Digital Image Processing

65
H.R. Pourreza Digital Image Processing يH.R. Pourreza Image Enhancement in the Frequency Domain (Chapter 4)

description

بسمه‌تعالي. Digital Image Processing. Image Enhancement in the Frequency Domain (Chapter 4). H.R. Pourreza. Objective. Basic understanding of the frequency domain, Fourier series, and Fourier transform. Image enhancement in the frequency domain. Fourier Series. - PowerPoint PPT Presentation

Transcript of Digital Image Processing

Page 1: Digital Image Processing

H.R. Pourreza

Digital Image Processing

بسمه تعالي

H.R. Pourreza

Image Enhancement in the Frequency Domain

(Chapter 4)

Page 2: Digital Image Processing

H.R. Pourreza

• Basic understanding of the frequency domain, Fourier series, and Fourier transform. • Image enhancement in the frequency domain.

Objective

Page 3: Digital Image Processing

H.R. Pourreza

Any function that periodically repeats itself can be expressedas the sum of sines and/or cosines of different frequencies, each multiplied by a different coefficients.This sum is called a Fourierseries.

Fourier Series

Page 4: Digital Image Processing

H.R. Pourreza

00

0

00

0

00

0

00

00

00

1000

sin)(2

cos)(2

)(1

sincos)(

Tt

tn

Tt

tn

Tt

t

nnn

dttnwtgT

b

dttnwtgT

a

dttgT

a

tnwbtnwaatg

Fourier Series

Page 5: Digital Image Processing

H.R. Pourreza

A function that is not periodic but the area under its curve is finite can be expressed as the integral of sines and/or cosines multiplied by a weighing function. The formulation in this case is Fourier transform.

Fourier Transform

Page 6: Digital Image Processing

H.R. Pourreza

dueuFxf

dxexfuF

uxj

uxj

2

2

)()(

)()(

Continuous One-Dimensional Fourier Transform and Its Inverse

Where 1j

• (u) is the frequency variable.• F(u) is composed of an infinite sum of

sine and cosine terms and…• Each value of u determines the

frequency of its corresponding sine-cosine pair.

Page 7: Digital Image Processing

H.R. Pourreza

210211

)(x

xx

2 sinc )( uuF

0.5- 0.5x

2

4

u

Continuous One-Dimensional Fourier Transform and Its InverseExampleFind the Fourier transform of a gate function (t) defined by

Page 8: Digital Image Processing

H.R. Pourreza

Continuous One-Dimensional Fourier Transform and Its Inverse

Page 9: Digital Image Processing

H.R. Pourreza

Discrete One-Dimensional Fourier Transform and Its Inverse

• A continuous function f(x) is discretized into a sequence:

)}]1[(),...,2(),(),({ 0000 xNxfxxfxxfxf

by taking N or M samples x units apart.

Page 10: Digital Image Processing

H.R. Pourreza

Discrete One-Dimensional Fourier Transform and Its Inverse

• Where x assumes the discrete values (0,1,2,3,…,M-1) then

)()( 0 xxxfxf

• The sequence {f(0),f(1),f(2),…f(M-1)} denotes any M uniformly spaced samples from a corresponding continuous function.

Page 11: Digital Image Processing

H.R. Pourreza

1

0

1

0

2

2sin2cos)(1)(

)(1)(

M

x

M

x

Mxuj

Mxuj

Mxuxf

MuF

exfM

uF

1

0

2)()(

M

u

xMuj

euFxf

u =[0,1,2, …, M-1]

x =[0,1,2, …, M-1]

Discrete One-Dimensional Fourier Transform and Its Inverse

Page 12: Digital Image Processing

H.R. Pourreza

Discrete One-Dimensional Fourier Transform and Its Inverse

• The values u = 0, 1, 2, …, M-1 correspond to samples of the continuous transform at values 0, u, 2u, …, (M-1)u.

i.e. F(u) represents F(uu), where:

u 1

Mx• Each term of the FT (F(u) for every u) is

composed of the sum of all values of f(x)

Page 13: Digital Image Processing

H.R. Pourreza

Discrete One-Dimensional Fourier Transform and Its Inverse

• The Fourier transform of a real function is generally complex and we use polar coordinates:

)()(tan)(

)]()([)(

)()(

)()()(

1

2/122

)(

uRuIu

uIuRuF

euFuF

ujIuRuFuj

Page 14: Digital Image Processing

H.R. Pourreza

|F(u)| (magnitude function) is the Fourier spectrum of f(x) and (u) its phase angle.

• The square of the spectrum

)()()()( 222 uIuRuFuP

is referred to as the Power Spectrum of f(x) (spectral density).

Discrete One-Dimensional Fourier Transform and Its Inverse

Page 15: Digital Image Processing

H.R. Pourreza

• Fourier spectrum: 2/122 ),(),(),( vuIvuRvuF

• Phase:

),(),(tan),( 1

vuRvuIvu

• Power spectrum:

),(),(),(),( 222 vuIvuRvuFvuP

Discrete 2-Dimensional Fourier Transform

Page 16: Digital Image Processing

H.R. Pourreza

Discrete One-Dimensional Fourier Transform and Its Inverse

Page 17: Digital Image Processing

H.R. Pourreza 1 second

Fmax = 100 HzWhat is the sampling rate (Nyquist)?What is the time resolution?What is the frequency resolution?What if the sampling rate is higher than the Nyquist sampling rate?What if we take samples for twoseconds with the Nyquist samplingrate?

Time and Frequency Resolution and Sampling

Page 18: Digital Image Processing

H.R. Pourreza

2/122

1

0

1

0

)(2

1

0

1

0

)(2

),(),(),(

),(),(

),(1),(

vuIvuRvuF

evuFyxf

eyxfMN

vuF

M

u

N

v

yNvx

Muj

M

x

N

y

Nyv

Mxuj

Fourier Spectrum

Discrete Two-Dimensional Fourier Transform and Its Inverse

Page 19: Digital Image Processing

H.R. Pourreza

1

0

1

0),(1)0,0(

M

x

N

yyxf

MNF

F(0,0) is the average intensity of an image

Discrete Two-Dimensional Fourier Transform and Its Inverse

Page 20: Digital Image Processing

H.R. Pourreza

Use Matlab to generate the above figures

Discrete Two-Dimensional Fourier Transform and Its Inverse

Page 21: Digital Image Processing

H.R. Pourreza

),(),(

)()(

then)()(

If

00

)(2

0

00

0

vvuuFeyxf

Getg

Gtg

Nyv

Mxuj

tj

Frequency Shifting Property of the Fourier Transform

Page 22: Digital Image Processing

H.R. Pourreza

Frequency Shifting Property of the Fourier Transform

Page 23: Digital Image Processing

H.R. Pourreza

function Normalized_DFT = Img_DFT(img)img=double(img); % So mathematical operations can be conducted on % the image pixels.[R,C]=size(img);for r = 1:R % To phase shift the image so the DFT will be for c=1:C % centered on the display monitor phased_img(r,c)=(img(r,c))*(-1)^((r-1)+(c-1)); endendfourier_img = fft2(phased_img); %Discrete Fourier Transformmag_fourier_img = abs(fourier_img ); % Magnitude of DFTLog_mag_fourier_img = log10(mag_fourier_img +1);Max = max(max(Log_mag_fourier_img ));Normalized_DFT = (Log_ mag_fourier_img )*(255/Max);imshow(uint8(Normalized_DFT))

Basic Filtering in the Frequency Domain using Matlab

Page 24: Digital Image Processing

H.R. Pourreza

1. Multiply the input image by (-1)x+y to center the transform2. Compute F(u,v), the DFT of the image from (1)3. Multiply F(u,v) by a filter function H(u,v)4. Compute the inverse DFT of the result in (3)5. Obtain the real part of the result in (4)6. Multiply the result in (5) by (-1)x+y

Basic Filtering in the Frequency Domain

Page 25: Digital Image Processing

H.R. Pourreza

Filtering out the DC Frequency Component

Page 26: Digital Image Processing

H.R. Pourreza

1)2/,2/(),( if 0

),(NMvu

vuHotherwise

Notch Filter

Filtering out the DC Frequency Component

Page 27: Digital Image Processing

H.R. Pourreza

Low Pass Filter attenuate high frequencies while “passing” low frequencies.

High Pass Filter attenuate low frequencies while “passing” high frequencies.

Low-pass and High-pass Filters

Page 28: Digital Image Processing

H.R. Pourreza

Low-pass and High-pass Filters

Page 29: Digital Image Processing

H.R. Pourreza

Low-pass and High-pass Filters

Page 30: Digital Image Processing

H.R. Pourreza

Low-pass and High-pass Filters

Page 31: Digital Image Processing

H.R. Pourreza

2/122

0

0

)2/()2/(),(

),( if 0),( if 1

),(

NvMuvuD

DvuDDvuD

vuH

Smoothing Frequency Domain, Ideal Low-pass Filters

Page 32: Digital Image Processing

H.R. Pourreza

u vT

M

u

N

vT

PvuF

vuFP

/),(100

),(1

0

1

0

2

Total Power

The remained percentage power after filtration

Smoothing Frequency Domain, Ideal Low-pass Filters

Page 33: Digital Image Processing

H.R. Pourreza

fc =5 = 92%

fc =15 = 94.6%

fc =30 = 96.4%

fc =80 = 98%

fc =230 = 99.5%

Smoothing Frequency Domain, Ideal Low-pass Filters

Page 34: Digital Image Processing

H.R. Pourreza

Cause of Ringing

Page 35: Digital Image Processing

H.R. Pourreza

Implement in Matlab the Ideal low-pass filter in the following equation.

1. You must give the user the ability to specify the cutoff frequency D0

2. Calculate the The remained percentage power after filtration.

3. Display the image after filtration4. Use Elaine image to test your program

2/122

0

0

)2/()2/(),(

),( if 0),( if 1

),(

NvMuvuD

DvuDDvuD

vuH

Project #5, Ideal Low-pass Filter

Page 36: Digital Image Processing

H.R. Pourreza

nDvuDvuH 2

0/),(11),(

Smoothing Frequency Domain, Butterworth Low-pass Filters

Page 37: Digital Image Processing

H.R. Pourreza

Smoothing Frequency Domain, Butterworth Low-pass Filters

Radii= 5

Radii= 15 Radii=

30

Radii= 80

Radii= 230

Butterworth Low-pass Filter: n=2

Page 38: Digital Image Processing

H.R. Pourreza

Smoothing Frequency Domain, Butterworth Low-pass Filters

Page 39: Digital Image Processing

H.R. Pourreza

20

2 2/),(),( DvuDevuH

Smoothing Frequency Domain, Gaussian Low-pass Filters

Page 40: Digital Image Processing

H.R. Pourreza

Radii= 5

Radii= 15 Radii=

30

Radii= 80

Radii= 230

Gaussian Low-pass

Smoothing Frequency Domain, Gaussian Low-pass Filters

Page 41: Digital Image Processing

H.R. Pourreza

Smoothing Frequency Domain, Gaussian Low-pass Filters

Page 42: Digital Image Processing

H.R. Pourreza

Smoothing Frequency Domain, Gaussian Low-pass Filters

Page 43: Digital Image Processing

H.R. Pourreza

Smoothing Frequency Domain, Gaussian Low-pass Filters

Page 44: Digital Image Processing

H.R. Pourreza

Hhp(u,v) = 1 - Hlp(u,v)

Sharpening Frequency Domain Filters

Page 45: Digital Image Processing

H.R. Pourreza

Sharpening Frequency Domain Filters

Page 46: Digital Image Processing

H.R. Pourreza

),( if 1

),( if 0),(

0

0

DvuDDvuD

vuH

Sharpening Frequency Domain, Ideal High-pass Filters

Page 47: Digital Image Processing

H.R. Pourreza

nvuDDvuH 2

0 ),(/11),(

Sharpening Frequency Domain, Butterworth High-pass Filters

Page 48: Digital Image Processing

H.R. Pourreza

20

2 2/),(1),( DvuDevuH

Sharpening Frequency Domain, Gaussian High-pass Filters

Page 49: Digital Image Processing

H.R. Pourreza

Homomorphic Filtering

Page 50: Digital Image Processing

H.R. Pourreza

Homomorphic Filtering

Page 51: Digital Image Processing

H.R. Pourreza

g t k t h tM

k t m h mm

M

( ) ( ) * ( ) ( ) ( )

1

0

1

h(t) g(t)k(t) g(t) = k(t)*h(t)G(f) = K(f)H(f)

-1

1

t

h(t)

123

t

k(t)

1 2 3

* is a convolution operator and not multiplication

Convolution

Page 52: Digital Image Processing

H.R. Pourreza

gM

k m h mm

M

( ) ( ) ( )01

00

1

m

k(-m)

-1

1

m

h(m)

g(t)

Convolution

Page 53: Digital Image Processing

H.R. Pourreza

-1

1

m

h(m)

Convolution

m

k(1-m)

g(t)

Page 54: Digital Image Processing

H.R. Pourreza

-1

1

m

h(m)

Convolution

m

k(2-m)

g(t)

Page 55: Digital Image Processing

H.R. Pourreza

-1

1

m

h(m)

Convolution

m

k(3-m)

g(t)

Page 56: Digital Image Processing

H.R. Pourreza

-1

1

m

h(m)

Convolution

m

k(4-m)

g(t)

Page 57: Digital Image Processing

H.R. Pourreza

-1

1

m

h(m)

Convolution

m

k(5-m)

g(t)

Page 58: Digital Image Processing

H.R. Pourreza

-1

1

m

h(m)

Convolution

m

k(6-m)

g(t)

Page 59: Digital Image Processing

H.R. Pourreza

f x y h x yMN

f m n h x m y nn

N

m

M

( , ) ( , ) ( , ) ( , )

10

1

0

1

2-Dimensions Convolution

Page 60: Digital Image Processing

H.R. Pourreza

g t k t h tM

k t m h mm

M

( ) ( ) ( ) ( ) ( )

1

0

1

h(t) g(t)k(t)g(t) = k(t)h(t)G(f) = K(f)* . H(f)

-1

1 1

2

t t

k(t)h(t)

g(t)

2

Correlation

Page 61: Digital Image Processing

H.R. Pourreza

Correlation

Page 62: Digital Image Processing

H.R. Pourreza

Convolution

Page 63: Digital Image Processing

H.R. Pourreza

Convolution

Page 64: Digital Image Processing

H.R. Pourreza

Convolution

Page 65: Digital Image Processing

H.R. Pourreza

Convolution