Digital Signal Processing in multimedia · Digital Signal Processing, Department of Electrical and...

26
Digital Signal Processing, Department of Electrical and Information Technology LTH, Lund University Digital Signal Processing in multimedia ETI265 2012 Problems and solutions Problems from Digital Signal Processing: Principles, Algorithms, and Applications. Problems and solutions John G. Proakis, Dimitris G. Manolakis

Transcript of Digital Signal Processing in multimedia · Digital Signal Processing, Department of Electrical and...

Digital Signal Processing, Department of Electrical and Information Technology LTH, Lund University

Digital Signal Processing in

multimedia

ETI265

2012

Problems and solutions

Problems from Digital Signal Processing: Principles,

Algorithms, and Applications. Problems and solutions

John G. Proakis, Dimitris G. Manolakis

Problems chapter 1

Problems chapter 2

Problems, chapter 3

Problems, chapter 4

Problems, chapter 5

Problems chapter 6

Extra problems A: A time continuous signal is given by iseconds)in(t)()( 10 tuetx t

a−=

a) Determine the Fourier transforms (F))aX and 2a |(F))| X

b) We want to sample the signal using the sampling frequency HzFs 100= . We first pre-filter the signal in an ideal low pass filter with cutoff frequency HzFF sc 502/ == . Determine how much of the signal energy that are cancelled by the pre-filter (anti-aliasing filter). c) The signal after the filter is sampled using the sampling frequency HzFs 100= . Determine the Fourier transform of the sampled signal. Determine also the Fourier transform of the sampled signal if no anti-aliasing filter is used. B: The system below is given. The input signal is )60002cos()10002cos()( tttx ππ += and the filter impulse response )8()()( −−= nununh . Sample rate is 8 kHz. Determine the output signal if the reconstruction is ideal.

C:

Problems, chapter 7

Problem chapter 9

Digital Signal Processing ETI265 2010, Solution to selected problems 1.2

a) 200,2001

201.0),

201.02cos()01.0cos( ==== pNfnn ππ

b) 7,71),

712cos()

10530cos( === pNfnn ππ

c) )alaising(,2,23),

232cos()3cos( === pNfnn ππ

d) cnonperiodifnn ,23),

232sin()3sin(

πππ ==

1.5

a, b) )612sin(3|)()( / ntxnx FsnTnta π== == 6,

612,

61

=== pNf πω

c) Np=6; d) Yes, Fs=200

2.1 a) ....},0,1,1,1,1,32,

31,0{...)(

↑=nx

b) folding ....},0,31,

32,1,1,1,1,0{...)(

↑=−nx

c) folding + delay ....},0,31,

32,1,1,1,1,0{...)4())4((

↑=+−=−− nxnx

d) delay + folding ....}0,0,31,

32,1,1,1,10{...)4())4(

↑=−−=−− nxnx

e) )4()()1(32)2(

31)( −−++++= nununnnx δδ

2.2 a) )2( −nx b) )4( nx − c) )2( nx + d) )2()( nunx − e) )3()1( −− nnx δ ...}05.05.01111{...)(

↑=nx

a) ...}05.05.011110{..)2(↑

=−nx

b) ...}011115.05.00{...)4(↑

=− nx

c) ...}05.05.011110{...)2(↑

=+nx

d) ...}01111{...)2()(↑

=− nunx

e) ...}010000{...)3()1(↑

=−− nnx δ

2.16 a) )()()()()()()( nxkhknxkhknxkhnynnnnknn∑∑∑∑∑∑∑ =−=−=

b) 1 }4,6,7,7,7,3,1{)(;}1,1,1,1,1{)(}4,2,1{)(↑↑↑

=== nynhnx

,7)(,5)(,35)( === ∑∑∑ nxnhnynnn

2 }1,4,2,4,1{)(;)()(}1,2,1{)( −==−=↑

nynxnhnx

,2)(,2)(,4)( === ∑∑∑ nxnhnynnn

3 }2,5.2,0,2,5.1,5.0,5.0,0{)(; −−−−=ny

11 )()25.05.02()( nuny nn −⋅=

,2)(,3/4)(3/8)( === ∑∑∑ nxnhnynnn

2.17 a) }1,3,6,10,14,18,15,11,6{)(;}1,1,1,1,1{)(}1,2,3,4,5,6{)(

↑↑↑=== nynxnh

b) }1,3,6,10,14,81,15,11,6{)(↑

=ny

c) }1,,2,2,2,1{)(↑

=ny d) }1,,2,2,2,1{)(↑

=ny

2.21 a)

⎪⎩

⎪⎨

=+

≠−−

=−

−==

==−=−=

++

+−

=

=

∑∑∑

baifnb

baifabab

abab

abb

baknubkuaknxkhny

n

nnn

kn

k

n

knknn

k

knkn

kkk

)1(1

)(1)(

)()()()()(

11

1

11

1

0

0

b)

}1,2,3,3,0,0,1,1,1{)(

},1,1,0,0,1,1{)(}1,1,2,1{)(

↑↑

−=

−==

ny

nhnx

c)

}1,2,2,1,5,8,9,8,6,3,1{)(

},1,2,3,2,1{)(}1,0,1,1,1,1,1{)(

−−−=

=−=↑↑

ny

nhnx

2.35 a) [ ])()()()()( 4321 nhnhnhnhnh ⋅−⋅=

b) [ ])3(5.2)2(2)1(25.1)(5,0)( −+−+−+= nunnnnh δδδ c) }4,0,3,0,0,1{)( −=

↑nx ...}0,2,5,5.7,25.6,2,25.1,5.0{)(

↑=ny

2.62 a) }1,3,5,7,5,3,1{)(

↑=nryy

b) }1,3,5,7,5,3,1{)(↑

=nryy , same as in a)

3.1 a) 215 463)()( −−− −++==∑ zzzznxzX n

n

b)

21||

21132

1211

1)21)

21()

21()

21()

21(

)21()

21()()(

1

5

1

511

0

515151

5

1

55

>−

=

=−

==⋅=

====

−−∞

=

−−−−∞

=

−∞

=

−∞

=

∑∑

∑∑∑

zROCz

z

zzzzzz

zzznxzX

n

n

n

n

n

n

nn

n

n

n

3.2 a) ?)1()( =+=∑ znzXn

From 2.21a )()1()()()( nuannuanuanx nnn +=∗= If a=1: )()1()()()( nunnununx +=∗= Then: use convolution corresponds to multiplication in the z-plane

2111 )1(1

11

11)()()( −−− −

=−

⋅−

=⋅=zzz

zUzUzX

And 2

2

21 )1()1(1)(

−=

−= − z

zz

zX

00:

10)1(:

2,12

2,12

==>=

==>=−

zZZeros

pzPoles

f) See slides

h) ))10()21()

21()(()

21())10()(()

21()( 1010 −−=−−= − nununununx nnn

)21(

)21(

211

)21(1

211

1)21(

211

1)(

9

1010

1

1010

1

1010

1

−=

=−

−=

−−

−=

zz

z

z

z

zz

zzX

poles: 21;0;0

21;0 109,...1

9 ===−= ppzz

zeros: 9,...,2,1,0;)21(;0)

21( 210101010 =⋅==− kezz kj π

3.8 Given: a) )()( kxnyn

k∑−∞=

= b) )()1()( nunnx +=

Task: Determine a) Y(z), b) X(z)

Slution: a) )()()()()()( nunxknukxkxnyk

n

k∗=−== ∑∑

−∞=−∞=

)(1

1)()()( 1 zXz

zUzXzY −−==

b) )()1(1)()()()(0

nunknukununun

kk+==−=∗ ∑∑

=

21)1(1)()()()1()()( −−

=<==>+=∗z

zUzUnunnunu

21)1(1)()()1()( −−

=<==>+=z

zXnunnx

3.14 c) )7()6()(;11

)( 1

7

1

6

−+−=−

+−

= −

nununxz

zz

zzX

d)

21

11

2

11

2

2

2

2

)2/cos(21)2/sin(

1

11

1

11

1

11

21)( −−

−−

−−

+⋅−+=

++=

++=

++

=zz

zzz

zzz

zzzzX

ππ

)1()1(2/sin()()( −−+= nunnnx πδ 3.16a Task: Determine )()()( 11 nxnxny ∗=

a)

1111

111

1

5.012/1

13/1

25.013/1(

...)5.01

11

1(25.01

25.0)(

−−−−

−−−

−+

−+

−−

==−

+−−

=

zzzz

zzzzzY

)1(5.05.0)1(3/1)1(25.03/1)( 11 −⋅+−+−−= −− nunununy nn

c)

)()1(3/2)(5.03/1)(1

3/25.013/1

11

5.01211

5.011)( 1111

1

21

1

1

nununyzzzz

zzz

zz

zY

nn −+⋅=

++

−=

+−=

+++

−= −−−−

−−

3.35a Given: ,0,)3/cos()2/1()()3/1()( ≥== nnnxnh nn π Task: Determine y(n) Solution:

} } }

21

128/37/6

1

7/1

21

1

1

21

1

1

41

211)3/1(1

41

211

)4/11)3/1(1

1

41)3/cos(

2121

)3/cos(2/11)3/1(1

1)(

−−

−−−

−−

+−

++

−=

+−

−−

=+−

−−

=

zz

zCBz

A

zz

zz

zz

zz

zYπ

π

0)3/sin()21(

733)3/cos()

21(

76)

31(

71)(

41)3/cos(

2121

)3/sin(2/1)3/sin(2/1)8/1)3/cos(2/1()3/cos(2/11

)3/1(11

71

41

211

8/1176

)3/1(11

71)(

21

111

121

1

1

≥++=

+−

++−+

+−

=+−

++

−=

−−

−−−

−−−

nnnny

zz

zzz

zzz

zz

zY

nnn ππ

π

ππππ

3.40 Given: 11

1

1 3/111)(,

5.0125.0

5.011)( −−

− −=

−−

−=

zzY

zz

zzX

Task: Determine a) )()()(

zXzYzH = ,b) Diff. eq, c) Draw fig. d) Stable?

Solution: 11

11

1

3/112

25.013

3/111

25.011

5.011

)( −−

−−

−−

−=

−−

−=zz

zz

zzY

a) 0)3/1(2)4/1(3)( ≥−= nnh nn b) )1(5.0)()2(12/1)1(12/7)( −−=−+−− nxnxnynyny c) See Formula table. d) Stable because poles inside unit circle

3.49c: Given: 1)1(),()3/1()(),()1(5.0)( =−=+−= ynunxnxnyny n Task Determine y(n), Use One side z-transform Solution: )3/11/(1)(),()(5.0)( 11 −+−+ −=+= zzXzXzYzzY

)2/11(3

)3/11(2

5.015.0

)2/11()3/11(1

5.015.0)(

111

111

−−−

−−−+

−+

−−

−=

=−−

+−

=

zzz

zzzzY

)()3/1(2)()5.0(5.3)( nununy nn −=

4.8 Show that ⎩⎨⎧ ±±=

=∑−

= elsewhereNNkifN

e NknjN

n 0...2,,021

0

π

Solution: ⎩⎨⎧ ±±=

=−

−∑−

= elsewhereNNkifN

e

eeNknj

NNknj

NknjN

n 0...2,,0

1

12

221

0 π

ππ

4.9 a) }111111{)6()()(↑

=−−= nununx

2/565

0 )2/sin()3sin(

11)( ω

ω

ωω

ωωω j

j

jnj

ne

eeeX −

−−

=

=−−

==∑

b) ωω jn

eXnunx

5.011)(),(2)(

−=−=

c) ω

ωωj

jnn

eeXnununx

+−

−=+=+=

411

1256)();4()41()

41()4()

41()( 444

d) ωω

ω

ωωωω 20

00 )cos(21

)sin()(;1||),()sin()( jj

jn

eeaeaXanunanx −−

+−=<=

g) )2sin(4)sin(2)(},2,1,0,1,2{)( ωωω jjXnx −−=−−=

4.10 a) n

nnxπωδ )sin()()( 0−=

b) }25.0,5.0,25.0{)(↑

=nx

4.12 c) nn

nWnx cωπcos)2/sin(4)( ⋅=

4.14 a) 1)0( −=X b) negativeandrealXX )(,0)}0(arg{ ωπ+=

c) πωωπ

π

6)( −=∫−

dX

d) 9)( −=πX

e) formulaParsevalsnxndX ,38)(|)(| 22 πωωπ

π

== ∑∫−

5.2ab a) 2/)1(

10 )2/sin(

)2

1sin(

11)()( Mj

j

Mjnj

rect

M

nrect e

M

eeenwW ω

ω

ωω

ω

ωω −

+−−

==

+

=−

−==∑ 321

b) 2/2))2/sin(

)4

sin(()( Mj

trianel e

M

W ω

ω

ωω −=

5.17 a) )2()1(cos2)()( 0 −+−−= nxnxnxny ω

b) }1,cos2,1{)( 0ω−=nh

ωωω ωωωω jjj eeeH −−− −=+−= )cos2cos2(cos21)( 02

0 c) )3/6/3/cos(3)( πππ −+= nny

5.26 { ...}0002/1000...{)(↑

=ny

5.35 )22(4

125.01

)4

3cos(21)( 21

21

+=

+−

+−= −−

−−

Gainzz

zzGainzH

π

5.39 a

aaarzH dB 241cos();(

2

31+−−

=ω )1

2cos();( 232 +=

aaarzH dBω

5.52 )12.02cos(22

1)12.02cos(21)( 21

ππ

−=+−= −− GainzzGainzHFIR

)12.02cos(22

)12.02cos(21)12.02cos(21)12.02cos(21)(

2

221

21

ππ

ππ

−−+

=+−+−

= −−

−− rrGainzrzr

zzGainzHIIR

5.61 a) )1(1

)( 1 abza

bzH −=−

= −

b) )2

14cos();(2

3 aaaarzH dB

−−=ω

7.1

7.8

7.9

7.11

9.3

1

1

5.018)( −

−+

=z

zzH ))1(5.03)(8()1(5.0)(5.08)( 11 −⋅+=−−⋅= −− nunnununh nnn δ

9.4

1

1

1

1

2/1121

3/1135)( −

−+

++

+=z

zz

zzH

)1()21(2)()

21()1()

31(3)(5)( 11 −++−−+= −− nunununnh nnnδ

9.9 a)

44444 344444 214444 34444 21444 3444 21

parallellcascadeIIdirectform

zzzzz

zzzzH

)4/11(3/7

)2/11(3/10

)4/11()2/11(3/11

8/14/313/11)( 1111

1

21

1

−−−−

−−

−−

−=

−−⋅+

=+−⋅+

=

Figures, see the textbook