Digital Microfluidic Diagnostic Devices

35
Digital Microfluidic Diagnostic Devices May 14-26B Advisor/Clients: Dr. Santosh Pandey, Dr. Rebecca Cademartiri, Dr. Ludovico Cademartiri Members: Riley Brien (EE), Jared Anderson (EE), Taejoon Kong (EE), Chee Kang Tan (EE) Website Password may0526

Transcript of Digital Microfluidic Diagnostic Devices

Page 1: Digital Microfluidic Diagnostic Devices

Digital Microfluidic Diagnostic Devices

May 14-26BAdvisor/Clients: Dr. Santosh Pandey, Dr. Rebecca Cademartiri, Dr. Ludovico Cademartiri

Members: Riley Brien (EE), Jared Anderson (EE), Taejoon Kong (EE), Chee Kang Tan (EE)

Website Password may0526

Page 2: Digital Microfluidic Diagnostic Devices

Standard Liquid Handling Steps in Biology

• Example: PCR Purification

– Up to 10 manual pipetting steps

– Different reagents in each step

May 14-26 2www.beckmancoulter.com

Is it possible to automate the different steps using a portable, low cost system to minimize human intervention?

Page 3: Digital Microfluidic Diagnostic Devices

State-of-the-art Liquid Handling Workstation (TECAN F500)

• High-throughput sample-processing

• Large scale

• $40k to >$100k

May 14-26 3

Page 4: Digital Microfluidic Diagnostic Devices

Digital Microfluidic Systems

New automated liquid-handling systems

• Using published methods

– µElectrode system – Electrostatic forces

drive droplet movement on electrode array

• Using novel techniques– µPrinted system – Gravity and mechanical

oscillations drive droplet movement on inkjet-printed surface

May 14-26 4http://www.sciencedirect.com/science/article/pii/S1367593110000955

discrete droplets µL scale

Page 5: Digital Microfluidic Diagnostic Devices

Example of Digital Microfluidics Platform

May 14-26 5

“Two-plate digital microfluidics for dispensing, mixing, and merging droplets”http://www.youtube.com/watch?v=hVAa41qTIqg

1 mm

Page 6: Digital Microfluidic Diagnostic Devices

Overview of Digital Microfluidics

• Controlled droplet movement (actuation) on electrode array

• Electrowetting theory

– 𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠𝜃0 +𝜀0𝜀𝑟𝑉

2

2𝛾𝑑, 𝜃0-Initial contact angle 𝜃-contact angle,

𝛾-surface tension, 𝑑-dielectric thickness

– Requires high voltage >50V

May 14-26 6http://loolab.chem.ucla.edu/research/proteomics.htmlhttp://gozips.uakron.edu/~aaa80/research.html

Page 7: Digital Microfluidic Diagnostic Devices

Project Goals

• Build a prototype digital microfluidic system

– Implement “Dropbot” hardware

– Fabricate electrode arrays

• Demonstrate key droplet operations:

If possible, design and implement a new droplet-manipulation system

May 14-26 7

Transport

Dispensing

Merging

Splitting

http://cjmems.seas.ucla.edu/?p=fbizqheqoqvthp&paged=2

– Dispensing

– Transport

– Merging

– Mixing

– Splitting

– Parallel control of multiple droplets

– Low voltage (<12V)

– Easy to build

– Low cost (<$100)

– Easy-to-use graphical user interface

Page 8: Digital Microfluidic Diagnostic Devices

Electrical Connectivity of µElectrode System

Modified from Wheeler lab May 14-26 8

PC

ITO Electrodes Array

Arduino

HV Switching Board

Control Board

HV Amplifier

Serial BusFeedback

2Vpp Square wave

100Vpp Square wave

Serial Bus

USB

Edge connector

Page 9: Digital Microfluidic Diagnostic Devices

Hardware Components of our Digital Microfluidics System

May 14-26 9

DMF Control board

Power Supply

High-Voltage Switching Board

High-Voltage Amplifier

Arduino (under control board)

1 in.

Power Supply

ITO glassµElectrode

array

Page 10: Digital Microfluidic Diagnostic Devices

High Voltage Amplifier Design

May 14-26 10

Input: 2 Vpp and required output: 200 VppSignal frequency: 18 kHzPCB Design Software: Eagle CADPCB fabricated by Advanced Circuits

Page 11: Digital Microfluidic Diagnostic Devices

Electrode Array Layout

May 14-26 11

Page 12: Digital Microfluidic Diagnostic Devices

Design and Fabrication of Electrode Array

May 14-26 12

1 cmContact Trace

Electrodes with 50µm spacing

5 mm

Photolithography Mask

Page 13: Digital Microfluidic Diagnostic Devices

Glass

ITOPositive Photoresist

May 14-26 13

1) Spin Coat Photoresist

UV Exposure Develop HCL Etch Strip Photoresist

Page 14: Digital Microfluidic Diagnostic Devices

Glass

Mask

ITO

UV Light

Positive Photoresist

May 14-26 14

Spin Coat Photoresist UV Exposure Develop HCL Etch Strip Photoresist

Page 15: Digital Microfluidic Diagnostic Devices

Glass

ITO

Spin Coat Photoresist UV Exposure Develop HCL Etch Strip Photoresist

Positive Photoresist

ExposedPhotoresist

May 14-26 15

Positive Photoresist

Page 16: Digital Microfluidic Diagnostic Devices

Spin Coat Photoresist UV Exposure Develop HCL Etch Strip Photoresist

Glass

ITOPositive Photoresist

May 14-26 16

Page 17: Digital Microfluidic Diagnostic Devices

Spin Coat Photoresist UV Exposure Develop HCL Etch Strip Photoresist

Glass

ITOPositive Photoresist

May 14-26 17

Page 18: Digital Microfluidic Diagnostic Devices

Applying Dielectric and Hydrophobic Layers

• Parylene C

– High dielectric constant

– Chemical vapor deposition

• Teflon AF 1600

– Hydrophobic layer1 cm

http://pubs.rsc.org/en/content/articlehtml/2008/lc/b803827a

May 14-26 18

Shortedtraces

5mm

Page 19: Digital Microfluidic Diagnostic Devices

µElectrode Droplet Operations

May 14-26 19

Page 20: Digital Microfluidic Diagnostic Devices

µPrinted System Control Platform

May 14-26 20

5 cm

10 cm

• Can droplets be manipulated by tilting?

• First version – too heavy, slow

Page 21: Digital Microfluidic Diagnostic Devices

Revised µPrinted System Control Platform

May 14-26 215 cm

Page 22: Digital Microfluidic Diagnostic Devices

Surface-Tension-Confined Tracks Theory

• Droplet is confined to hydrophilic track

• Superhydrophobic surface provides high contact angle

May 14-26 22

Superhydrophobic Substrate

Hydrophilic TrackDroplet

Page 23: Digital Microfluidic Diagnostic Devices

µPrinted System Substrate Fabrication and Patterning

• Superhydrophobic Coating –Rust-Oleum NeverWet™

• Transparency Sheets

• Inkjet-printer patterned hydrophilic channels

May 14-26 23http://www.epson.comhttp://www.homedepot.com/catalog/productImages

Page 24: Digital Microfluidic Diagnostic Devices

Quick “Pulses” Prevent High Threshold-Angle Problem

May 14-26 24

0° angle 10° angle 30° angle

Rapid, movement at threshold angle

Page 25: Digital Microfluidic Diagnostic Devices

Droplet Movement on Cross, Ladder, and Line Patterns

May 14-26 25

Page 26: Digital Microfluidic Diagnostic Devices

Characterizing Droplet Movement on Cross, Ladder, and Line Patterns

May 14-26 26

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

Dro

ple

t m

ove

me

nt

[cm

]

Cycle of stimulation

Droplet movement per cycle of stimulationCross Ladder Line

0

0.1

0.2

0.3

0.4

0.5

0.6

Cross Ladder Line

Dro

ple

t m

ove

me

nt

[cm

]

Average droplet movement per cycle of stimulation

Cross Ladder Line

Page 27: Digital Microfluidic Diagnostic Devices

µPrinted System GUI Controls

May 14-26 27

Page 28: Digital Microfluidic Diagnostic Devices

µPrinted System Droplet Manipulation

May 14-26 28

Dispensing

Simultaneous loading and mixing

Simultaneous transport

Merging and Mixing

Page 29: Digital Microfluidic Diagnostic Devices

Summary of µElectrode and µPrinted Systems

• µElectrode

– Implemented controller hardware and amplifier

– Fabricated electrode arrays

– Demonstrated droplet operations

• µPrinted

– Developed novel digital microfluidic system

– Demonstrated droplet operations

May 14-26 29

Page 30: Digital Microfluidic Diagnostic Devices

Acknowledgments

• Zach Njus (Graduate student, Dr. Pandey’s group)

• Dr. Wai Leung (Assistant Scientist III, DOE Ames Lab)

• Lee Harker (Electronics Technician II, Coover Hall)

• Dr. Liang Dong (Associate Professor, ECpE)

• Dr. Jaeyoun Kim (Associate Professor, ECpE)

May 14-26 30

Page 31: Digital Microfluidic Diagnostic Devices

Questions?

May 14-26 31

Page 32: Digital Microfluidic Diagnostic Devices

Biological Applications and Advantages

EWOD System RDS System Pipetting robot Manual pipetting

Cost

Speed

Accuracy

Flexibility

Ease of Use

May 14-26 32

Standard methods

http://photos.uc.wisc.edu/photos/3525/view

Digital microfluidics

http://www.ehs.iastate.edu/sites/default/files/uploads/images/pipetting.jpg

Page 33: Digital Microfluidic Diagnostic Devices

ITO Patterning– Problems and Solutions

• Problems

– Shorted traces: many electrodes are actuated at the same time

– Broken traces: can not supply the potential

• Solutions

– Get rid of dust

– Improve mask alignment

May 14-26 33

Hours/feet*12inches/60 minutes

Page 34: Digital Microfluidic Diagnostic Devices

Evolution of DMF Platforms

• 2001 – Duke University and UCLA– First prototypes (1.)

• 2004 – Advanced Liquid Logic– First digital microfluidics company (2.)

• 2011 – Sandia National Lab– First integrated inlet/outlet ports (3.)

• 2012 – University of Toronto – First Open-Source digital microfluidics

system, “Dropbot” (4.)

May 14-26 34http://i1.ytimg.com/vi/9GInRQYzSJg/maxresdefault.jpg

http://www.biw.kuleuven.be/biosyst/mebios/biosensors-home/droplet/image_previewhttp://microfluidics.utoronto.ca/dropbot/media/DropBot_system-labelled.jpg

1. 2.

3.

4.

Page 35: Digital Microfluidic Diagnostic Devices

Project Costs for DMF system

May 14-26 35

• Cost– Control board - $150– Switching board - $300– Amplifier - $800– Indium Tin Oxide (ITO) glass - $1500 (100 pcs.) – Teflon AF 1600 - $1800*– Reagents (photoresist, developer, HCL, Acetone, Methanol,

etc) - Lab supply