Development of Novel Lithium Salts for Battery Applications.

43
Development of Development of Novel Lithium Novel Lithium Salts for Battery Salts for Battery Applications Applications

Transcript of Development of Novel Lithium Salts for Battery Applications.

Page 1: Development of Novel Lithium Salts for Battery Applications.

Development of Novel Development of Novel Lithium Salts for Lithium Salts for

Battery ApplicationsBattery Applications

Page 2: Development of Novel Lithium Salts for Battery Applications.

1. Introduction – searching for new salts for lithium batteries

2. Synthesis and characterization of novel family of organic covalent lithium salts

3. Properties of polymer and liquid electrolytes containing newly developed salts:

• conductivity • lithium transference number• formation of ionic aggregates• electrochemical stability • performance in lithium batteries

4. Conclusions

Outline of the presentation

Page 3: Development of Novel Lithium Salts for Battery Applications.

Anions:

• are an important part of SEI build-upat +/- electrodes

• Control transport numbers t+ /t-

• Control dissociation and conductivity

• Control aluminium corrosion

Page 4: Development of Novel Lithium Salts for Battery Applications.

AsF6-

BF4-

PF6- SbF6

-

ClO4-

Classics…Classics…

Tendency to décompose according to equilibrium:LiBF4 BF3 + <LiF>

LiPF6 PF5 + <LiF>Fast reaction above 80°C

Destruction of electrolyte and interfaces

Explosive ! Toxic !

Page 5: Development of Novel Lithium Salts for Battery Applications.

Conceptual approach to anion design

“N, C” are favorable:

Weak interactions Li—N but easy oxidation

“O” is not a favorable building block:

Strong Li—O interactions ion pairing, ≠ ClO4-, BOB-

If O present, F or CnF2n+1 is required

Page 6: Development of Novel Lithium Salts for Battery Applications.

Stability Domains

Li4Ti5PO12

LiV3O8

LiMnPO4

LiFePO4

LiCoPO4

Li metal

LiMO2 mixed oxides

Graphite

Fluorinated anions

Non fluorinated anions

Page 7: Development of Novel Lithium Salts for Battery Applications.

Hückel anions…

X = N, C-CN, CRF, S(O)RF

See P. Johansson et alPhysical Chemistry Chemical Physics, volume 6, issue 5, (2004).

Aromaticity 4n + 2 «  » electrons

pKA = 10-60 pKA = 10-20

Gain of > 1 eV by resonance

Page 8: Development of Novel Lithium Salts for Battery Applications.

LiDCTA

NN

N

CNNC

-

DCTA

Stable to 3.8 V (La Sapienza, KZ) inexpensive

NH2H2N

CNNC

ON

O-

NC CN

NN

N--2H2O

Gives quite fluid ILs N

NC CN

NN

N-

Page 9: Development of Novel Lithium Salts for Battery Applications.

Most Stable Lithium Imidazole Configurations

LiTDI LiPDI

B3LYP/6-311+G(d)Scheers et al. 2009

1.88 Å1.87 Å

1.92 Å

1.93 Å

Page 10: Development of Novel Lithium Salts for Battery Applications.

LiTDI < LiPDI < LiDCTA < LiTFSI < LiPF6

Gas Phase Ion Pair Dissociation Energies

Ion pair (g) Li+ (g) + Anion- (g)

MP2/6-31G(d)

LiTDI LiPDI LiDCTA LiTFSI LiPF6 Scheers et al. 2009

Page 11: Development of Novel Lithium Salts for Battery Applications.

LiTDI (2-trifluoromethyl-4,5-LiTDI (2-trifluoromethyl-4,5-dicyanoimidazole lithium salt)dicyanoimidazole lithium salt)

C

CN

C

N-

CF3

C

C

N

N

Li+

d io x a n e / T

+ L i2 C O 3 / w a te r

C NH2

NH2CN

N O

C

O

C

O

CF3

CF3

+

- Easy, low‑demanding, inexpensive, one‑step, high yield syntheses;

- Salts are pure, stable in air atmosphere, non‑hygroscopic, stable up to 250°C, easy to handle;

Page 12: Development of Novel Lithium Salts for Battery Applications.

New saltsNew salts

- NN

CF3

N N

- NN

C2F5

N N

- NN

n-C3F7

N N

-

N

NN

N

CF3

Li+

Li+

Li+

Li+

LiTDI LiPDI LiHDI

LiTPI

Page 13: Development of Novel Lithium Salts for Battery Applications.

Conductivity in PEO

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.51E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

cond

uctiv

ity / -1

cm-1

1000/T / K-1

DCTA PDI TDI

SS / PEO20LiX / SS

cooling scan

LiDCTALiPDILiTDI

Page 14: Development of Novel Lithium Salts for Battery Applications.

LiHDI-PEO ConductivityLiHDI-PEO Conductivity

1:25 Ea=76.4 kJ∙mol-1 1:50 Ea=121.8 kJ∙mol-1

-8

-7

-6

-5

-4

-3

2,9 3 3,1 3,2 3,3 3,4 3,5

1000·T-1 / K-1

log(

σ / S

·cm

-1)

1:25 Li/O1:50 Li/O

Page 15: Development of Novel Lithium Salts for Battery Applications.

N

NN

NC CN

Li+

2.4 2.6 2.8 3.0 3.2 3.4 3.61E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

T/°C2139,460,184

C

ondu

cibi

lità

/ S

cm-1

x: 10%

1000T-1 / K-1

111,5

x: 0%

PEO20LiCF3SO3+ ZrO2SACasting

PEO20LiDCTAHot-Pressing

2.4 2.6 2.8 3.0 3.2 3.4 3.61E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.0121

T / °C39,460,184111,5

Cond

ucib

ilità

/ Sc

m-1

1000T-1 / K-1

PEO20

LiBOB

PEO20

LiBF4

PEO20LiBOB/ LiBF4

Hot-Pressing

2.4 2.6 2.8 3.0 3.2 3.4 3.61E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.0121

T / °C39,460,184111,5

Con

duci

bilit

à / S

cm-1

1000T-1 / K-1

PEO20

LiDCTA

PEO20

LiBF4

2.6 2.8 3.0 3.21E-6

1E-5

1E-4

1E-3

0.01

Conduct

ivity

S

/ cm

1000 / T K-1

PEO 20

A

PEO 20

B

PEO20LiTDIPEO20LiPDI

Hot-PressingPEO20LiTDIPEO20LiPDI

Page 16: Development of Novel Lithium Salts for Battery Applications.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.00

0.05

0.10

0.15

0.20

curr

ent /

mA

/cm

2

Potential / V

DCTA PDI TDI

Li / PEO20LiX / Super P

Anodic breakdown voltage vs. Li

P(EO)20LiDCTA 3.6V

P(EO)20LiPDI 4.0V

P(EO)20LiTDI 4.0V

Anodic stability

LiDCTALiPDILiTDI

Page 17: Development of Novel Lithium Salts for Battery Applications.

0 40 80 120 160 2000

-20

-40

-60

-80

-100

Zim

m /

Ohm

Zreal / Ohm

2h 4.5h 7h 1d 2d 5d 7d 12d

0 40 80 120 160 2000

-20

-40

-60

-80

-100

Zim

m /

Ohm

Zreal / Ohm

2h 4.5h 7h 1d 2d 5d 7d 12d

0 40 80 120 160 2000

-20

-40

-60

-80

-100

Zim

m /

Ohm

Zreal / Ohm

2h 4.5h 7h 1d 2d 5d 7d 12d

LiPDI

LiTDILiDCTA

Li / PEO20LiX / Li

Interphase resistance - PEO

Page 18: Development of Novel Lithium Salts for Battery Applications.

0 3 6 9 12 150

40

80

120

160

200

240

resi

stan

ce /

Ohm

time / d

PDIa PDIb TDIa TDIb DCTAa DCTAb

Interphase resistance - PEOLi / PEO20LiX / Li

LiPDIaLiPDIbLiTDIaLiTDIbLiDCTAaLiDCTAb

Page 19: Development of Novel Lithium Salts for Battery Applications.

Cycling behaviour

Page 20: Development of Novel Lithium Salts for Battery Applications.

Rate capability (PEO)

% o

f ca

paci

ty a

t C

/20

Page 21: Development of Novel Lithium Salts for Battery Applications.

Rate capability (PEO)

% o

f ca

paci

ty a

t C

/20

Page 22: Development of Novel Lithium Salts for Battery Applications.

LiLiTDI-PEGDME500 ConductivityTDI-PEGDME500 Conductivity

-6

-5,5

-5

-4,5

-4

-3,5

-3

-2,5

2,9 3 3,1 3,2 3,3 3,4 3,5 3,6

1000·T-1 / K-1

log(

σ / S

·cm

-1)

2M1M0.33M0.1M0.033M0.01M

Page 23: Development of Novel Lithium Salts for Battery Applications.

Transference numbers in Transference numbers in PEGDME 500PEGDME 500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1 0 1 2 3 4 5

-log(c / mol·dm-3)

t +

LiTDI

LiPDI

LiHDI

Page 24: Development of Novel Lithium Salts for Battery Applications.

Cation transference number vs. Cation transference number vs. Ionic conductivity (PEGDME 500)Ionic conductivity (PEGDME 500)

Salt Ionic Conductivity

at 1 mol·dm-3 / mS·cm-1

Transference Number at

1 mol·dm-3

LiTPI 0.05 0.61

LiHDI 0.20 0.21

LiPDI 0.26 0.21

LiTDI 0.28 0.17

Page 25: Development of Novel Lithium Salts for Battery Applications.

LiTDI-PEGDME500LiTDI-PEGDME500Stability vs. Lithium against timeStability vs. Lithium against time

0

200

400

600

800

0 200 400 600 800t / h

R /

Ω·c

m-1

1. sample2. sample3. sample

Page 26: Development of Novel Lithium Salts for Battery Applications.

LiLiTDI-PC ConductivityTDI-PC Conductivity

-5

-4,5

-4

-3,5

-3

-2,5

2,9 3 3,1 3,2 3,3 3,4 3,5 3,6

1000·T-1 / K-1

log(

σ / S

·cm

-1)

1M0.25M0.1M0.033M0.01M0.0033M0.001M

Page 27: Development of Novel Lithium Salts for Battery Applications.

LiLiHDI-PC ConductivityHDI-PC Conductivity

-5,5

-5

-4,5

-4

-3,5

-3

-2,5

2,9 3 3,1 3,2 3,3 3,4 3,5 3,6

1000·T-1 / K-1

log(

σ / S

·cm

-1)

1M0.33M0.1M0.033M0.01M0.0033M0.001M0.00033M

Page 28: Development of Novel Lithium Salts for Battery Applications.

LiLiTDI-PC Molar ConductivityTDI-PC Molar Conductivity

0

10

20

30

40

50

0 0,2 0,4 0,6 0,8 1

c0.5 / mol0.5·dm-1.5

Λ /

S·c

m2 ·m

ol-1

20°C40°C60°C

Page 29: Development of Novel Lithium Salts for Battery Applications.

LiLiHDI-PC Molar ConductivityHDI-PC Molar Conductivity

0

2

4

6

8

10

12

0 0,2 0,4 0,6 0,8 1

c0.5 / mol0.5·dm-1.5

Λ /

S·c

m2 ·m

ol-1

20°C40°C60°C

Page 30: Development of Novel Lithium Salts for Battery Applications.

LiTDI-PC Fuoss-Kraus formalismLiTDI-PC Fuoss-Kraus formalism association estimation association estimation

0

20

40

60

80

100

0 1 2 3 4 5

-log(c) / mol·dm-3

% o

f io

ns /

ion

pair

s / t

ripl

ets.

ion pairstriplets"free" ions

Page 31: Development of Novel Lithium Salts for Battery Applications.

LiLiHDI-PC Fuoss-Kraus formalismHDI-PC Fuoss-Kraus formalism association estimation association estimation

0

20

40

60

80

100

0 1 2 3 4 5

-log(c) / mol·dm-3

% o

f io

ns /

ion

pair

s / t

ripl

ets.

"free" ionsion pairstriplets

Page 32: Development of Novel Lithium Salts for Battery Applications.

Transference NumberTransference Numberss in PC in PC

0,0

0,1

0,2

0,3

0,4

0,5

0 1 2 3 4 5

-log(c / mol·dm-3)

t +

LiTDILiPDILiHDI

Page 33: Development of Novel Lithium Salts for Battery Applications.

Salts-PC Stability vs. LithiumSalts-PC Stability vs. Lithium

-0,1

-0,08

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0,08

0,1

0 1 2 3 4 5

E / V vs. Li

j / m

A·c

m-2

LiTDILiPDILiHDI

Page 34: Development of Novel Lithium Salts for Battery Applications.

LiTDI LiTDI Conductivity in EC:DMCConductivity in EC:DMC

-4

-3,5

-3

-2,5

-2

-1,5

2,9 3 3,1 3,2 3,3 3,4 3,5 3,6

1000·T-1 / K-1

log(

σ / S

·cm

-1)

1M0.33M0.1M0.033M0.01M

Page 35: Development of Novel Lithium Salts for Battery Applications.

Conductivities (20°C)

Page 36: Development of Novel Lithium Salts for Battery Applications.

Ragone Signature

Page 37: Development of Novel Lithium Salts for Battery Applications.

Anodic limit (Pt, EC-DMC)

Page 38: Development of Novel Lithium Salts for Battery Applications.

Anodic limit (Al, EC-DMC)

Page 39: Development of Novel Lithium Salts for Battery Applications.

Charge profile 4.3 V cut-off, Al collector

Page 40: Development of Novel Lithium Salts for Battery Applications.

Cycling LiMn2O4 4.3 V (EC-DMC)

Swagelok cell , Al plunger

Page 41: Development of Novel Lithium Salts for Battery Applications.

New imidazole-derived saltsNew imidazole-derived salts• Easy, low‑demanding, inexpensive, one‑step, high yield

syntheses;• Salts are pure, stable in air atmosphere, non‑hygroscopic, stable

up to 250°C, easy to handle;• 20°C ionic conductivity exceeds:

10‑3 S∙cm-1 in PC, 10‑4 S∙cm‑1 in PEGDME50010‑6 S∙cm‑1 in PEO (10‑4 S∙cm‑1 at 40°C)6 mS∙cm‑1 in EC:DMC

• T+ at ionic conductivity maximum reaches:0.45 in PC, 0.40 in EC-DMC, 0.25 in PEGDME500 (but overall max 0.62);

• Stable over time against Li;• Stable up to 4.4 V vs. Li against metallic lithium anode;• Stable up to 5.0 V vs. Li against aluminum;• Much smaller association rate than commercially available salts;

Page 42: Development of Novel Lithium Salts for Battery Applications.

Research team working on new saltsResearch team working on new salts

Presentation of research teamworking on new lithium salts:

Warsaw University of Technology: - - L. NiedzickiL. Niedzicki and W. WieczorekW. Wieczorek – characterization of salts and low molecular weight polyether electrolytes- - J. PrejznerJ. Prejzner, P. SzczecińskiP. Szczeciński, M. BukowskaM. Bukowska - synthesis of new salts- - Z. ŻukowskaZ. Żukowska – spectroscopic studies

Universite de Picardie Jules Verne, Laboratoire de Reactivite et de Chimie des Solides- - S. GrugeonS. Grugeon, S. LaruelleS. Laruelle - characterization of solid polymeric electrolytes, studies of electrochemical stability and battery performance- and M. ArmandM. Armand – development of new salt systems

Faculty of Chemistry, University of Rome, “ La Sapienza- - S. PaneroS. Panero, P. RealeP. Reale and B. ScrosatiB. Scrosati, - characterization of solid polymeric electrolytes; conductivity, transference numbers and electrochemical stability

Department of Applied Physics, Chalmers University of Technology, - - J. ScheersJ. Scheers, P. JohanssonP. Johansson, P. JacobssonP. Jacobsson – modeling and spectroscopic studies

Page 43: Development of Novel Lithium Salts for Battery Applications.

For inquiries about For inquiries about buying LiTDIbuying LiTDI

(lithium 4,5-dicyano-2-(lithium 4,5-dicyano-2-(trifluoromethyl)imidazolate)(trifluoromethyl)imidazolate)

please contact:please contact:Leszek NiedzickiLeszek Niedzicki

[email protected]@ch.pw.edu.pl

- NN

CF3

N N

Li+

LiTDI