Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de...

69
Diffraction model for the external occulter of the solar coronagraph ASPIICS Raphaël Rougeot 14/05/2018 R.Rougeot 1 OCA, Nice – 14/05/2018

Transcript of Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de...

Page 1: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction model for the external occulterof the solar coronagraph ASPIICS

Raphaël Rougeot

14/05/2018 R.Rougeot 1

OCA, Nice – 14/05/2018

Page 2: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Outline

1) Proba-3 mission and ASPIICS

2) Diffraction from external occultersa) How to compute diffractionb) Diffraction patterns for several occulters

3) Penumbra profile

4) Conclusion

14/05/2018 R.Rougeot 2

Page 3: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Proba-3 mission and ASPIICS

14/05/2018 R.Rougeot 3

Page 4: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

ESA Proba-3 mission• In-orbit demonstration of precise Formation Flying

• Two spacecraft flying 150m apart, controlled with a millimeter accuracy

14/05/2018 R.Rougeot 4

Occulter Spacecraft

Coronagraph Spacecraft

Page 5: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

ESA Proba-3 mission• In-orbit demonstration of precise Formation Flying

• Two spacecraft flying 150m apart, controlled with a millimeter accuracy

• The formation will be co-aligned with the Sun during the 6-hours apogee phase

14/05/2018 R.Rougeot 5

Page 6: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Solar coronagraph ASPIICS

• Associtation de Satellites Pour l’Imagerie et l’Interférométrie de la Couronne Solaire

• A 1,42m diameter occulting disk carried by the Occulter SpacecraftA 5cm Lyot-style coronagraph on the Coronagraph Spacecraft

• Observation of the K-corona- Findings on the heating process- Alven’s waves, dynamics of the plasma- Coronal Mass Ejections

14/05/2018 R.Rougeot 6

ASPIICS in a nutshell

White light [540nm ; 570nm]2,8 arcsec/pixelHigh cadenceLamy, 2010

Renotte, 2015

Page 7: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Coronagraphy and diffraction• The corona of the sun is much fainter than the solar disk itself

Observation in white light requires perfect eclipse conditions

14/05/2018 R.Rougeot 7

𝐵𝑐𝑜𝑟𝑜𝑛𝑎~10−6 𝑡𝑜 10−9𝐵𝑠𝑢𝑛

Allen, 1997Cox, 2000

Page 8: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Coronagraphy and diffraction

14/05/2018 R.Rougeot 8

A CO’B DO

L1 L2

Lyot stop Focal planePupil

L3

External occulter

Focal plane

Internal Occulter

• The hybrid externally occulted Lyot solar coronagraph ASPIICS

Page 9: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Coronagraphy and diffraction

14/05/2018 R.Rougeot 9

A CO’B DO

L1 L2

Lyot stop Focal planePupil

L3

External occulter

Focal plane

Internal Occulter

• The hybrid externally occulted Lyot solar coronagraph ASPIICS

Page 10: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Coronagraphy and diffraction

14/05/2018 R.Rougeot 10

A CO’B DO

L1 L2

Lyot stop Focal planePupil

L3

External occulter

Focal plane

Internal Occulter

• The hybrid externally occulted Lyot solar coronagraph ASPIICS

Page 11: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Coronagraphy and diffraction

14/05/2018 R.Rougeot 11

A CO’B DO

L1 L2

Lyot stop Focal planePupil

L3

External occulter

Focal plane

Internal Occulter

• The hybrid externally occulted Lyot solar coronagraph ASPIICS

Page 12: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter

14/05/2018 R.Rougeot 12

Page 13: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter

Point source at ∞ External occulter Plane of the entrance aperture

14/05/2018 R.Rougeot 13

Ψ𝑧(𝑥, 𝑦)Ψ0(𝑥, 𝑦)1

Propagation

λ=550nm R=710mm

z=144,348m

𝑁𝑓 =𝑅2

𝜆𝑧≈ 6400

Page 14: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• Major issue in solar coronagraphy: the Sun is an extended light source

• The diffraction pattern must be known over a large spatial extent≠ stellar coronagraphy

Diffraction by an external occulter

Rsun=16,2’

14/05/2018 R.Rougeot 14

z=144,348mUmbra of 38mm

Page 15: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

How to compute diffraction?

14/05/2018 R.Rougeot 15

Apodisation No Axis-symmetry

Brute force 2D FFT √ √

Analytical Hankel transform √ X

Vanderbei et al. Approach √ O (periodicity)

Lommel series X X

Maggi-Rubinowicz representationBoundary diffraction integral

X √

Aime, 2013

Vanderbei, 2003

Aime, 2013

Cady, 2012Born & Wolf

Rougeot & Aime, 2018

Page 16: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

How to compute diffraction

• Brute force 2D FFT

The occulter is padded in a 2D arrays

Condition from the Fresnel filter: 𝜎 >𝐾𝑧

𝜆

Consequence: K of very large size

In Rougeot & Aime 2018, we tried 156000 x 156000, not sufficient for petalized shape

14/05/2018 R.Rougeot 16

Fresnel filterOcculter

Sampling σ

Size K

Page 17: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

How to compute diffraction

• Maggi-Rubinowicz representation

Requires a binary mask (1 or 0)

Ψ𝑧 𝑥, 𝑦 = −Ψzd

x, y in the geometrical shadow

Ψ𝑧 𝑥, 𝑦 = Ψ0(𝑥, 𝑦) − Ψzd

x, y otherwise

Boundary diffraction integral Ψzd=

1

4𝜋𝑊��ׯ 𝑑𝑙

Sampling of the occulter edge must be carefully chosen

14/05/2018 R.Rougeot 17

Ψ𝑧𝑑(𝑥, 𝑦)𝑊(𝑥, 𝑦; 𝑙)

Cady, 2012Born & WolfRougeot & Aime, 2018

Page 18: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter

• The sharp-edged occulting disk

Occulting ratio of 1,05 solar radius at z=144m

R=710mm

14/05/2018 R.Rougeot 18

Page 19: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter

• The sharp-edged occulting disk

The bright spot of Arago (or Poisson… demonstrated by Fresnel)

Geometrical umbra

14/05/2018 R.Rougeot 19

Page 20: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter

• The sharp-edged occulting disk

Bright spot of Arago Transition shadow/light

14/05/2018 R.Rougeot 20

710mm

Page 21: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter

• The apodized occulting disk

Variable radial transmission

R=710mm

Δ

14/05/2018 R.Rougeot 21

Δ

Page 22: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter

• The apodized occulting disk

14/05/2018 R.Rougeot 22

Δ = 20𝑚𝑚

Page 23: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter• The serrated (or petalized) occulter

In stellar coronagraphy, the reasonning starts from the ideal apodized occulter

The petalized occulter is the discrete substitute

14/05/2018 R.Rougeot 23

𝜏𝑎𝑝𝑜𝑑 𝑟 = ∫ 𝜏𝑝𝑒𝑡𝑎𝑙 𝑟, 𝜃 𝑑𝜃

Cady, 2006Vanderbei et al., 2007

Page 24: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter• The serrated (or saw-toothed) occulter

In solar coronagraphy, the reasonning is well different!

The diffraction occurs perpendicularly to the edgeA toothed disc rejects the light outside the central region

14/05/2018 R.Rougeot 24

Boivin’s radius

Boivin (1978) predicted the radius of the dark inner region of the diffraction pattern based on geometrical considerations

Koutchmy, 1988

Page 25: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

R=710mm

Δ

Nt teeth Nt = 1024 ; Δ=20mm

14/05/2018 R.Rougeot 25

Page 26: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

Occulter: 512-teeth, 10mm Modulus Ψ𝑧 𝑥,𝑦 Phase ∠Ψ𝑧 𝑥,𝑦

14/05/2018 R.Rougeot 26

Page 27: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

14/05/2018 R.Rougeot 27

Page 28: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

A

A Dark inner region

14/05/2018 R.Rougeot 28

Page 29: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

A

A Dark inner region

Intermediate regionBB

14/05/2018 R.Rougeot 29

Page 30: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

A

A Dark inner region

Intermediate region

Fully illuminated region

B

C

B

C

14/05/2018 R.Rougeot 30

Page 31: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Diffraction by an external occulter

• We numerically verified the geometrial predictions of Boivin (1978)

Size of teeth ↗

14/05/2018 R.Rougeot 31

Rougeot & Aime, 2018

Page 32: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

14/05/2018 R.Rougeot 32

Page 33: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra profile

14/05/2018 R.Rougeot 33

Page 34: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

• Convolution of the diffraction pattern Ψ𝑧 𝑥, 𝑦 2 with the solar diskCentre-to-limb darkening function

Penumbra profiles

Rsun=16,2’

14/05/2018 R.Rougeot 34

z=144,348m Umbra of 38mm

Page 35: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra profiles

• The sharp-edged occulting disk

14/05/2018 R.Rougeot 35

Diffraction

Purely geometrical

𝐼𝑧(𝑟 = 0) ≈ 10−4Isun

Page 36: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra profiles

• The serrated (or saw-toothed ) occulter

14/05/2018 R.Rougeot 36

Δ=20mm

Δ increasesNt increases

Nt=464

Page 37: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra profiles

• The serrated (or saw-toothed ) occulter

14/05/2018 R.Rougeot 37

Integrated illumination over the pupil, normalized to the sharp-edged disk cas

Boivin radius 𝑁𝑡, Δ > 𝑟𝑠𝑢𝑛 =671mm

𝑝𝑢𝑝𝑖𝑙𝐼𝑠𝑒𝑟𝑟𝑎𝑡𝑒𝑑𝑑𝑠

𝑝𝑢𝑝𝑖𝑙𝐼𝑠ℎ𝑎𝑟𝑝𝑑𝑠

Page 38: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Conclusion

14/05/2018 R.Rougeot 38

Page 39: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Conclusion

14/05/2018 R.Rougeot 39

• Model of diffraction for external occulters in solar coronagraphy- Limits of Fresnel diffraction integrals using 2D FFT- Maggi-Rubinowicz representation

• Assessement of the theoretical performance of serrated occulters

• References- Aime C. 2013, A&A, 558, A138- Rougeot R., Flamary R., Galano D., Aime C. 2017, A&A, 599, A2- Rougeot R., Aime C. 2018, A&A, 612, A80

Page 40: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Other works

14/05/2018 R.Rougeot 40

• Propagation of the diffracted wavefronts inside the Lyot-style coronagraph- end-to-end performance in straylight rejection- impacts of the size of the internal occulter and the Lyot stop- PSF in the vignetting zone

• On-going/future works:- optical aberrations of the optics- effects of surface roughness scattering

Page 41: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Questions?

14/05/2018 R.Rougeot 41

Thank you for your attention!

Page 42: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

14/05/2018 R.Rougeot 42

Page 43: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

14/05/2018 R.Rougeot 43

A CO’B DO

L1 L2

Lyot stop Focal planePupil

L3

External occulter

Focal plane

Internal Occulter

• The hybrid externally occulted Lyot solar coronagraph ASPIICS

Page 44: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

14/05/2018 R.Rougeot 44

• Propagation of the diffracted wavefront from one plane to the next one:- Fourier optics formalism- ideal optics- perfect axis-symetric geometry

• Numerical implementation: successive FFT with arrays of large size

• Objective: - estimate the level and spatial distribution of the residual diffracted sunlight- address the rejection performance of the coronagraph

Page 45: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

• Intensity in plane O’, where the internal occulter is set

14/05/2018 R.Rougeot 45

With external occulterWithout external occulter

Page 46: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

14/05/2018 R.Rougeot 46

• Intensity in plane O’, where the internal occulter is set

With external occulter

Without external occulterSolar disk image (out-of-focused)

Rougeot et al., 2017

Page 47: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

14/05/2018 R.Rougeot 47

• Intensity in plane O’, where the internal occulter is set

With external occulter

Without external occulterSolar disk image (out-of-focused)

Internalocculter

Page 48: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

• Intensity in plane C, where the Lyot stop is set

14/05/2018 R.Rougeot 48

With external occulterWithout external occulter

Page 49: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

14/05/2018 R.Rougeot 49

• Intensity in plane C, where the Lyot stop is set

With external occulter

Without external occulter(Lyot coronagraph)

Page 50: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

14/05/2018 R.Rougeot 50

• Intensity in plane C, where the Lyot stop is set

With external occulter

Without external occulter(Lyot coronagraph)

Lyot stop

Page 51: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

• Intensity in plane D, final focal plane with the detector

14/05/2018 R.Rougeot 51

With external occulter

Page 52: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

14/05/2018 R.Rougeot 52

• Intensity in plane D, final focal plane with the detector

With external/internal occultersand Lyot stop

Without external occulter(Lyot coronagraph)

No occulter and stopSolar disk image

Just the external occulterNo internal occulterNo Lyot stop

Page 53: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph• Impact of sizing the internal occulter and the Lyot stop

Intensity on plane D, the final focal plane

Fixed Lyot stop Fixed internal occulter

14/05/2018 R.Rougeot 53

Page 54: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph• Impact of sizing the internal occulter and the Lyot stop

14/05/2018 R.Rougeot 54

Residual diffracted sunlight @ 1.3𝑅⊙

Better rejection

Closer to solar edge

Page 55: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Propagation inside the coronagraph

• PSF in the vignetted zone

14/05/2018 R.Rougeot 55

Page 56: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Annex on diffraction formulations

14/05/2018 R.Rougeot 56

Page 57: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

2D FFT technique

The Fresnel filter exp 𝑖𝜋𝜆𝑧𝑢2 has its phase varying as u2

At the edge of the array, 𝑢𝑐 = 1/2𝜎

We impose that the (maximum) phase variation at the edge of the array is <π

𝜎 >𝜆𝑧

𝐾

Consequence: 𝜎 ↘⟹ 𝐾 ↗

14/05/2018 R.Rougeot 57

Page 58: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

2D FFT technique

Very sensitive to numerical sampling: impact of the size of the array

14/05/2018 R.Rougeot 58

2D FFT computation

K↗

Reference curve (Hankel)

Page 59: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

2D FFT technique

Very sensitive to numerical sampling: impact of sampling

14/05/2018 R.Rougeot 59

Sampling meeting the condition

Sampling too small regarding Fresnel filter’s condition

Sampling too large to correctly sample the occulter

Page 60: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

The Hankel transformation

Fourier wave optics formalism

Fresnel free-space propagation

Axis-symmetric (apodized) occulter

Ψ𝑧 𝑥, 𝑦 = 1 − 𝑓 𝑟 ⊛1

𝑖𝜆𝑧exp

𝑖𝜋

𝜆𝑧𝑥2 + 𝑦2

Ψ𝑧 𝑟 =𝜑𝑧 𝑟

𝑖𝜆𝑧න0

𝑅

2𝜋𝜌 × 𝑓 𝜌 × exp𝑖𝜋𝜌2

𝜆𝑧× 𝐽0

2𝜋𝜌𝑟

𝜆𝑧𝑑𝜌

Lommel series – decomposition into series (Aime, 2013)

Radial apodizationDiffraction at zRadial function

12/02/2018 R.Rougeot 60

Page 61: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

The Hankel transformation

Fresnel free-space propagation

Axis-symmetric (apodized) occulter

Ψ𝑧 𝑥, 𝑦 = 1 − 𝑓 𝑟 ⊛1

𝑖𝜆𝑧exp

𝑖𝜋

𝜆𝑧𝑥2 + 𝑦2

Ψ𝑧 𝑟 =𝜑𝑧 𝑟

𝑖𝜆𝑧න0

𝑅

2𝜋𝜌 × 𝑓 𝜌 × exp𝑖𝜋𝜌2

𝜆𝑧× 𝐽0

2𝜋𝜌𝑟

𝜆𝑧𝑑𝜌

Lommel series: decomposition into series (Aime, 2013)

Radial apodization

12/02/2018 R.Rougeot 61

Page 62: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Vanderbei et al. approah

Based on Fresnel diffraction theoryFor serrated or petal-shaped occulter, i.e. a periodic pattern by rotation

Ψ𝑧 𝑟, 𝜃 = Ψ𝑧𝑎𝑝𝑜𝑑

𝑟 +

𝑗=1

𝑓1 𝑗, 𝑁𝑡 ×න0

𝑅+Δ

𝑓2 𝑗, 𝜌 × 𝐽𝑗𝑁𝑡2𝜋𝑟𝜌

𝜆𝑧𝜌𝑑𝜌

In stellar coronagraphy:𝑁𝑡 ≈ 20, and very small working angles: j=1 dominates

In solar coronagraphy:𝑁𝑡 ≈ 100 − 1000, and large region (671mm): the computation is very heavy

14/05/2018 R.Rougeot 62

Page 63: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra and Boivin radii

14/05/2018 R.Rougeot 63

Page 64: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra for serrated occulters

Convolution of the diffraction intensity |Ψ𝑧 𝑥, 𝑦 |2 with the solar stenope imageIncludes limb darkening function

Penumbra:∫ Diffraction x Solar image

14/05/2018 R.Rougeot 64

Rsun=16,2’rsun=671mm

Solar image

Page 65: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra for serrated occulters

14/05/2018 R.Rougeot 65

Diffraction patternSolar image

𝐼 𝑥 = 0

Page 66: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra for serrated occulters

14/05/2018 R.Rougeot 66

Diffraction patternSolar image

𝐼 𝑥1 ≃ 𝐼(0)

Page 67: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra for serrated occulters

14/05/2018 R.Rougeot 67

Diffraction patternSolar image

𝐼 𝑥2 > 𝐼(0)

Page 68: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra for serrated occulters

14/05/2018 R.Rougeot 68

Diffraction patternSolar image

𝐼 𝑥 = 0 ↘

Page 69: Diffraction modelling for solar coronagraphy · Solar coronagraph ASPIICS •Associtation de Satellites Pour l’Imagerieet l’Interférométriede la Couronne Solaire •A 1,42m

Penumbra for serrated occultersWe can predict the penumbra depth for serrated occulters:

14/05/2018 R.Rougeot 69

The deepest umbra is achieved when:

Boivin radius 𝑁𝑡 , Δ > 𝑟𝑠𝑢𝑛

The second parameter is the intensity level of the diffraction pattern

→ Large number of teeth preferred!

𝑟𝑠𝑢𝑛