling-technology-finally-win-

over-the-offshore-oil-industry-4912630/

67

Vella,H.(2017).Ultra-deepmining-Overcomingchallengeswithindustrycollaboration.Retrievedfrommining-technology.comWebSite:http://www.mining-

technology.com/features/featureultra-deep-mining-overcoming-challenges-with-

industry-collaboration-4210176/

Ward,R.(2016).Abillion-dollardigitialopportunityforoilcompanies.Retrievedfrom

McKinsey&CompanyWebSite:http://www.mckinsey.com/industries/oil-and-gas/our-

insights/a-billion-dollar-digital-opportunity-for-oil-companies

Watkins,C.(2017).Caterpillarofferssteppingstonestofullautomation.Retrievedfrom

CanadianMiningJournalWebSite:

http://www.canadianminingjournal.com/features/caterpillar-offers-stepping-stones-

full-automation/

Werniuk,J.(2001).Stayingontopofundergroundmining.RetrievedfromCanadian

MiningJournalWebSite:http://www.canadianminingjournal.com/features/staying-on-

top-of-underground-mining/

WorldAtlas.(2017).Deepestminesintheworld.RetrievedfromWorldAtlasWebSite:

http://www.worldatlas.com/articles/the-deepest-mines-in-the-world.html

Yeates,G.(2017).Theminingindustrydisrupted.RetrievedfromTheAUSImmBulletin

WebSite:https://www.ausimmbulletin.com/feature/mining-industry-disrupted/