Development of a Concurrent Dual-Band Switch-Mode Power...

21
Yifei Li, Byron J. Montgomery and Nathan M. Neihart Iowa State University WAMICON 2016 – Clearwater Beach, FL Development of a Concurrent Dual-Band Switch-Mode Power Amplifier Based on Current- Switching Class-D Configuration

Transcript of Development of a Concurrent Dual-Band Switch-Mode Power...

Page 1: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Yifei Li, Byron J. Montgomery and Nathan M. Neihart

Iowa State University

WAMICON 2016 – Clearwater Beach, FL

Development of a Concurrent

Dual-Band Switch-Mode Power

Amplifier Based on Current-

Switching Class-D Configuration

Page 2: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Contents Contents

Background and Motivation

Theoretical Analysis of Proposed Concurrent Dual-

band Class-D Power Amplifier

Design Method and Considerations

Measurement Results and Discussion

2

Page 3: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Demand for Concurrent Multi-Band PAs Demand for Concurrent Multi-Band PAs

Higher data rate (carrier aggregation)

By using concurrent (multi-)dual-band PAs, we are trying to reduce area, cost, design complexity and increase efficiency as well.

3

PA1

PA2

Duplexer

DuplexerDiplexer

f1,up

f2,up

f1,dn

f2,dn

f1

f2

f1,f2

Single-Band PA

f1,f2

Dual-Band Duplexer

f1,f2

f1,f2

Concurrent Dual-Band

PA

Improve

Currently Used TX Schematic for CA

Proposed TX Schematic for CA

Page 4: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Existing Concurrent Dual-Band PAs Existing Concurrent Dual-Band PAs

Linear PAs are used to accommodate the varying envelope of concurrent dual-band signals

Theoretical Maximum Drain efficiency of Linear PAs

Ξ· =π‘ƒπ‘œπ‘ƒπ·πΆ=π‘ƒπ‘œ1 + π‘ƒπ‘œ2𝑉𝐷𝐷 βˆ— 𝐼𝐷𝐢

=2 βˆ—12βˆ—π‘‰π‘‘π‘ ,π‘šπ‘Žπ‘₯2πœΆβˆ—πΌπ‘‘π‘ ,π‘šπ‘Žπ‘₯2𝜢

𝑉𝑑𝑠,π‘šπ‘Žπ‘₯/2 βˆ— 𝐼𝑑𝑠,π‘šπ‘Žπ‘₯/2= 25%

Ξ· =π‘ƒπ‘œπ‘ƒπ·πΆ=π‘ƒπ‘œ1 + π‘ƒπ‘œ2𝑉𝐷𝐷 βˆ— 𝐼𝐷𝐢

=2 βˆ—12βˆ—π‘‰π‘‘π‘ ,π‘šπ‘Žπ‘₯2πœΆβˆ—πΌπ‘‘π‘ ,π‘šπ‘Žπ‘₯𝜷

𝑉𝑑𝑠,π‘šπ‘Žπ‘₯/2 βˆ— 𝐼𝑑𝑠,π‘šπ‘Žπ‘₯/𝜸= 62%

Note:𝛼, 𝛽, 𝛾 are about 2, 4, and 5 respectively in most cases (non-harmonic related frequency ratio).

4 Z. Zhang, MWCAS, 2015. X. Chen, MTT 2013

Concurrent Dual-Band Class A

Concurrent Dual-Band Class B

0 0.5 1 1.5 20

0.5

1

1.5

2

Time

Vd

s a

nd I

ds

Vds

Ids

0 0.5 1 1.5 20

0.5

1

1.5

2

TimeV

ds a

nd I

ds

Vds

Ids

Concurrent Dual-Band Class A Concurrent Dual-Band Class B Input Waveform

+

Page 5: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Existing Concurrent Dual-Band PAs in Literatures Switchless Dual-Band PA: IMs not considered

Linear Concurrent Dual-Band PAs: IMs shorting

Switch-Mode Concurrent Dual-Band PAs? Higher concurrent-mode output power

Higher concurrent-mode efficiency

5

Frequency (GHz)

Pout @ Single Mode

Pout @ Concurrent

Mode

Efficiency @ Single Mode

Efficiency @ Concurrent

Mode Signal

IET MAP, 2011 1.96/3.5 39.5/40 dBm 39.5 dBm 60%/55% 49% CW

WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

T-MTT, 2012 1.8/2.4 36.2/34.5 dBm 33.4 dBm 54.2%/40.7% 34.4% LTE/WiMax

TCAS I, 2014 0.85/2.33 44/42.5 dBm 31.4 dBm 60%/53% 26.7% CW/LTE

Frequency (GHz)

Pout @ Single Mode

Pout @ Concurrent Mode

Efficiency @ Single Mode

Efficiency @ Concurrent Mode

Signal

T-MTT, 2012 1.9/2.6 41.5/41.2 dBm 39.5 dBm 73%/67.5% 56% CW

IMS, 2014 1.9/2.6 44.5/44 dBm 42 dBm 65%/60% 53% CW

Page 6: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Contents Contents

Backgrounds and Motivations

Theoretical Analysis of Proposed Concurrent Dual-

band Class-D Power Amplifier

Design Method and Considerations

Measurement Results and Discussion

Conclusion

6

Page 7: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Proposed Concurrent Dual-Band Current-

Switching Class-D PA

Proposed Concurrent Dual-Band Current-

Switching Class-D PA

Idealized analysis: zero knee voltage, zero threshold voltage

Input signal

7

VDDRLDual-Band

Shunt Resonator

IDC

VB

VIP

VIM

VDSP

VDSM

IDSP

IDSM

VO

IO

Vin

+

-

+ -

-

+

+

+

-

+

-

+

--

M1

M2

*

* *

*

* *

XMR_inXMR_out

𝑉𝐼𝑃 𝑑 = 𝐴 𝑠𝑖𝑛 πœ”1𝑑 + 𝐴 𝑠𝑖𝑛 πœ”2𝑑 + 𝑉𝐡

𝑉𝐼𝑀 𝑑 = 𝐴 𝑠𝑖𝑛 πœ”1𝑑 + πœ‹ + 𝐴 𝑠𝑖𝑛 πœ”2𝑑 + πœ‹ + 𝑉𝐡

Harmonic related frequencies, 𝝎𝟐/𝝎𝟏=2, 3, are avoided.

0 0.5 1 1.5 2-2

-1

0

1

2

3

Time

Magnitude [V

]

VIP

VIM

Page 8: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

8

𝐼𝐷𝑆𝑃 𝑀 𝑑 =

0, 𝑉𝐼𝑃 𝑀 𝑑 < π‘‰π‘‘β„Ž = 0

𝐼𝐷𝐢2𝑉𝐡𝑉𝐼𝑃 𝑀 𝑑 , π‘‰π‘‘β„Ž< 𝑉𝐼𝑃 𝑀 𝑑 < 2𝑉𝐡

𝐼𝐷𝐢 , 𝑉𝐼𝑃 𝑀 𝑑 > 2𝑉𝐡

VIP(VIM)

IDC

IDC/2

VBVth=0

IDSP(M)

2VB

𝐼0 = 𝐼𝐷𝑆𝑃 βˆ’ 𝐼𝐷𝑆𝑀

πΌπ‘œ 𝑑 β‰ˆ 𝐼 π‘š,𝑛 βˆ— sin ( π‘šπœ”1 Β± π‘›πœ”2 𝑑 + πœƒ π‘š,𝑛 )𝑀

π‘š=0

𝑁

𝑛=0

Transistor transfer function

Assuming the PA is overdriven, IDC is fixed

Determined by VDD and RL, independent of A

IDC can be accommodated by changing

VDD or RL when 𝑉𝐡 changes

Drain Current and Output Current

Where 𝐼 0,0 , 𝐼 0,1 , 𝐼 1,0 represent DC and two fundamentals

respectively.

Page 9: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

9

𝐼𝐷𝑆𝑃 𝑀 𝑑 =

0, 𝑉𝐼𝑃 𝑀 𝑑 < π‘‰π‘‘β„Ž = 0

𝐼𝐷𝐢2𝑉𝐡𝑉𝐼𝑃 𝑀 𝑑 , π‘‰π‘‘β„Ž< 𝑉𝐼𝑃 𝑀 𝑑 < 2𝑉𝐡

𝐼𝐷𝐢 , 𝑉𝐼𝑃 𝑀 𝑑 > 2𝑉𝐡

VIP(VIM)

IDC

IDC/2

VBVth=0

IDSP(M)

2VB

𝐼0 = 𝐼𝐷𝑆𝑃 βˆ’ 𝐼𝐷𝑆𝑀

πΌπ‘œ 𝑑 β‰ˆ 𝐼 π‘š,𝑛 βˆ— sin ( π‘šπœ”1 Β± π‘›πœ”2 𝑑 + πœƒ π‘š,𝑛 )𝑀

π‘š=0

𝑁

𝑛=0

Transistor transfer function

Assuming the PA is overdriven, IDC is fixed

Determined by VDD and RL, independent of A

IDC can be accommodated by changing

VDD or RL when 𝑉𝐡 changes

Drain Current and Output Current

Where 𝐼 0,0 , 𝐼 0,1 , 𝐼 1,0 represent DC and two fundamentals

respectively.

VDDRLDual-Band

Shunt Resonator

IDC

VB

VIP

VIM

VDSP

VDSM

IDSP

IDSM

VO

IO

Vin

+

-

+ -

-

+

+

+

-

+

-

+

--

M1

M2

*

* *

*

* *

XMR_inXMR_out

Page 10: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

1 2 3 460

70

80

90

100

2/

1

Dra

in E

ffic

ien

cy(%

)

1 2 3 40

5

10

15

20

Dra

in E

ffic

ien

cy D

rop

(%)

1 2 3 40

5

10

15

20

1 2 3 40

5

10

15

20

A/VB

=1

A/VB

=2

A/VB

=5

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

Time

Mag

nit

ud

e

VDSP

IDSP

A/VB=5

A/VB=2

A/VB=1A/VB=5A/VB=2A/VB=1

Output Voltage and Drain Voltage

Drain Efficiency

What will happen with non-zero knee

voltage?

10

Vo t = RL I 1,0 sin Ο‰1t + ΞΈ(1,0) + I 0,1 sin Ο‰2t + ΞΈ(0,1)

𝑉𝐷𝑆𝑃(𝑀) 𝑑 = 0.5 π‘‰π‘œ 𝑑 Β± π‘‰π‘œ 𝑑

𝑉𝐷𝐷 =1

𝑇 0.5 𝑉𝐷𝑆𝑃 𝑑 + 𝑉𝐷𝑆𝑀(𝑑) 𝑑𝑑𝑇

0

πœ‚ =𝑃𝑅𝐹𝑃𝐷𝐢=(I(0,1)2 +I(1,0)

2 )𝑅𝐿

2 𝑉𝐷𝐷𝐼𝐷𝐢

Page 11: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Non-Zero Knee Voltage Non-Zero Knee Voltage

11

Bias Triode Saturation

Bias current

245mA 176mA

IDC 464mA 468mA

VDC 15V 15V

RL 50Ξ© 40Ξ©

XMR ratio

2:1 2:1

𝜼 93.4% 77.5%

VB

IBias

VB

IDC

Page 12: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Contents Contents

Backgrounds and Motivations

Theoretical Analysis of Proposed Concurrent Dual-

band Class-D Power Amplifier

Design Method and Considerations

Measurement Results and Discussion

Conclusion

12

Page 13: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Design Method Design Method

13

Ideal transformer and shunt resonator provides:

ZLoad = Ideal open @ even harmonics and IMs

ZLoad = Ideal short @ odd harmonics and IMs

ZLoad = Ropt @ fundamentals

Frequency

Order of Nonlinearity

IDSP (A) VDSP (V)

DC 0 0.5 0.155

𝝎𝟏(𝟐) 1 0.38 0.19

𝝎𝟐 ±𝝎𝟏 2 0 0.1

2𝝎𝟏(𝟐) 2 0 0.04

𝟐𝝎𝟏(𝟐) βˆ’πŽπŸ(𝟏) 3 0.09 0

𝟐𝝎𝟏(𝟐) +𝝎𝟐(𝟏) 3 0.1 0

3𝝎𝟏 3 0.02* 0

3𝝎𝟐 3 0.008* 0

RLDual-BandShunt

Resonator

+

-

*

* *

XMR_out

ZLoad

Ideal Load Network

Page 14: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Implementation Considerations Implementation Considerations

Output network target:

Zopt @ fundamentals;

high impedance @ even-order harmonic and IM (especially 2nd-order);

low impedance @ odd-order harmonic and IM

Cout

Differential: absorbed in to dual-band shunt resonator

Common-mode: needs to be resonated out by the output network

14

50Ξ©

f1

f2

VDD

VBVin

Input Matching

Output Matching

Output Matching

Input Balun

Distributed Marchand

Balun

Output Network

Page 15: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Board Layout Board Layout

15

Output Balun

Output Matching

Differential Shunt Resonator

VDD

VDD

VB

VB

Input Matching

InputBalun

Page 16: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Contents Contents

Backgrounds and Motivations

Theoretical Analysis of Proposed Concurrent Dual-

band Class-D Power Amplifier

Design Method and Considerations

Measurement Results and Discussion

Conclusion

16

Page 17: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

0 5 10 15 20 25

18

22

26

30

Input Power(dBm)

Ou

tpu

t P

ow

er(

dB

m)

Single Mode@960MHz

Single [email protected]

Concurrent Mode

Concurrent Mode@960MHz

Concurrent [email protected]

Measurement Results Measurement Results

Single Mode

Low band: πœ‚ = 55.6% @ Pout=30dBm; 6dB over drive

High band:πœ‚ = 48.2% @ Pout=30dBm; 6dB over drive

Concurrent Dual-Band Mode

πœ‚ = 46% @ Pout=29.7dBm; 6dB over drive

17 20 22 24 26 28 300

10

20

30

40

50

60

Output Power(dBm)

Dra

in E

ffic

ien

cy(%

)

20 22 24 26 28 300

3

6

9

12

15

18

Po

wer

Gain

(dB

)

20 22 24 26 28 300

3

6

9

12

15

18

20 22 24 26 28 300

3

6

9

12

15

18

Single Mode@960MHz

Single [email protected]

Concurrent Mode

Page 18: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Comparison to State of Art Concurrent Dual-

Band PAs

Comparison to State of Art Concurrent Dual-

Band PAs

Minimum drain efficiency drop: 9.6% and 2.2%

Minimum output power drop: 0.3dB

Efficiency Improvement

18

𝒇 (GHz) Pout (dBm)

@ Single Mode

Pout (dBm) @ Concurrent

Mode*

Efficiency @ Single Mode

Efficiency @ Concurrent

Mode**

Signal

IET MAP, 2011

1.96/3.5 39/40 36.5 57%/49.5% ‑ 44.1% ‑ CW

WAMICON, 2012

1.8/2.4 35.5/35.5 33 34.7%/32.7% ‑ 24.7% WCDMA/LTE

T-MTT, 2012 1.8/2.4 36.2/34.5 33.4 54.2%/40.7% ‑ 34.4% LTE/WiMAX

TCAS I, 2014 0.85/2.33 44/42.5 31.4 60%/53% † 26.7% † CW/LTE***

T-MTT, 2012 1.9/2.6 41.5/41.2 39.5 73%/67.5% † 56% † CW

This Work 0.96/1.51 30/30 29.7 55.6%/48.2% † 46% † CW

* Total output power, ** Total efficiency, *** CW for single mode, LTE for concurrent mode, † Drain efficiency, ‑ PAE

Page 19: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Acknowledgements

19

This work is supported by

National Science Foundation.

Also, the author would like to

thank Qorvo in Cedar Rapids,

Iowa for their help during

fabrication and measurement.

Page 20: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

Thank You

20

Page 21: Development of a Concurrent Dual-Band Switch-Mode Power ...home.eng.iastate.edu/~neihart/researchProj/MultiBandRF/...WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE

[1] K. Rawat, F. Ghannouchi, "Dual-band matching technique based on dual-

characteristic impedance transformers for dual-band power amplifiers design", IET

Microw. Antennas Propag., 2011

[2] P. Saad, et al, β€œConcurrent dual-band GaN-HEMT power amplifier at 1.8 GHz and

2.4 GHz,” 2012 IEEE WAMICON, pp. 1-5, Apr. 2012.

[3] P. Saad, et al, β€œDesign of a Concurrent Dual-Band 1.8-2.4-GHz GaN-HEMT Doherty

Power Amplifier,” IEEE Trans. Microwave Theory & Tech., vol. 60, no. 6, pp. 1840-1849,

Apr. 2012.

[4] Wenhua Chen, …, F. Ghannouchi, "A Concurrent Dual-Band Uneven Doherty Power

Amplifier with Frequency-Dependent Input Power Division", TCAS I, 2014.

[5] Xiaofan Chen, …, F. Ghannouchi, "Enhanced Analysis and Design Method of

Concurrent Dual-Band Power Amplifiers With Intermodulation Impedance Tuning",

TMTT, 2013

[6] Xiaofan Chen, Wenhua Chen, …, F. Ghannouchi, ''A Concurrent Dual-band 1.9-2.6-

GHz Doherty Power Amplifier with Intermodulation Impedance Tuning", IMS 2014

21