DFT and VdW interactions

49
DFT and VdW interactions Marcus Elstner Physical and Theoretical Chemistry, Technical University of Braunschweig

description

DFT and VdW interactions. Marcus Elstner Physical and Theoretical Chemistry, Technical Universi ty of Braunschweig. E ~ 1/ R 6. DFT and VdW interactions. 2 Problems: Pauli repulsion: exchange effect ~ exp( R  ) or 1 /R 12  - attraction due to correlation - PowerPoint PPT Presentation

Transcript of DFT and VdW interactions

Page 1: DFT and VdW interactions

DFT and VdW interactionsDFT and VdW interactions

Marcus Elstner

Physical and Theoretical Chemistry, Technical University of Braunschweig

Page 2: DFT and VdW interactions

DFT and VdW interactionsDFT and VdW interactions

E ~ 1/R6

2 Problems:

- Pauli repulsion: exchange effect

~ exp(R) or 1/R12

- attraction due to correlation

~ -1/R6

Page 3: DFT and VdW interactions

DFT ProblemDFT Problem

- B88 exchange: too repulsive ?

- PBEx/PW91x: too attractive

already at Ex only level

- LDA finds often binding!

E ~ 1/R6

- fix Ex

- correlation Ec?Ec ??

Ex ??

Page 4: DFT and VdW interactions

Ar2 with Ex onlyAr2 with Ex only

• B too repulsive,

• PW91x too “attractive”

Complete mess with

DFTWu et al. JCP 115 (2001) 8748

Page 5: DFT and VdW interactions

Popular Functionals: role of ExPopular Functionals: role of Ex

Xu & Yang JCP 116 (2002) 515

BPW91

BLYP

B3LYP

PW91

B3LYP contains only 20% HF exchange!

Page 6: DFT and VdW interactions

• BPW91 vs PW91: attraction only due to exchange!!!!!

• Correlation not significant for PW91 and LYP

BPW91

BLYP

B3LYP

PW91

Popular Functionals: role of EcPopular Functionals: role of Ec

Xu & Yang JCP 116 (2002) 515

Page 7: DFT and VdW interactions

Perez-Jorda et al. JCP 110 (1999) 1916

DFT HFx + Ec:

some Ec lead to (over-) binding, some don’t!

Popular Functionals: role of EcPopular Functionals: role of Ec

Page 8: DFT and VdW interactions

Does overlap matter?Does overlap matter?

Xu & Yang JCP 116 (2002) 515

Elstner et al. JCP 114 (2001) 5149

GGA

DFTB

Page 9: DFT and VdW interactions

DFT and VdW interactions: the problemDFT and VdW interactions: the problem

E ~ 1/R6

Ec = 0

Exc = ??

Page 10: DFT and VdW interactions

DFT and VdW interactions: solutionsDFT and VdW interactions: solutions

Adding empirical dispersionElstner et al. JCP 114 (2001) 5149

Xu & Yang JCP 116 (2002) 515

Zimmerli et al. JCP 120 (2004) 2693

Grimme JCC 25 (2004) 1463

DFT model for empircal dispersion on top of HFBecke & Johnson JCP 124 (2006) 014104

Put it into the pseudopotentialv. Lilienfeld et al. PRB 71 (2005) 195119

Find a new dispersion functionalDion, et al. Phys. Rev. Lett. 92 (2004) 246401; [JCP 124 (2006) 164106]

Kamiya et al. JCP 117 (2002) 6010.

Page 11: DFT and VdW interactions

Adding empirical dispersionAdding empirical dispersion

Following the idea of HF+dis:

Add f (R) C6 /R6 to DFT total energy

C6 empirical values

Elstner, Hobza et al. JCP 114 (2001) 5149

To be successfull: Ex should be well-behaved (i.e. like HF)

Ec: double counting

Page 12: DFT and VdW interactions

Dispersion forces - Van der Waals interactionsElstner et al. JCP 114 (2001) 5149

Dispersion forces - Van der Waals interactionsElstner et al. JCP 114 (2001) 5149

Etot = ESCC-DFTB - f (R) C6 /R6

C6 via Slater-Kirckwood combination rules of atomic polarizibilities after Halgreen, JACS 114 (1992) 7827.

damping f(R) = [1-exp(-3(R/R0)7)]3 R0 = 3.8Å (für O, N, C)

E ~ 1/R6

Page 13: DFT and VdW interactions

How to get Dispersion coefficients?Halgren JACS 114 (1992) 7827

How to get Dispersion coefficients?Halgren JACS 114 (1992) 7827

London, Phys. Chem. (Leipzig) B 11(1930) 222

Slater & Kirkwood. Phys. Rev. 37 (1931) 682.

Kramer & Herschbach J. Chem. Phys. 53 (1970) 2792

effective electron number

Page 14: DFT and VdW interactions

DFTB inputDFTB input

f(R) = [1-exp(-3(R/R0)7)]3

Etot = ESCC-DFTB - f (R) C6 /R6

• R0: e.g. 3.8 for ONC

• Atomic polarizabilities:

hybridisation dependent

• Effective electron number (from Halgren)

Page 15: DFT and VdW interactions

DFTB + dispersionDFTB + dispersion

Sponer et al. J.Phys.Chem. 100 (1996) 5590; Hobza et al. J.Comp.Chem. 18 (1997) 1136

stacking energies in MP2/6-31G* (0.25), BSSE-corrected ( + MP2-values)

Hartree-Fock, no stacking AM1, PM3, repulsive interaction (2-10) kcal/mole MM-force fields strongly scatter in results

vertical dependence twist-dependence

Page 16: DFT and VdW interactions

DFT + empirical dispersion: 1st generationDFT + empirical dispersion: 1st generation

1) Problem of unbalanced Ex:

2) Problem of Ec?? Which one to choose?

Large variation in results when adding dispersion

Wu and Wang 2002

Zimmerli et al 2004

Page 17: DFT and VdW interactions

DFT and empirical dispersionDFT and empirical dispersion

From Wu and Yang 2002

Does not work for all Exc functionals properly

Wu and Wang 2002

Zimmerli et al.2004

Page 18: DFT and VdW interactions

DFT + empirical dispersion: 2nd generationDFT + empirical dispersion: 2nd generation

1) Problem of unbalanced Ex:

2) Problem of Ec?? Which one to choose?

Large variation when adding dispersion

Grimme 2004: scale BLYP + dispersion with 1.4

scale PW91 + dispersion with 0.7

Page 19: DFT and VdW interactions

f (R) C6 /R6

f (R) C6 /R6

-choice of C6 coefficients

-Choice of damping function

Page 20: DFT and VdW interactions

Choice of C6 coefficientsChoice of C6 coefficients

- hybridisation dependence vs. atomic values

- empirical values

Very similar in various approaches

Page 21: DFT and VdW interactions

Choice of damping functionChoice of damping function

- various functional forms

- Fermi-function

- f(R) = [1-exp(-3(R/R0)7)]3

- choice of “cutoff” radius

from Grimme 2004

Page 22: DFT and VdW interactions

Choice of fdampChoice of fdamp

fdamp balances several effects

- contribution from Ex/Ec in overlap region

- double counting of Ec

- BSSE and BSIE

- missing higher order terms 1/R**8 …

Determination completely empirical

Choose, to reproduce interaction energies for large set of stacked compounds

Page 23: DFT and VdW interactions

Choice of fdampChoice of fdamp

However, form of fdamp may be crucial

From Wu and Yang 2002

Location of minimum

For A-A stack

Page 24: DFT and VdW interactions

Grimme JCC 25 (2004) 1463Grimme JCC 25 (2004) 1463

- hybridisation dependence

- empirical vs. new fits

Very similar in various approaches

s6:

PW91: 0.7

BLYP: 1.4

Scaling:

-Basis set dependent

-functional dependent

Page 25: DFT and VdW interactions

DFT + empirical dispersion: 3rd generationDFT + empirical dispersion: 3rd generation

1) Problem of unbalanced Ex:

2) Problem of Ec?? Which one to choose?

Large variation in results when adding dispersion

- mix PW91x and Bx

- revPBE

- meta GGA??

+ balanced damping function, no scaling

Page 26: DFT and VdW interactions

DFT + empirical dispersion: 1st generationDFT + empirical dispersion: 1st generation

1) Problem of unbalanced Ex:

2) Problem of Ec?? Which one to choose?

Large variation in results when adding dispersion

Wu and Wang JCP 116 (2002) 515

Zimmerli et al. JCP 120 (2004) 2693

DFT + empirical dispersion: 2nd generationDFT + empirical dispersion: 2nd generation

Grimme JCC 25 (2004) 1463:

scale BLYP + disp with 1.4

scale PW91 + disp with 0.7

3rd generation: revPBE, XLYP and s6=13rd generation: revPBE, XLYP and s6=1

Page 27: DFT and VdW interactions

Applications of DFTB-DApplications of DFTB-D

Page 28: DFT and VdW interactions

C

C

C

C

C

C

1.396

1.099

CC C

CC C

CCC

C CC

3.670

CCC

CC

C

CC

CC

C

C

5.295

CCC

CCC

CCC

CCC

6.403

3.325

CC

CC

CC

CC

CCCC

3.454

5.193

M S T

PD 1.108

3.556

DFTBDFTB-Dmonomer geometriesremain unchangedthroughout (but optimized)

(MP2/aug-cc-pVDZ (monomer frozen)){MP2/aug-cc-pVTZ (monomer frozen)}

(3.8){3.7}

(5.0){4.9}

(3.4){3.4}

(1.6){1.6}

Benzene (from Irle/Morokuma, Emory) Benzene (from Irle/Morokuma, Emory)

Page 29: DFT and VdW interactions

Monomer S-Dimer T-Dimer PD-DimerE [kcal/mol] E [kcal/mol] E [kcal/mol] E [kcal/mol]

RHF/cc-pVDZ//MP2/aug-cc-pVTZ 0.00 4.36 0.82 4.00RHF/aug-cc-pVDZ//MP2/aug-cc-pVDZ 0.00 3.60 -0.11 4.04RHF/aug-cc-pVTZ//MP2/aug-cc-pVTZ 0.00 5.10 1.42 5.02 MP2/cc-pVDZ//MP2/aug-cc-pVTZ 0.00 -2.71 -3.76 -4.23MP2/aug-cc-pVDZ//MP2/aug-cc-pVDZ 0.00 -2.90 -3.16 -4.28MP2/aug-cc-pVTZ//MP2/aug-cc-pVTZ 0.00 -3.26 -3.46 -4.67MP2/aug-cc-pVQZ//MP2/aug-cc-pVTZ 0.00 -3.37 -3.54 -4.79CCSD(T)/CBS (based on MP2-R12) 0.00 -1.81 -2.74 -2.78

DFTB//MP2/aug-cc-pVTZ 0.00 0.56 -0.31 0.38DFTB//MP2/aug-cc-pVTZ w/DISP 0.00 -4.02 -2.68 -4.36DFTB//DFTB 0.00 0.54 -0.34 -0.16DFTB//DFTB w/DISP 0.00 -4.54 -2.74 -4.60

RHF, MP2 (both CP corrected) and DFTB E on benzene dimers:

Benzene (from Irle/Morokuma, Emory) Benzene (from Irle/Morokuma, Emory)

Page 30: DFT and VdW interactions

Hybride materials Hybride materials

Page 31: DFT and VdW interactions

O(N)-QM/MM-molecular-dynamics for DNA-dodecamer in H2O

Elstner et al. in preparation

O(N)-QM/MM-molecular-dynamics for DNA-dodecamer in H2O

Elstner et al. in preparation

DNA-Dodecamer 758 + 2722 H2O + 22 Na

•periodic BC-Ewald-summation

• dispersion in QM-region

•MD-simulation at 300 K

•parallel-16 processors SP2energy/forces: 1 – 2 sec. 10 ps/day

1-st stable QM/MM ns-scale dynamic simulation

Page 32: DFT and VdW interactions

Intercalation: Ethidium – ATReha et al JACS 2003

Intercalation: Ethidium – ATReha et al JACS 2003

Page 33: DFT and VdW interactions

Secondary-structure elements for Glycine und Alanine-based polypeptides: ß-sheets, helices and turn

Elstner, et a.. Chem. Phys. 256 (2000) 15

Secondary-structure elements for Glycine und Alanine-based polypeptides: ß-sheets, helices and turn

Elstner, et a.. Chem. Phys. 256 (2000) 15

N = 1 (6 stable conformers) 310 - helix

stabilization by internal H-bonds

N-fold periodicity

between i and i+3N

R-helix

between i and i+4

For increasing N: energetics of different conformers, geometries, vibrations

Page 34: DFT and VdW interactions

Glycine and Alanine based polypeptides in vacuoElstner et al., Chem. Phys. 256 (2000) 15

Glycine and Alanine based polypeptides in vacuoElstner et al., Chem. Phys. 256 (2000) 15

N = 1 (6 stable conformers)

N

Relative energies, structures and vibrational properties: N=1-8

2 L P

(6-31G*)

C7

eq C5ext C7

ax

MP4-BSSE

MP2

B3LYP

SCC-DFTB

E relative energies (kcal/mole)

MP4-BSSE: Beachy et al, BSSE ‚corrected‘ at MP2 level

Ace-Ala-Nme

Page 35: DFT and VdW interactions

Polypeptides in vacuoEffect of dispersion: favors more compact structures

Polypeptides in vacuoEffect of dispersion: favors more compact structures

N = 2

(6-31G*)

Ace-Ala2-Nme

BLYPB3LYP

MP2

HF

SCC-DFTB

C7eq C5

ext BI BII BI` BII`

DFT: relative stability of compact vs. extended structures?

Page 36: DFT and VdW interactions

Secondary structure formation Elstner et al., Chem. Phys. 256 (2000) 15

Secondary structure formation Elstner et al., Chem. Phys. 256 (2000) 15

DFT/DFTB ? 310 - helix R-helix

peptide size

DFT: crossover only for N~20 !! solvation??

E

N

Page 37: DFT and VdW interactions

Secondary structure:Influence of aqueous solutionCui et al, JPCB 105 (2001) 569

Secondary structure:Influence of aqueous solutionCui et al, JPCB 105 (2001) 569

310 - helix R-helix

310 – helix: occurence for N<8 in database

QM/MM MD of octa-Alanine:

310 - helix converts into R-helix within 10 ps

Situation in Protein?

Page 38: DFT and VdW interactions

Molecular-dynamics for Crambin in H2O-solution O(N)-QM/MM simulation

Liu et al. PROTEINS 44 (2001) 484

Molecular-dynamics for Crambin in H2O-solution O(N)-QM/MM simulation

Liu et al. PROTEINS 44 (2001) 484

Crambin (639) + 2400 H2O

MD simulation for 0.35 ns energy and interatomic forcesparallel (16-node SP2): 2 sec.

Page 39: DFT and VdW interactions

Influence of Dispersion Liu et al. PROTEINS 44 (2001) 484

Influence of Dispersion Liu et al. PROTEINS 44 (2001) 484

QM/MM MD-Simulation Crambin in Solution

HF

DFT/DFTB ?

SCC-DFTB + DIS

MP2

Page 40: DFT and VdW interactions

Enkephalin: ~30 local minima 3 clusterJalkanen et al. to be published

Enkephalin: ~30 local minima 3 clusterJalkanen et al. to be published

C5

compact

extended

double bendsingle bend

Page 41: DFT and VdW interactions

Enkephalin: MP2/6-31G* vs DFTB-dis//DFTB-disEnkephalin: MP2/6-31G* vs DFTB-dis//DFTB-dis

compact extended

conformer

kcal

Rel. energy (kcal) vs. conformer

b a

c

Page 42: DFT and VdW interactions

Enkephalin: MP2/6-31G* vs DFTB//DFTB-disEnkephalin: MP2/6-31G* vs DFTB//DFTB-dis

compact extended

conformer

kcal

Page 43: DFT and VdW interactions

Enkephalin: MP2 vs B3LYP//DFTB-disEnkephalin: MP2 vs B3LYP//DFTB-dis

compact extended

conformer

kcal

Page 44: DFT and VdW interactions

Enkephalin: MP2 vs B3LYP-dis//DFTB-disEnkephalin: MP2 vs B3LYP-dis//DFTB-dis

compact extended

conformer

kcal

Page 45: DFT and VdW interactions

Enkephalin: MP2 vs PBE+dis//DFTB-disEnkephalin: MP2 vs PBE+dis//DFTB-dis

compact extended

conformer

kcal

Page 46: DFT and VdW interactions

Enkephalin: MP2 vs PBE//DFTB-disEnkephalin: MP2 vs PBE//DFTB-dis

compact extended

conformer

kcal

Page 47: DFT and VdW interactions

Enkephalin: MP2 vs PBE+dis//DFTB-disEnkephalin: MP2 vs PBE+dis//DFTB-dis

compact extended

conformer

kcal

Page 48: DFT and VdW interactions

CONCLUSIONS CONCLUSIONS

•Dispersion favors compact structures ~ 15 kcal/mole

•MP2/6-31G*:

- internal BSSE

- higher level correlation contribution

-PBE and B3LYP differ in stability of extended (C5) confs

-B3LYP overestimates Pauli repulsion: N-H...

Page 49: DFT and VdW interactions

DFT+large soft matter structures: don‘t do without dispersion!

DFT+large soft matter structures: don‘t do without dispersion!

- large impact on relative energies

- stabilizes more compact structures:

relevant secondary structures may

not be stable without!