Differential Conservation Equations Part 3

download Differential Conservation Equations Part 3

of 23

Transcript of Differential Conservation Equations Part 3

  • 8/6/2019 Differential Conservation Equations Part 3

    1/23

    Conservation of

    mechanical energy

    Conservation of

    mechanical energy

    start with the momentum equation :start with the momentum equation :

    "change of kinetic energy is a result

    of work done by external forces"

    jj FdVuDtD

    !V juv

    forcesexternalbyworkchangeenergykinetic

    2 ji

    ij

    j

    jjudV

    xdVf

    uudV

    Dt

    D

    x

    x!

    WVV

  • 8/6/2019 Differential Conservation Equations Part 3

    2/23

    Conservation of

    mechanical energy

    Conservation of

    mechanical energy

    work

    energykinetic

    2velocitydensity

    -

    -

    -

    21

    21

    21

    j

    i

    ij

    jj

    V

    jj

    jj

    uxuf

    dVuu

    uu

    x

    x

    !

    !

    !

    vv

    W

    V]

    VJ

    VNset :set :

    j

    i

    ij

    jj

    i

    jj

    i

    jj

    ux

    uf

    uuu

    x

    uu

    t

    xx!

    !

    x

    x

    x

    x

    W

    22

    kinetic energy equationkinetic energy equation

    for an elementary volumefor an elementary volume dVdV ::

  • 8/6/2019 Differential Conservation Equations Part 3

    3/23

    Conservation of

    mechanical energy

    Conservation of

    mechanical energyintegrated forintegrated for

    a final volumea final volume VV

    bound by a surfacebound by a surface AA ::

    ui

    ni dA

    dVV

    A

    forcessurfaceofwork

    forcesbodyofwork

    outletinletconvectionenergykinetic

    changeenergykinetic

    22

    !

    x

    x

    A

    ijij

    V

    jj

    Aii

    jj

    V

    jj

    dAnudVuf

    dAun

    uu

    dV

    uu

    t

    WV

    VV

  • 8/6/2019 Differential Conservation Equations Part 3

    4/23

    work

    ndeformatio

    i

    j

    ij

    work

    kinetic

    i

    ij

    j

    work

    total

    ijj

    i x

    u

    xuu

    x x

    x

    x

    x!

    x

    xW

    WW

    Conservation of

    mechanical energy

    Conservation of

    mechanical energy

    j

    i

    ij

    jj

    i

    jj

    i

    jj

    ux

    uf

    uuu

    x

    uu

    t

    x

    x!

    !

    x

    x

    x

    x

    W

    22

    d

    ij

    d

    ij

    i

    iijij

    x

    up [W[W

    x

    x!

  • 8/6/2019 Differential Conservation Equations Part 3

    5/23

    Conservation of

    mechanical energy

    Conservation of

    mechanical energy

    xx!

    xx

    outletinletconvectionenergykinetic

    changeenergykinetic

    22i

    jj

    i

    jj

    t VV

    x

    x

    for ss rfaceofwortotalforcesbody

    ofwor

    jij

    i

    jj ux

    uf WV

    work

    nde ormatiototal

    work

    nde ormatiosp erical-non

    work

    nde ormatiosp erical

    d

    ij

    d

    ij

    i

    ixp [Wx

    x

  • 8/6/2019 Differential Conservation Equations Part 3

    6/23

    Conservation of internal

    (thermal) energy

    Conservation of internal

    (thermal) energy

    "change of internal (thermal) energy

    is a result of the transferred heat "

    sf rt trrd f rm ti

    sf rt trdu tiri t r l

    i

    j

    ij

    ii

    Tk

    t x

    x

    x

    x

    x

    x! WYV

    ijiji

    i

    x

    qdV

    Dt

    D[WYV

    x

    x!

    qi

    ni dA

    dV V

    Ai

    ix

    Tkq

    x

    x!

  • 8/6/2019 Differential Conservation Equations Part 3

    7/23

    Conservation of internal

    (thermal) energy

    Conservation of internal

    (thermal) energy

    transferheat-

    -

    -

    i

    j

    ij

    ii

    V

    x

    u

    x

    Tk

    x

    dVcT

    cT

    x

    x

    x

    x

    x

    x!

    !

    !

    vv

    W]

    VJ

    VN

    energyinternal

    etemperaturheatspeci icdensity

    set :set :

    i

    jij

    ii

    i

    i

    xu

    xTk

    x

    cTux

    cTt

    xx

    xx

    xx!

    !x

    x

    x

    x

    W

    VV

    thermal energy equationthermal energy equation

    for an elementary volumefor an elementary volume dVdV ::

  • 8/6/2019 Differential Conservation Equations Part 3

    8/23

    Conservation of internal

    (thermal) energy

    Conservation of internal

    (thermal) energy

    integrated forintegrated for

    a final volumea final volume VV

    bound by a surfacebound by a surface AA ::

    ui

    ni dA

    dVV

    A

    sf rh t tr nn workd form tio

    sf rh t tr nondu tion

    outl tinl tonv tionn rgyint rn lh ngn rgyint rn l

    x

    x

    x

    x

    !

    x

    x

    V i

    j

    ij

    A

    i

    i

    A

    ii

    V

    dVu

    dAnT

    k

    dAucTndVcT

    t

    W

    VV

  • 8/6/2019 Differential Conservation Equations Part 3

    9/23

    Conservation of

    energy (total)

    Conservation of

    energy (total)"change of total energy is a result

    of work done by external forces

    and heat transferred"

    !

    changeenergytotal

    2cT

    uudV

    Dt

    D jjV

    sfrh r nondu on

    d

    x

    k

    x ii

    x

    x

    x

    x

    forcesexternalbywork

    dVu

    x

    uf jiji

    jj

    x

    x

  • 8/6/2019 Differential Conservation Equations Part 3

    10/23

    Conservation of

    chemical species

    Conservation of

    chemical species" change of concentration of chemical

    species is a result mass transfer

    and chemical reaction "

    ]

    reaction

    chemi altodueksour e/sin

    transfermassdiffusion

    changeionconcentrat

    s

    i

    s

    s

    i

    sR

    x

    m

    xdm

    Dt

    D

    x

    x

    x

    x!

    DV

    si

    s

    is Rx

    qdVm

    Dt

    D

    x

    x!V

    qis

    ni dA

    dV V

    Ai

    sss

    ix

    mq

    xx

    ! D

  • 8/6/2019 Differential Conservation Equations Part 3

    11/23

    Conservation of

    chemical species

    Conservation of

    chemical species

    reactionchemical

    aniffusion

    massspecies

    ionconcentratmasspecies

    s

    i

    s

    s

    i

    s

    s

    R

    x

    m

    x

    dVm

    m s

    x

    x

    x

    x

    D

    set :set :

    s

    i

    s

    s

    i

    i

    s

    i

    s

    Rxm

    x

    umx

    mt

    x

    xxx!

    !x

    x

    x

    x

    D

    mass transfer equationmass transfer equation

    for an elementary volumefor an elementary volume dVdV ::

  • 8/6/2019 Differential Conservation Equations Part 3

    12/23

    Conservation of

    chemical species

    Conservation of

    chemical speciesintegrated forintegrated for

    a final volumea final volume VV

    bound by a surfacebound by a surface AA ::

    ui

    ni dA

    dVV

    A

    reactionchemicaltodueksource/sin

    trans ermassdi usions ecies

    outletinletconvections ecieschangeionconcentrats ecies

    x

    x

    !x

    x

    V

    s

    A

    i

    i

    s

    s

    A

    ii

    s

    V

    s

    dVRdAnx

    m

    dAunmdVmt

    D

    VV

  • 8/6/2019 Differential Conservation Equations Part 3

    13/23

    SOME

    SIMPLIFICATIONS

    SOME

    SIMPLIFICATIONS

    of theof the

    conservationconservation

    (transport)(transport)eq ationseq ations

  • 8/6/2019 Differential Conservation Equations Part 3

    14/23

    Simplification of the

    contin ity eq ation

    Simplification of the

    contin ity eq ation

    for an incompressible fluidfor an incompressible fluidVV=const=const::

    0!x

    x

    i

    i

    x

    u

    written for an elementary volumewritten for an elementary volume dVdV ::

    ii

    uxt

    VVxx!

    xx

    const.!!xx

    1

    1

    1

    ux

    u

    for 1D flow:for 1D flow: uu22=u=u33=0=0

  • 8/6/2019 Differential Conservation Equations Part 3

    15/23

    Simplifications of the

    moment m eq ations

    Simplifications of the

    moment m eq ations

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    !x

    x

    x

    x

    i

    i

    ji

    j

    ij

    j

    iji

    j

    x

    u

    xx

    u

    xx

    pf

    uuxut

    QQ3

    start with the Navierstart with the Navier--Stokes equation:Stokes equation:

    assume the fluid is ideal (inviscid)assume the fluid is ideal (inviscid) QQ=0=0 ::

    assume the fluid is incompressibleassume the fluid is incompressible

    VV=const.=const.result is theresult is the EulerEulerequation:equation:

    jj

    i

    j

    i

    j

    x

    p

    fx

    u

    ut

    u

    x

    x

    !x

    x

    x

    x

    V

    1

  • 8/6/2019 Differential Conservation Equations Part 3

    16/23

    Simplifications of the

    moment m eq ations

    Simplifications of the

    moment m eq ationsassume the only body force is gravity:assume the only body force is gravity:

    j

    jjjxzgfgf

    xx!! or

    ! pgz

    xxuu

    tu

    ji

    j

    i

    j

    momentum equation for anmomentum equation for anideal incompressible fluid in theideal incompressible fluid in the

    gravity field:gravity field:

  • 8/6/2019 Differential Conservation Equations Part 3

    17/23

    Simplifications of the

    moment m eq ations

    Simplifications of the

    moment m eq ations

    ifthe fluid is not movingifthe fluid is not moving uuii= u= ujj= 0= 0 ::

    !

    pgz

    xx

    uu

    t

    u

    ji

    j

    i

    j

    .constpgz !V

    0!V

    o

    o

    ppzzg

    result is the equation ofresult is the equation offluid staticsfluid statics::

  • 8/6/2019 Differential Conservation Equations Part 3

    18/23

    Simplifications of the

    moment m eq ations

    Simplifications of the

    moment m eq ations

    x

    x!

    x

    x

    x

    x

    V

    pgz

    xx

    uu

    t

    u

    ifthe movement ofthe fluidifthe movement ofthe fluid

    along the streamline is followedalong the streamline is followed

    in the directionin the direction xx, then, then uu ii= u= ujj= u= u::

    for a steady statefor a steady state

    0

    2

    2

    !

    V

    pgz

    u

    x

    .2

    2

    onst

    p

    gz

    u

    ! V

    integration givesintegration gives BernoulliBernoulli equation:equation:

  • 8/6/2019 Differential Conservation Equations Part 3

    19/23

    Simplification of the

    total energy eq ation

    Simplification of the

    total energy eq ation

    forcesexternalbyork

    dVux

    uf jiji

    jj

    xx! WV

    !

    dVcTuu

    t

    D jj V

    energyinternalineticomass)unit(perchangetotal

    s erheat tranconduction

    dVT

    ii

    x

    x

    x

    x

    f hf h

  • 8/6/2019 Differential Conservation Equations Part 3

    20/23

    Simplification of the

    total energy eq ation

    Simplification of the

    total energy eq ation

    !

    xx

    xx

    outl tinl tonve tionener

    hangeenergylocal

    22ii

    jj

    i

    jj cTuuuux

    cTuut

    ] forcessurfaceofworforcesbody

    ofwor

    1jij

    ijj uxuf WV x

    x

    ! sferheat tran

    1

    x

    x

    x

    x

    ii

    T

    V

    QWUPEKE

    UPEKE

    !

    x

    x

    iflown

    outflown

    t

    which iswhich is 1st law of thermodynamics1st law of thermodynamicsfor a control volume (open system)for a control volume (open system)

    f hf h

  • 8/6/2019 Differential Conservation Equations Part 3

    21/23

    Simplification of the

    total energy eq ation

    Simplification of the

    total energy eq ation

    1st law of thermodynamics1st law of thermodynamics

    for a control mass (closed system)for a control mass (closed system)

    assuming no kinetic energy (KE)assuming no kinetic energy (KE)

    oror

    potential energy (PE) changepotential energy (PE) change

    QWU !

    x

    x

    t

    f hf h

  • 8/6/2019 Differential Conservation Equations Part 3

    22/23

    Simplification of the

    total energy eq ation

    Simplification of the

    total energy eq ationifthere is noifthere is no

    movementmovement

    ofthe fluidofthe fluid

    and noand no

    deformationdeformationandandVV=const.=const.

    andandk=const.k=const.

    !

    changeenergytotal

    2

    cTuu

    dV

    Dt

    D jjV

    s rt trd ti

    d

    x

    Tk

    x ii

    x

    x

    x

    x

    forcesexternalby ork

    du

    x

    f jiji

    j

    x

    x! WV

    2

    2

    ixct x

    x

    !x

    x

    V

    result is theresult is the heat conductionheat conduction equation :equation :

    Si lifi i f thSi lifi i f th

  • 8/6/2019 Differential Conservation Equations Part 3

    23/23

    s

    i

    s

    s

    i

    i

    s

    i

    s

    x

    m

    x

    umx

    mt

    x

    x

    x

    x!

    !x

    x

    x

    x

    D

    Simplification of the

    mass transfer eq ation

    Simplification of the

    mass transfer eq ation

    ifthere is noifthere is no

    movementmovement

    ofthe fluidofthe fluid

    no chemicalno chemical

    reactionreactionandandDDss=const.=const.

    2

    2

    i

    ss

    x

    m

    Dt

    m

    x

    x

    !x

    x

    result is theresult is the Fick second lawFick second law equation :equation :