Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L....

23
Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1 , Maris Laivenieks 2 , Claire Vieille 2 , J. Gregory Zeikus 2 , and Robert M. Worden 1 1 -Department of Chemical Engineering and Materials Science 2 -Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, Michigan 2006 AIChE Annual Meeting San Francisco, CA

Transcript of Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L....

Page 1: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes

Brian L. Hassler1, Maris Laivenieks2, Claire Vieille2, J. Gregory Zeikus2, and Robert M. Worden1

1-Department of Chemical Engineering and Materials Science2-Department of Biochemistry and Molecular Biology

Michigan State University, East Lansing, Michigan

2006 AIChE Annual MeetingSan Francisco, CA

Page 2: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Presentation Outline Motivation Dehydrogenase enzymes Formation of bioelectronic interfaces Characterization techniques Results Summary

Page 3: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Motivation Rapid detection Identification of multiple analytes High throughput screening Affordable fabrication

Page 4: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Dehydrogenase Enzymes Catalyze electron transfer reactions Cofactor dependence: NAD(P)+

Challenge: cofactor recycling

Substrate

Product

NAD(P)+

NAD(P)HDehydrogenase

Enzyme Reaction

cofactorcofactorenzymeenzymeSubstrate

Product

NAD(P)+

NAD(P)HDehydrogenase

Enzyme Reaction

cofactorcofactorenzymeenzyme

MEDox

MEDred

Cofactor Regeneration

mediatormediator

Page 5: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Enzyme Interface Assembly Cysteine: branched, trifunctional linker

Thiol group: self assembles on gold Carboxyl group: binds to electron mediator Amine group: binds to cofactor

Mediator used Toluidine Blue O (TBO)

HS

O

CH3

N

S

N

H3C

H3C

NH

HN

O

O

O B

P

O

O

O

O P

O

O

HO

O

N

N

NN

NH2

O

OH

OHN

O

NH2

O

O

O

Page 6: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Reaction Mechanism

Hassler et al., Biosensors and Bioelectronics, 21(11), 2146-2154 (2006)

Cysteine TBO

EDC+/NHS*

CBA

EDC/NHSGold Gold Gold Gold

NAD(P)+ Protein

Gold Gold Gold

*N-Hydroxysulfosuccinimide +N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide

Page 7: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Presentation Outline Motivation Sensing mechanisms Formation of bioelectronic interfaces Characterization techniques Results Summary

Page 8: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Chronoamperometry Technique:

Step change in potential Measure current vs. time

Parameters obtained: Electron transfer coefficients (ket) Charge (Q) Surface coverage ()

Time

Po

ten

tia

l

E1

E2

Time

Cu

rre

nt

Q

nFA

' ' " "

et et et et

' 'I = k Qexp(-k t)+k Qexp(-k t)*

et etI = k Q exp(-k t)

*

Zayats et al., Journal of the American Chemical Society, 124, 14724-15735 (2002)Katz, E. and I. Willner, Langmuir, 13(13), 3364-3373 (1997)

Page 9: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Cyclic Voltammetry Technique:

Conduct potential sweep Measure current

Parameters obtained: Sensitivity (slope) Maximum turnover (TRmax)

max

satcat oI I

TRFn A

Time

Po

ten

tia

l

E1

E2

E1

Potential

Cu

rre

nt

ConcentrationC

urr

ent

Page 10: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Constant Potential Amperometry Technique:

Set constant potential Vary analyte concentration

Parameters obtained: Sensitivity

Time

Cu

rre

nt

Concentration

Cu

rren

t

Page 11: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Presentation Outline Motivation Sensing mechanisms Formation of bioelectronic interfaces Characterization techniques Results Summary

Page 12: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

The Current System Protein array

4 working electrodes Diameter: 3 mm Counter electrode

Electrode formation: Reservoir in PDMS*

Molecular self-assembly Different enzymes

* Polydimethylsiloxane (PDMS)

Page 13: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Sorbitol Dehydrogenase (SDH) Organism: Pseudomonas sp. KS-E1806 Cofactor dependence: NAD+

Temperature stability: 30-50C

Sorbitol

Fructose

NAD+

NADHDehydrogenase

Enzyme Reaction

cofactorcofactorenzymeenzyme

MEDox

MEDred

Cofactor Regeneration

mediatormediator

Page 14: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Chronoamperometric Response Substrate: Sorbitol Concentration: 5 mM Kinetic parameters:

k’= 690 s-1

k”= 87 s-1

Surface coverage: ’= 8.710-12 mol cm-2

”= 8.010-12 mol cm-2

0

20

40

60

80

100

120

0 0.01 0.02 0.03 0.04 0.05

Time (s)

Cu

rren

t (m

A)

Page 15: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Cyclic Voltammetric Response Concentration range: 3-21 mM Sensitivity: 3.4 mA mM-1 cm-2

TRmax=38 s-1

-15

-10

-5

0

5

10

15

-300-100100300

Voltage (mV)

Cu

rren

t (m

A)

0

2

4

6

8

10

12

14

0 10 20 30

Concentration (mM)

Cu

rren

t (m

A)

Page 16: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Amperometric Response Potential: -200 mV Concentration range: 1-6 mM Sensitivity: 2.8 mA mM-1 cm-2

0

1

2

3

4

5

0 20 40 60 80

Time (s)

Cu

rren

t (m

A)

0

2

4

6

8

10

0 2 4 6 8

Concentration (mM)

Cu

rren

t (m

A)

Page 17: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Other Enzymes UsedMannitol dehydrogenase

Organism: Lactobacillus reuteri Reaction: Fructose Mannitol Cofactor specificity: NAD+

Thermal stability: 50C-90C

Page 18: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Other Enzymes UsedSecondary alcohol dehydrogenase

Organism: Thermoanaerobacter ethanolicus Reaction: 2-Propanol Acetone Cofactor specificity: NADP+

Thermal stability: 30C-100C

Page 19: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Chronoamperometric Results

* Chronoamperometric measurements were made at a concentration of 5 mM of the substrate.

Enzyme Substrate

k'et(s-1) k"et(s

-1) '(10-12 mol cm-2) "(10-12 mol cm-2)SDH Sorbitol 6843.2 870.3 8.70.4 8.00.9MDH Mannitol 5059.3 452.1 7.20.3 6.00.1

2 ADH 2-Propanol 69013 NA 161.3 NA

Electron Transfer Coefficient Surface Coverage

Page 20: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Cyclic Voltammetry Results

Enzyme Substrate Saturation Current Sensitivity Turnover Rate

(Isat-mA) (mA mM-1 cm-2) Low (mM) High (mM) (s-1)SDH Sorbitol 11.60.3 3.40.4 3 21 38.11.2MDH Mannitol 9.90.1 8.40.5 1 11 20.10.32 ADH 2-Propanol 7.10.4 2.50.2 3 21 28.50.4

Concentration Range

Page 21: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Conclusions Developed self-assembling biosensor array Multiple analyte detection

Sorbitol Mannitol 2-Propanol

Characterized interfaces electrochemically Chronoamperometry Cyclic voltammetry Constant potential amperometry

Page 22: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Acknowledgments- Ted Amundsen (CHEMS-MSU) Yue Huang (EECS-MSU) Kikkoman Corporation Funding sources

Michigan Technology Tri-Corridor (MTTC) IRGP programs at MSU Department of Education GAANN Fellowship

Page 23: Development of Affordable Bioelectronic Interfaces Using Medically Relevant Soluble Enzymes Brian L. Hassler 1, Maris Laivenieks 2, Claire Vieille 2, J.

Thank you

Questions?