Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a...

27
June 9, 2006 Revision B Development Board Instruction Manual ADC08D1000DEV - Dual 8-Bit, 1.0 GSPS, 1.6W A/D Converter with Xilinx Virtex 4 (XC4VLX15) FPGA © Copyright 2006 National Semiconductor Corporation ADC08D1000DEV Development Board User’s Guide

Transcript of Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a...

Page 1: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

June 9, 2006

Revision B

Development Board Instruction Manual ADC08D1000DEV - Dual 8-Bit, 1.0 GSPS, 1.6W A/D Converter with

Xilinx Virtex 4 (XC4VLX15) FPGA

© Copyright 2006 National Semiconductor Corporation

AD

C08D

1000DEV D

evelopment B

oard User’s G

uide

Page 2: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

2

ADC08D1000EVAL BOARD USER MANUAL – TABLE OF CONTENTS

ADC08D1000EVAL BOARD USER MANUAL – TABLE OF CONTENTS ................................................. 2 1.0 Introduction ........................................................................................................................................... 3 2.0 Board Assembly .................................................................................................................................... 3 3.0 Quick Start ............................................................................................................................................ 3 4.0 Functional Description .......................................................................................................................... 4

4.1 Input circuitry ...................................................................................................................................... 4 4.2 ADC reference ................................................................................................................................... 4 4.3 ADC clock........................................................................................................................................... 4 4.4 Digital Data Output............................................................................................................................. 4 4.5 Power Requirements.......................................................................................................................... 5 4.6 Power Supply Connections................................................................................................................ 5

5.0 Obtaining Best Results ......................................................................................................................... 5 5.1 Clock Jitter.......................................................................................................................................... 5

6.0 Evaluation Board Specifications ........................................................................................................... 5 7.0 Schematic Drawing ADC08D1000DEV – Onboard Clock (VCO + PLL) .............................................. 6

7.1 Schematic Drawing ADC08D1000DEV – Analog Inputs (I,Q) & Digital Trigger Input....................... 7 7.2 Schematic Drawing ADC08D1000DEV – ADC connected to Virtex4 FPGA..................................... 8 7.3 Schematic Drawing ADC08D1000DEV – USB Interface................................................................... 9 7.4 Schematic Drawing ADC08D1000DEV – Power Supplies 1 ........................................................... 10 7.5 Schematic Drawing ADC08D1000DEV – Power Supplies 2 ........................................................... 11 7.6 Schematic Drawing ADC08D1000DEV – Expansion Header Interface .......................................... 12

8.0 Bill of Materials (Page 1 of 2).............................................................................................................. 13 8.1 Bill of Material (Page 2 of 2)............................................................................................................. 14

9.0 Using the Wavevision4 software with the ADC08D1000DEV ............................................................ 15 9.1 Getting Started ................................................................................................................................. 15 9.2 Control Panel ................................................................................................................................... 17 9.3 Serial Control Mode ......................................................................................................................... 19 9.4 Capturing Waveforms ...................................................................................................................... 20

10.0 Appendix A - Hardware Information.................................................................................................. 20 10.1 LED functions................................................................................................................................. 20 10.2 Expansion Header.......................................................................................................................... 21 10.3 System Block Diagram................................................................................................................... 22

11.0 Appendix B - Installing and running the Wavevision 4 software....................................................... 23 11.1 Install the WaveVision Software. ................................................................................................... 23 11.2 Java™ Technology ........................................................................................................................ 23 11.3 Automatic Device Detection & Configuration................................................................................. 23 11.4 Windows Driver .............................................................................................................................. 23

12.0 Appendix C - Using WaveVision Plots.............................................................................................. 24 The Waveform Plot ................................................................................................................................ 24 The FFT Plot .......................................................................................................................................... 24 FFT Options ........................................................................................................................................... 25 Histogram Plots ...................................................................................................................................... 26 Information Viewer ................................................................................................................................. 26 Data Import and Export .......................................................................................................................... 26

Page 3: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

3

1.0 Introduction The ADC08D1000DEV Board is designed to allow quick evaluation and design development of National Semiconductor’s ADC08D1000 8-bit Analog-to-Digital Converter. This device is specified for 1.0 GSPS operation in 2 channel mode or it can be configured as a 2GSPS Converter in Dual Edge Sampling mode (DES)

This development board is designed to function with National Semiconductor’s WaveVision Software, for fast evaluation. It requires only 3 connections to get started: a Power Supply, a USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board

and the system also allows an external clock to be used if alternative sample rates are required.

The ADC connects to a Xilinx Virtex4 FPGA which stores up to 4K of data from each channel before transferring it through the USB interface to the PC.

2.0 Board Assembly The ADC08D1000 Development Board comes in a low profile plastic enclosure and requires no assisted cooling due to its low power consumption. The ADC08D1000 device is configured entirely through software and also allows changes to easily be made to the FPGA configuration to enable system development.

Analog Q Channel Input

USB

Figure 1 Component Placement & Front Panel

PWR INPUT

Clock Input

Trigger Input

Expansion

PWR SWITCH

Analog I Channel Input

Page 4: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

4

3.0 Quick Start Refer to Figure 1 for locations of the power connection, signal input and USB port.

IMPORTANT NOTE: Install the Wavevision 4 Software before connecting this product to the PC. See Appendix B – Installing Wavevision. For quick start operation:

1. Connect the 12V DC power source (included with the development board) to the rear Power Connector labeled (8-12V DC).

2. Connect a stable sine wave source capable of supplying the desired input frequencies at up to 8 dBm. Connect this signal to the front panel SMA connector labeled “I CH.” through a band pass filter. The exact level needed from the generator will depend upon the insertion loss of the filter used.

3 Connect the USB cable (included) from the USB port to the PC. If this is the first time the board has been connected, Windows may install the drivers for this product at this time.

5. Push the Power Switch to the ON position on the rear panel and check that the Green LED between the switch and the power connector illuminates.

6. Start the Wavevision 4 Software 7. Once loaded the “Firmware Download”

Progress bar should be displayed. See Appendix B for more information.

8. Upon Firmware Download completion, the control panel for the board should automatically be displayed on the PC and the CLK LED on the front panel should be flashing.

8. Set the signal source for the analog input to 8 dBm at the desired frequency. Observe the Out of Range LED labeled OVR on the front panel is illuminated. If this LED is not on, increase the input signal source until it is.

9. Reduce the input level until the OVR LED just turns off.

10. From the Wavevision 4 pull-down menu select Acquire and then Samples. The system will then capture the input waveform and display the results in the time domain.

11. For FFT Analysis click the FFT Tab.

4.0 Functional Description The ADC08D1000 Development Board schematic is shown in Section 7.0.

4.1 Input circuitry The input signal(s) to be digitized should be applied to the front panel SMA connectors labeled “I CH.” and “Q CH.”. These 50 Ohm inputs are intended to accept low-noise sine wave signals. To accurately evaluate the dynamic performance of this converter, the input test signals will have to be passed through a high-quality bandpass filter with at least 10-bit equivalent noise and distortion characteristics.

This evaluation board as delivered is set up for operation with two single-ended analog inputs, which are converted to differential signals on board.

Signal transformers T2 and T3, are connected as baluns, and provide the single-ended to differential conversion. The differential PCB traces to the ADC analog input pins have a characteristic differential impedance of 100 Ohms.

No scope or other test equipment should be connected anywhere in the signal path while gathering data.

4.2 ADC reference The ADC08D1000 has an internal reference that can not be adjusted. However, the Full-Scale (differential) Range may adjusted with the Software Control Panel Refer to Section 9.0 for more information

4.3 ADC clock The ADC clock is supplied on board and is fixed at 1.0GHz. An external clock signal may be applied to the ADC through the SMA Connector labeled “CLOCK” on the front panel. The balun-transformer (T1) converts the single ended clock source to a differential signal to drive the ADC clock pins

Note that it is very important that the ADC clock should be as free of jitter as possible or the apparent SNR of the ADC08D1000 will be compromised.

4.4 Digital Data Output The two channel digital output data from the ADC08D1000 is connected to a Xilinx Virtex 4 FPGA. Up to 4K Bytes of data per channel can be stored and then uploaded over the USB interface to the Wavevision 4 software. The FPGA logic usage is low allowing further code to be written and tested for product development.

Page 5: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

5

4.5 Power Requirements The power supply requirement for the ADC08D1000 Evaluation Board is 12V at 800mA.

Most of the regulators on board are switching regulators for increased power efficiency.

The board typically draws around 500mA but it is always good practice to have extra power reserve in the power supply over the typical power requirements.

A Universal 100-240V AC input to 12V DC Brick Power Supply is included with the development board.

4.6 Power Supply Connections Power to this board is supplied through the power connector on the rear panel. It is advised that only the supplied PSU is used with this board.

The ADC08D1000 supply voltage has been set to 1.9V, ±50 mV using on board regulators.

5.0 Obtaining Best Results Obtaining the best results with any ADC requires both good circuit techniques and a good PC board layout. For layout information for this product please contact you nearest National Semiconductor representative.

5.1 Clock Jitter When any circuitry is added after a signal source, some jitter is almost always added to that signal. Jitter in a clock signal, depending upon how bad it is, can degrade dynamic performance. We can see the effects of jitter in the frequency domain (FFT) as "leakage" or "spreading" around the input frequency, as seen in Figure 2a. Compare this with the more desirable plot of Figure 2b. Note that all dynamic performance parameters (shown to the right of the FFT) are improved by eliminating clock jitter.

Figure 2a. Jitter causes a spreading around the input signal, as well as undesirable signal spurs.

Figure 2b. Eliminating or minimizing clock jitter results in a more desirable FFT that is more representative of how the ADC actually performs.

6.0 Evaluation Board Specifications

Board Size: 168mm x 100mm

Power Requirements: +12V, 800mA

Clock Frequency Range : 200 MHz to 1.0 GHz

Analog Input Range (AC Coupled) 30MHz to 1800MHz

Nominal Analog Input Voltage: 560 mV P-P to 870 mV P-P

Impedance: 50 Ohms

Page 6: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

6

7.0 Schematic Drawing ADC08D1000DEV – Onboard Clock (VCO + PLL)

R1 10

5VRF

1V8I

O R6 10

C19

10n

L8 100M

Hz

C10

10n

C17

10n

SCLK

P4,5

PLL_

LEP5

SDAT

AP4

,5

C110

0pF

C2 100p

F

C3 470p

FC4 1u

F

C18

100p

FC1

610

0pF

PROJ

ECT

NAME

:

LAST

MOD

IFIE

D:Sh

eet

OF

THIS

DOC

UMEN

T CO

NTAI

NS IN

FORM

ATIO

N P

ROPR

IETA

RY T

O NA

TION

AL S

EMIC

ONDU

CTOR

COR

PORA

TION

. USE

WIT

HOUT

WRI

TTEN

PER

MIS

SION

IS E

XPRE

SSLY

FOR

BIDD

EN. C

OPYR

IGHT

2001

.

DATE

:

DATE

:CH

ECKE

D:

DRAW

N:

SCHE

MATI

C RE

V:

DOC

# :NA

TION

AL S

EMIC

ONDU

CTOR

COR

PORA

TION

DCS

PROD

UCT

LINE

2900

Sem

icond

ucto

r Driv

e, S

anta

Clar

a

DESI

GNED

:DA

TE:

PAGE

TIT

LE

28

BIG

GIG

REFE

RENC

E BO

ARD

1.1

____

____

____

IAN

KING

24 /

OCT

/ 200

5

DD /

MMM

/ YYY

Y

____

____

____

Wed

nesd

ay, F

ebru

ary

08, 2

006

IAN

KING

24 /

OCT

/ 200

5__

____

____

____

____

___

____

____

____

____

____

_

____

____

____

____

____

_

CLOC

K IN

PUT

1V8I

O

5VRF

1V8I

OP3

,5,7

,8

R147

18

C9 100p

F

R17 10K

U2

LMX2

31x

NC-1

1CP

o2

GND

3Fi

n4

Finb

5OS

Cin

6NC

-27

OSCout8 FoLD9 CLOCK10

NC-3

11

Data

12

LE13

GND

14

CE15

Vuc

16

NC-4

17VCC 18FL 19Vp 20

CERAMIC ON

LY

VIN

P6,7

,8

5VRF

VIN

VIN

R149

10K

R150 10K

C

BE

31

2

Q8 BC81

7-25

T1

ADTL

2-18

16

34

25

R148

100K

C12

1500

pF

C8 27nF

R9 2K7

C5 470p

F

U3 VCO1

90

GND-

11

Vt2

GND-

23

GND-

34

GND-4 5MOD 6GND-5 7GND-6 8GN

D-7

9RF

_OUT

10GN

D-8

11GN

D-9

12

GND-1013 VCC14 GND-1115 GND-1216

R13

NA

3V3I

OP3

,5,6

,7,8

3V3I

O

3V3I

O

R810

K

C13

470p

F

5VRL

YP3

,6

5VRL

Y

Y110

MHz

EXTE

RNAL

CLOC

KIN

PUT

C159

470p

F

C15

4n7

C14

4n7

J3

SMA

1 2 3

4 5

U1 RELA

Y-RF

303

C11XA2X13X24 Y2 6

Y1 7

YA 8

C2 95VRL

Y

C

BE

31

2

Q1 BC81

7-25

R7 10K

1V8I

O

C7

100p

F

R4 270R3

18

R5 270

C6

100p

F

C11

100p

F

R14

100

R16

10K

EXT_

CLK_

SELE

CTP5

CLKI

N_P

P4

CLKI

N_N

P4

R2 680

U24

LP29

86

GROU

ND1

FEED

BACK

2

TAP

3

INPU

T4

OUTP

UT5

SENS

E6

ERRO

R7

SHDN

8

C110

10uF

R143

18R1

4418

C111

10uF

R10

18

R12

18

C112

100n

Page 7: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

7

7.1 Schematic Drawing ADC08D1000DEV – Analog Inputs (I,Q) & Digital Trigger Input

+-

VOC

MXP

AD

U5

LMH

6555

11

5 16

6

8 13 10

912

12

34

714

15

17

RELA

YBYPA

SSOPTI

ONS

NC A GND

YVCC

U8

74LV

C1G

17

1 2 345

1V8I

O

5VR

LY

C23

100n

C21

100n

C28

100n

5VR

LY

C20

100n

I-CHANNEL

Q-CH

ANNEL

TRIGGER_

IN

R35 10K

R26

10K

R13

1

47

R18

N/A

3V3I

O

R21

0

R14

518

K

R14

610

0K

CHANGE

R A

BOVE T

OCA

P FO

R AC

COUPLI

NG T

O LM65

55

VCM

OP4

DC

_SEL

ECT

P5

I_P

P4

I_N

P4

Q_N

P4

Q_P

P4

TRIG

_IN

P5

R13

8

0

C22

N/A

3V3I

O

1V8I

O

5VR

LY

1V8I

OP2

,5,7

,8

5VR

LYP2

,6

3V3I

OP2

,5,6

,7,8

NO S

TUFF

WIRE

MOD

IFICAT

ION

AS S

PECIFI

ED I

N MANU

FACT

URING

AND

ASSE

MBLY D

OC

C15

810

0n

R24

N/A

12

JP3

C15

610

0n

3V3I

OL1

410

0MH

z

PRO

JEC

TN

AME:

LAST

MO

DIF

IED

:Sh

eet

OF

THIS

DO

CU

MEN

T C

ON

TAIN

S IN

FOR

MAT

ION

PR

OPR

IETA

RY

TO N

ATIO

NAL

SEM

ICO

ND

UC

TOR

CO

RPO

RAT

ION

. USE

WIT

HO

UT

WR

ITTE

N P

ERM

ISSI

ON

IS E

XPR

ESSL

Y FO

RBI

DD

EN. C

OPY

RIG

HT

2001

.

DAT

E:

DAT

E:C

HEC

KED

:

DR

AWN

:

SCH

EMAT

IC R

EV:

DO

C #

:NAT

ION

AL S

EMIC

ON

DU

CTO

R C

OR

POR

ATIO

ND

CS

PRO

DU

CT

LIN

E

2900

Sem

icon

duct

or D

rive,

San

ta C

lara

DES

IGN

ED:

DAT

E:

PAG

E TI

TLE

38

BIG

GIG

REFE

RENC

E BO

ARD

1.1

____

____

____

IAN

KIN

G24

/ O

CT

/ 200

5

DD

/ M

MM

/ Y

YY

Y

____

____

____

Tues

day,

Apr

il 04

, 200

6

IAN

KIN

G24

/ O

CT

/ 200

5__

____

____

____

____

___

____

____

____

____

____

_

____

____

____

____

____

_

ANAL

OG

INPU

TS

C15

733

uF

R13

50

R13

2N

A

R13

3N

A

R13

6N

/A

J2

SMA

1 2 3

4 5

J1

SMA

1 2 3

4 5 J4

SMA

1 2 3

4 5

U4

REL

AY-R

F303

C1

1

XA2

X13

X24

Y2

6Y

17

YA

8C

29

U6 REL

AY-R

F303

C11XA2X13X24 Y2 6

Y1 7

YA 8

C2 9

5VR

LY

V+ VSS

V-YVC

C

U31

LM32

1_SO

T23

1 2 345

C15

510

0n

R13

7N

/A

T2

ADTL

2-18

16

34

25

T3

ADTL

2-18

16

34

25

C24

4n7

R27 100

C25

4n7

C

BE

31

2

Q2

BC81

7-25

C

BE

31

2

Q3

BC81

7-25

C27

4n7

R30 100

C26

4n7

R28

10K

R29 10

K

VCMO

CON

NECTS

TO G

ROUND

WHEN

AC C

OUPL

ING IS

SEL

ECTED

R25

10K

R19 0

R22 0

R13

449

.9

Page 8: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

8

7.2 Schematic Drawing ADC08D1000DEV – ADC connected to Virtex4 FPGA

Page 9: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

9

7.3 Schematic Drawing ADC08D1000DEV – USB Interface

C50

100n

R68

10k

C51

100n

C52

100n

R63

1M

C53

100n

C54

100n

3V3I

O

SLAV

E SE

RIAL

MAST

ER S

ERIA

L

3V3

A B

R76 N

/A

R12

73.

3K

J51 2 3 4 5 6

3V3I

O

PR

OG

RA

MB

A B

R59

10K

MAST

ERSE

RIAL

SLAV

ESE

RIAL

MS

TR_S

DA

TA

3V3I

O

MS

TR_S

CLK

PR

OJE

CT

NA

ME

:

LAS

T M

OD

IFIE

D:

She

etO

F

THIS

DO

CU

MEN

T C

ON

TAIN

S IN

FOR

MAT

ION

PR

OPR

IETA

RY

TO N

ATIO

NAL

SEM

ICO

ND

UC

TOR

CO

RPO

RAT

ION

. USE

WIT

HO

UT

WR

ITTE

N P

ERM

ISSI

ON

IS E

XPR

ESSL

Y FO

RBI

DD

EN. C

OPY

RIG

HT

2001

.

DA

TE:

DA

TE:

CH

EC

KE

D:

DR

AW

N:

SC

HE

MA

TIC

RE

V:

DO

C #

:NA

TIO

NA

L S

EM

ICO

ND

UC

TOR

CO

RP

OR

ATI

ON

DC

S P

RO

DU

CT

LIN

E

2900

Sem

icon

duct

or D

rive,

San

ta C

lar a

DE

SIG

NE

D:

DA

TE:

PA

GE

TIT

LE

58

BIG

GIG

REF

EREN

CE

BO

AR

D

1.1

____

____

____

IAN

KIN

G24

/ O

CT

/ 20

05

DD

/ M

MM

/ Y

YY

Y

____

____

____

Wed

nesd

ay,

Feb

ruar

y 0

8, 2

006

IAN

KIN

G24

/ O

CT

/ 20

05V

4 F

LAS

H C

ON

FIG

LED

STA

TUS

____

____

____

____

____

_

US

B C

ON

TRO

LLE

R

U16

74LV

C54

1

I02

I13

I24

I35

I46

I57

I68

I79

OE11

OE

219

O0

18O

117

O2

16O

315

O4

14O

513

O6

12O

711

GND10

VC

C20

R75

N/A

R77

N/A

R12

833

0R

3V3I

O

CY

_DA

TA12

3V3I

O

CO

NF

_CC

LK

RE

SE

TB

TRIG

_IN

P3

MS

TR_D

ATA

P8

MS

TR_S

CLK

P8

FP

GA

_RE

SE

TP

8

CY

_DA

TA13

DC

_SE

LEC

TP

3

3V3I

O

EXT

_CLK

_SE

LEC

TP

2

DC

_SE

LEC

T

C69

100n

U15

24C

02/S

O8

A0

1

A1

2

A2

3

GN

D4

SD

A5

SC

L6

WP

7

VC

C8

EXT

_CLK

_SE

LEC

T

C68

100n

CY

_DA

TA14

C70

100n

C67

100n

C71

100n

3V3

V4_

TMS

FP

GA

_RE

SE

TP

8

EC

M_F

SR

P4

CA

LIB

RA

TEP

4

V4_

TDO

SC

LKP

2,4

SD

ATA

P2,

4

AD

C_C

SP

4

TP3

TP_C

Y_C

LK

1

PO

WE

R_D

OW

NP

4 PO

WE

R_D

OW

N_Q

P4

V4_

TCK

MS

TR_S

DA

TA

Y3

OS

C (

SM

)

VDD4

GND2

OE

1O

UT

3

C57

100n

MS

TR_S

CLK

U9C

XC4V

LX15

_363

FB

GA

IO_L

1P_G

C_C

C_L

C_3

B12

IO_L

8N_G

C_C

C_L

C_4

W8

IO_L

1N_G

C_C

C_L

C_3

A11

IO_L

2P_G

C_V

RN

_LC

_3A

10

IO_L

2N_G

C_V

RP

_LC

_3B

9

IO_L

3P_G

C_L

C_3

C11

IO_L

3N_G

C_L

C_3

B11

IO_L

4P_G

C_L

C_3

B10

IO_L

4N_G

C_V

RE

F_L

C_3

C10

IO_L

5P_G

C_L

C_3

B13

IO_L

5N_G

C_L

C_3

A13

IO_L

6P_G

C_L

C_3

A8

IO_L

6N_G

C_L

C_3

B8

IO_L

7P_G

C_L

C_3

B14

IO_L

7N_G

C_L

C_3

A14

IO_L

8P_G

C_L

C_3

A7

IO_L

8N_G

C_L

C_3

B7

IO_L

1P_G

C_L

C_4

W13

IO_L

1N_G

C_L

C_4

W12

IO_L

2P_G

C_L

C_4

Y5

IO_L

2N_G

C_L

C_4

W5

IO_L

3P_G

C_L

C_4

Y12

IO_L

3N_G

C_L

C_4

Y11

IO_L

4P_G

C_L

C_4

Y6

IO_L

4N_G

C_V

RE

F_L

C_4

W6

IO_L

5P_G

C_L

C_4

W11

IO_L

5N_G

C_L

C_4

W10

IO_L

6P_G

C_L

C_4

Y7

IO_L

6N_G

C_L

C_4

W7

IO_L

7P_G

C_V

RN

_LC

_4Y

10

IO_L

7N_G

C_V

RP

_LC

_4Y

9

IO_L

8P_G

C_C

C_L

C_4

W9

C15

41n

PO

WE

R_D

OW

N

C62

1n

CY

_DA

TA15

3V3I

O

2V5I

O

C63

100n

1V8I

O

C61

1n

3V3

C56

1uF

3V3

P7,

8

U14

XCF

08P

_VO

48 N

/A

OE

/RS

T11

CE

O10

CLK

OU

T9

VC

CO

-18

GN

D-2

7C

F6

BU

SY

5V

CC

INT-

14

DN

C-1

142

DN

C-1

041

DN

C-9

40

DN

C-8

39

VC

CO

-338

DN

C-7

37

GN

D-7

36

DN

C-6

35

VC

CIN

T-3

34

DN

C-2

3G

ND

-12

VC

CIN

T-2

15

GN

D-4

17

TDI

19

TMS

21

VC

CJ

24R

V_S

EL0

26D

028

VC

CO

-230

DN

C-4

16

DN

C-5

18

TCK

20

TDO

22

EN

_XS

EL

25R

V_S

EL1

27D

129

GN

D-6

31

DN

C-1

1

CLK

12

DN

C-3

14

D3

33

D4

43D

544

CE

13

D2

32

GN

D-5

23

VC

CO

-445

GN

D-8

46D

647

D7

48

US

B_P

OW

ER

P7

SC

LS

DA

CO

NF

_CC

LK

3V3I

O

C60

100n

CY

_DA

TA13

CY

_DA

TA11

CY

_DA

TA9

CY

_DA

TA15

CY

_DA

TA7

CY

_DA

TA0

CY

_DA

TA8

CY

_DA

TA14

CY

_DA

TA12

CY

_DA

TA6

CY

_DA

TA1

CY

_DA

TA2

D1 1N

4148

W

12

U9B

XC4V

LX15

_363

FB

GA

IO_L

1P_D

31_L

C_1

F15

IO_L

8N_D

0_LC

_2U

9

IO_L

1N_D

30_L

C_1

E15

IO_L

2P_D

29_L

C_1

E6

IO_L

2N_D

28_L

C_1

F6

IO_L

3P_D

27_L

C_1

D15

IO_L

3N_D

26_L

C_1

E14

IO_L

4P_D

25_L

C_1

E7

IO_L

4N_D

24_V

RE

F_L

C_1

D6

IO_L

5P_D

23_L

C_1

D13

IO_L

5N_D

22_L

C_1

C13

IO_L

6P_D

21_L

C_1

C8

IO_L

6N_D

20_L

C_1

D8

IO_L

7P_D

19_L

C_1

D12

IO_L

7N_D

18_L

C_1

C12

IO_L

8P_D

17_C

C_L

C_1

C9

IO_L

8N_D

16_C

C_L

C_1

D9

IO_L

1P_D

15_C

C_L

C_2

V16

IO_L

1N_D

14_C

C_L

C_2

V15

IO_L

2P_D

13_L

C_2

V6

IO_L

2N_D

12_L

C_2

V5

IO_L

3P_D

11_L

C_2

T14

IO_L

3N_D

10_L

C_2

U13

IO_L

4P_D

9_LC

_2U

8

IO_L

4N_D

8_V

RE

F_L

C_2

T7

IO_L

5P_D

7_LC

_2V

13

IO_L

5N_D

6_LC

_2V

12

IO_L

6P_D

5_LC

_2V

9

IO_L

6N_D

4_LC

_2V

8

IO_L

7P_D

3_LC

_2U

12

IO_L

7N_D

2_LC

_2V

11

IO_L

8P_D

1_LC

_2V

10

3V3I

OP

2,3,

6,7,

8

2V5I

OP

4,6,

7

U13

LM95

221C

IMM

D1-

2

D2+

3

D2-

4G

ND

5V

DD

6S

MB

DA

T7

SM

BC

LK8

D1+

1

U12

Cy

pres

s C

Y7C

6461

3-80

NC

VCC41 VCC321 VCC241 VCC161

GND110

GND220

GND329

GND440

GND543

GND660

GND772

GND880

AVCC5

AGND8

NC

179

NC

278

NC

377

NC

467

NC

566

NC

656

NC

755

NC

846

NC

945

NC

1044

RE

SE

RV

ED

124

RE

SE

RV

ED

222

RE

SE

RV

ED

39

RE

SE

T#42

WA

KE

UP

#4

XIN

6

XOU

T7

DIS

CO

NN

#28

US

BD

-38

US

BD

+39

SD

A3

SC

L2

PA

0/T0

OU

T11

PA

1/T1

OU

T12

PA

2/O

E#

13

PA

3/C

S#

14

PA

4/F

WR

#/R

DY

415

PA

5/F

RD

#/R

DY

516

PA

6/R

XD0O

UT

17

PA

7/R

XD1O

UT

18

PB

0/T2

/D0/

GD

A0/

AF

I047

PB

1/T2

EX/

D1/

GD

A1/

AF

I148

PB

2/R

XD1/

D2/

GD

A2/

AF

I249

PB

3/TX

D1/

D3/

GD

A3/

AF

I350

PB

4/IN

T4/D

4/G

DA

4/A

FI4

51

PB

5/IN

T5#/

D5/

GD

A5/

AF

I552

PB

6/IN

T6/D

6/G

DA

6/A

FI6

53

PB

7/T2

OU

T/D

7/G

DA

7/A

FI7

54

PC

0/R

XD0/

RD

Y0

68

PC

1/TX

D0/

RD

Y1

69

PC

2/IN

T0#

70

PC

3/IN

T1#/

RD

Y3

71

PC

4/T0

/CTL

173

PC

5/T1

/CTL

374

PC

6/W

R#/

CTL

475

PC

7/R

D#/

CTL

576

PD

0/G

DB

0/B

FI0

30

PD

1/G

DB

1/B

FI1

31

PD

2/G

DB

2/B

FI2

32

PD

3/G

DB

3/B

FI3

33

PD

4/G

DB

4/B

FI4

34

PD

5/G

DB

5/B

FI5

35

PD

6/G

DB

6/B

FI6

36

PD

7/G

DB

7/B

FI7

37

RD

Y0/

AS

EL

63

PD

Y1/

BS

EL

64

RD

Y2/

AO

E65

RD

Y3/

BO

E25

RD

Y4/

SLW

R26

RD

Y5/

SLR

D27

CTL

0/A

INF

LAG

62

CTL

1/B

INF

LAG

57

CTL

2/A

OU

TFLA

G58

XCLK

59

XCLK

SE

L23

CLK

OU

T19

1V8I

OP

2,3,

7,8

C58

33pF

3V3

R60

47

C

BE

31

2

Q5

BC

817-

25

CO

NF

_DIN

C59

33pF

CO

NF

_DIN

V4_

TMS

P8

V4_

TDI

P8

V4_

TCK

P8

CO

NF

_DO

NE

CO

NF

_IN

ITB

NC A

GN

DYVC

C

U11

74LV

C1G

17

1 2 3

45

R61

47

CO

NF

_IN

ITB

3V3I

O

V4_

TCK

CY

_DA

TA[1

5:0]

CO

NF

_DO

NE

C55

100n

3V3I

O

R67

47

V4_

TMS

R79

51R

8051

DCI

RESI

STOR

SFO

R LV

DS

2V5I

O

nPO

WE

R_E

NP

6,8

1V8I

O

V4_

TDO

P8

R66

47

CA

PTU

RE

P8

RE

AD

P8

nAD

C_1

V9_

EN

nAD

C_1

V9_

EN

P6

R70

3.3K

C72

100n

R81

10k

STA

TE0

R82

10k

UPL

R83

10k

R84

10k

R85

10k

J6U

SB

-B

VB

US

1

D-

2

D+

3

GN

D4

SH

ELL

_15

SH

ELL

_26

STA

TE1

TRG

IDL

CLK

_AC

TIV

E_Q

STA

TE2

STB

CLK

R54

10k

R58

330R

PWR

R78

47

FLS

H_T

DO

OVR

SMP

STA

TE3

LOA

D_S

TATE

C64

100n

OV

RA

NG

E_Q

1V8I

O

3V3

SA

MP

LE

UP

LOA

DTR

IGG

ER

SA

MP

LE_Q

CY

_RE

Q

TRIG

GE

R_Q

RE

SE

TB

R62

0

UP

LOA

D_Q

FLS

H_T

DI

CY

_VA

LID

FP

GA

_RE

SE

T

BANK1 - 1.8V IOBANK3 - 2.5V LVDS

BANK2 - 3.3V CMOS

UP

LOA

D_Q

CO

NF

_DO

NE

TRIG

GE

R_Q

SC

LS

DA

SA

MP

LE_Q

3V3

OV

RA

NG

E_Q

R53

4.7K

IDLE

_QC

LK_A

CTI

VE

_Q

nPO

WE

R_E

N

nPOW

ER_E

N =

1 -

SWIT

CH R

EGS

SHUT

DOWN

(ST

ANDB

Y)nP

OWER

_EN

= 0

- SW

ITCH

REG

S AR

E ON

SDA/SCL - CROSSED WIRES - LIFT PINS

AND FIX WITH WIRE MODIFICATION

DC

LK_P

P4

DC

LK_N

P4

OV

R_N

P4

OV

R_P

P4

NC A GN

DYVC

C

U18

74LV

C1G

04

1 2 3

45

BANK4 - 3.3V CMOS

PR

OG

RA

MB

TP8

GN

D

1

C73

100n

CO

NF

_CC

LK

TP9

GN

D

1

CO

NF

_DIN

LD4

LED

_2x1

1234

STA

TE2

STA

TE1

CY

_VA

LID

R86

330R

STA

TE0

CY

_RE

Q

LOA

D_S

TATE

STA

TE3

Y2

12M

Hz

CO

NF

_IN

ITB

TP10

GN

D

1

R87

330R

PLL

_LE

P2

PLL

_LE

TP11

GN

D

1

R57 0

R88

330R

R89

330R

R90

330R

R91

330R

R92

330R

IDLE

LED

WILL

ILLU

MINM

ATE ON

LYWH

EN F

PGA

ISCO

NFIG

URED

3V3I

O

R93

330R

1V8I

O

C65

100n

C66

100n

1V8I

O

R74

1KR

731K

3V3I

O

3V3I

O

DO NOT FIT V4

CONFIG FLASH IF

CYPRESS USB

CONTROLLER IS

INSTALLED

FIT

IFCO

NFIG

FLAS

H NO

TIN

STAL

LED

AD

C_T

D_P

P4

AD

C_T

D_N

P4

LD1

LED

_2x1

1234

R64

47

LD2

LED

_2x1

1234

FIF

O_E

MP

TYP

8F

IFO

_FU

LLP

8

LD3

LED

_2x1

1234

AIN

BIN

GN

DYVC

C

U17

74LV

C1G

00

1 2 3

45

RE

SE

TB

1V8I

O

C74

100n

CY

_DA

TA5

OV

RA

NG

EID

LEC

LK_A

CTI

VE

3V3I

OC

Y_D

ATA

3

R94

3.3K

R95

3.3K

CY

_DA

TA0

CY

_DA

TA4

CY

_DA

TA10

CY

_DA

TA1

PO

WE

R_D

OW

N_Q

AD

C_C

S

CY

_DA

TA2

SC

LK

UP

LOA

D_Q

SA

MP

LE_Q

SD

ATA

CY

_DA

TA3

EC

M_F

SR

CA

LIB

RA

TE

CY

_DA

TA4

CY

_DA

TA5

R71

24.3

SW

1R

ES

ET

1 2

R69

3.3K

CY

_DA

TA6

3V3

A B

R56

0

CO

NF

_DO

NE

P8

CY

_DA

TA7

3V3

CY

_DA

TA8

PR

OG

RA

MB

USB POWER ON

& PB RESET

USB =>

EEPROM

CY

_DA

TA9

100MHz FPGA CLOCK REF

LVDS

CLO

CK A

ND O

VER

RANG

E IN

PUTS

FRO

M AD

C

R72

24.3

JTAG HEADER

TEMP SENSOR

CY

_DA

TA10

SC

LP

8S

DA

P8

U9A

XC4V

LX15

_363

FB

GA

HS

WA

PE

N_0

E13

CC

LK0

E11

D_I

N_0

E9

PR

OG

RA

M_B

_0F

12

INIT

_0E

12

CS

_B_0

E8

DO

NE

_0F

11

RD

WR

_B_0

F9

VB

ATT

_0T1

3

M2_

0R

11

PW

RD

WN

_B_0

T10

TMS

_0T8

M0_

0R

12

TDO

_0R

10

TCK

_0T9

M1_

0T1

2

DO

UT_

BU

SY

_0T1

1

TDI_

0R

9

TDN

_0E

10

TDP

_0F

10

CY

_DA

TA11

TRIG

_IN

R55

0

R65

1.5K

Page 10: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

10

7.4 Schematic Drawing ADC08D1000DEV – Power Supplies 1

C89

10n

L17

100M

Hz

C16

522

uF

5VR

LY

13

2

L4PNCD

2

BZX8

4C5V

1

PLAC

E CL

OSE

TO P

IN 5

L3 10uH

SW2

RO

CKE

R2 13

3V3I

O

VIN

BST

GN

D

FBENSW

U19

LM27

34 T

SOT-

6

1 3

5 4

2

6

R10

44.

12K

C87

100n

13

2

L4PNCD

8

BZX8

4C5V

1

C75

10uF

PRO

JEC

TN

AME:

LAST

MO

DIF

IED

:Sh

eet

OF

THIS

DOC

UMEN

T CO

NTAI

NS IN

FORM

ATIO

N P

ROPR

IETA

RY T

O NA

TION

AL S

EMIC

ONDU

CTOR

COR

PORA

TION

. USE

OW

ITHO

UT W

RITT

EN P

ERM

ISSI

ON IS

EXP

RESS

LY F

ORBI

DDEN

. COP

YRIG

HT 20

01.

DAT

E:

DAT

E:C

HEC

KED

:

DR

AWN

:

SCH

EMAT

IC R

EV:

DO

C #

:NAT

ION

AL S

EMIC

ON

DU

CTO

R C

OR

POR

ATIO

ND

CS

PRO

DU

CT

LIN

E

2900

Sem

icon

duct

or D

rive,

San

ta C

lara

,

DES

IGN

ED:

DAT

E:

PAG

E TI

TLE

68

BIG

GIG

REFE

RENC

E BO

ARD

1.1

____

____

____

IAN

KIN

G24

/ O

CT

/ 200

5

DD

/ M

MM

/ Y

YY

Y

____

____

____

Wed

nesd

ay, F

ebru

ary

08, 2

006

IAN

KIN

G24

/ O

CT

/ 200

5__

____

____

____

____

___

____

____

____

____

____

_

____

____

____

____

____

_

POW

ER S

WIT

CH

ERS

C85

10uF

C76

10uF

C86

10uF

LD5

RED

12R

101

10.2

K

PLAC

E CL

OSE

TO P

IN 5

L5 10uH

R98 680

D11

10BQ

030

12

R99

22.1

K

C90

22uF

VIN

BST

GN

D

FBENSW

U21

LM27

34 T

SOT-

6

1 3

5 4

2

6

D9

1N41

48W

1 2

1V9

VIN

BST

GN

D

FBENSW

U20

LM27

34 T

SOT-

6

1 3

5 4

2

62V

5AU

XP7

L4 10uH

R10

510K

C78

100n

2V5I

OP4

,5,7

D5

1N41

48W

1 2

1V9

P43V

3IO

P2,3

,5,7

,8

D7

10BQ

030

12

C82

22uF

R10

210

.2K

POWE

R IN

LED

VIN

P2,7

,8

R97 4.12

K

POW

ER_E

N_T

P7

R10

022

.1K

13

2

L4PNCD

3

BZX8

4C5V

1

PLAC

E CL

OSE

TO P

IN 5

1 234

L2 CM

CH

OKE

nPO

WER

_EN

P5,8

J7 CO

NN

PW

R J

ACK231

C83

47uF

C84

100n

VIN

BST

GN

D

FBENSW

U22

LM27

34 T

SOT-

6

1 3

5 4

2

6

L6 10uH

D10

BAT4

2W 12

D12

10BQ

030

12

C91

22uF

R11

110

.2K

R10

932

.4K

PLAC

E CL

OSE

TO P

IN 52V

5IO

VIN

C

BE

31

2

Q7

BC81

7-25

C

BE

31

2

Q6

BC81

7-25

R10

6

10K1

2JP

1

R11

4

10K1

2JP

2

nAD

C_1

V9_E

NP5

R11

3

10K

D16

1N41

48W

1 2

D17

10BQ

030

12

C16

310

n

C16

422

uF

R14

254

K

C16

210

0n

R11

21K

13

2

L4PNCD

15

Z523

8BLT

1

R14

04.

12K

VIN

BST

GN

D

FBENSW

U32

LM27

34 T

SOT-

6

1 3

5 4

2

6

3V3I

O

PLAC

E CL

OSE

TO P

IN 5

ADC

SHOU

LD B

E PO

WERE

D OF

FWHIL

E FP

GA I

S CO

NFIG

URED

L16

10uH

R14

110

.2K

5VR

LYP2

,3

C16

110

uF

D6

10BQ

030

12

C81

22uF

D4

1N41

48W

1 2

R11

010

.2K

R10

814

.3K

R10

310

0K

R10

710

0K

R96 4.12

K

C88

10n

C77

100n

2V5A

UX

C79

10n

C80

10n

Page 11: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

11

7.5 Schematic Drawing ADC08D1000DEV – Power Supplies 2

DO N

OT I

NSTA

LL

C12

447

uF

1V8I

O

3V3I

O

3V3

P5,8

1V8I

OP2

,3,5

,8

1V2

3V3I

O

1V9

A B

R11

8

02V

5IO

C12

610

0n

0402

FPG

A De

coup

lers2V

5AU

X

2V5I

O

C12

510

uF

CMOS

3V3I

OP2

,3,5

,6,8

LVDS

2V5I

OP4

,5,6

2V5A

UX

P6

1V9

P4,6

C12

110

uF

BANK

1BA

NK3

BANK

0

BANK

7

BANK

4

BANK

8

BANK

5

VCC

AUX

BANK

2

VCC

INT

BANK

6

C12

710

0nC

128

100n

C12

910

0nC

131

100n

C13

010

0nC

132

100n

USB

_PO

WER

P5

C13

310

0n

3V3I

O

2V5I

O

2V5I

O

3V3I

O2V

5IO

1V8I

O3V

3IO

3V3I

O

3V3I

O

C13

510

0nC

134

100n

3V3I

O

VEXT

2V5I

O

C13

610

0nC

137

100n

C13

810

0nC

140

100n

C13

910

0nC

141

100n

2V5I

O

C12

210

0nC

123

100n

L910

0MH

z

C11

810

uF

U25 LP

2989

LV

BYPA

SS1

NC

2

GR

OU

ND

3

INPU

T4

OU

TPU

T5

SEN

SE6

ERR

OR

7SH

DN

81V

8IO

C11

310

0n

VEXT

P8

C14

710

0nC

146

100n

C14

510

0nC

144

100n

C14

310

0nC

142

100n

2V5I

O

C12

010

0n

PRO

JEC

TN

AME:

LAST

MO

DIF

IED

:Sh

eet

OF

THIS

DO

CU

MEN

T C

ON

TAIN

S IN

FOR

MAT

ION

PR

OPR

IETA

RY

TO N

ATIO

NAL

SEM

ICO

ND

UC

TOR

CO

RPO

RAT

ION

. USE

WIT

HO

UT

WR

ITTE

N P

ERM

ISSI

ON

IS E

XPR

ESSL

Y FO

RBI

DD

EN. C

OPY

RIG

HT

2001

.

DAT

E:

DAT

E:C

HEC

KED

:

DR

AWN

:

SCH

EMAT

IC R

EV:

DO

C #

:NAT

ION

AL S

EMIC

ON

DU

CTO

R C

OR

POR

ATIO

ND

CS

PRO

DU

CT

LIN

E

2900

Sem

icon

duct

or D

rive,

San

ta C

lara

DES

IGN

ED:

DAT

E:

PAG

E TI

TLE

78

BIG

GIG

REF

EREN

CE

BOAR

D

1.1

____

____

____

IAN

KIN

G24

/ O

CT

/ 200

5

DD

/ M

MM

/ Y

YY

Y

____

____

____

Wed

nesd

ay, F

ebru

ary

08, 2

006

IAN

KIN

G24

/ O

CT

/ 200

5PE

RIP

HER

AL P

OW

ER

____

____

____

____

____

_

____

____

____

____

____

_

VIR

TEX

4 PO

WER

VEXT

C10

710

0n

U9G XC

4VLX

15_3

63FB

GA

VCC

O_0

D10

VCC

INT

P15

VCC

O_0

U11

VCC

O_1

D7

VCC

O_1

D14

VCC

O_2

U7

VCC

O_2

U14

VCC

O_3

A9

VCC

O_3

A12

VCC

O_4

Y8

VCC

O_4

Y13

VCC

O_5

K15

VCC

O_5

L15

VCC

O_5

A17

VCC

O_5

E17

VCC

O_5

L18

VCC

O_5

D20

VCC

O_5

J20

VCC

O_5

N20

VCC

O_6

D1

VCC

O_6

J1

VCC

O_6

N1

VCC

O_6

L3

VCC

O_6

A4

VCC

O_6

E4

VCC

O_6

K6

VCC

O_6

L6

VCC

O_7

T16

VCC

O_7

Y18

VCC

O_7

U20

VCC

O_8

U1

VCC

O_8

Y3

VCC

O_8

T5

VREF

P_SM

W14

VREF

N_S

MW

15

AVD

D_S

MW

16

VP_S

MY

14

VN_S

MY

15

AVSS

_SM

Y16

GN

DB1

GN

DW

1

GN

DY

1

GN

DA2

GN

DG

3

GN

DP3

GN

DC

7

GN

DH

7

GN

DJ7

GN

DK7

GN

DL7

GN

DM

7

GN

DN

7

GN

DV7

GN

DG

8

GN

DP8

GN

DG

9

GN

DP9

GN

DG

10

GN

DP1

0

GN

DU

10

GN

DD

11

GN

DG

11

GN

DP1

1

GN

DG

12

GN

DP1

2

GN

DG

13

GN

DP1

3

GN

DC

14

GN

DH

14

GN

DJ1

4

GN

DK1

4

GN

DL1

4

GN

DM

14

GN

DN

14

GN

DV1

4

GN

DG

18

GN

DY

2

GN

DP1

8

GN

DA1

9

GN

DY

19

GN

DA2

0

GN

DB2

0

GN

DY

20G

ND

W20

VCC

AUX

H6

VCC

AUX

N6

VCC

AUX

F8

VCC

AUX

R8

VCC

AUX

F13

VCC

AUX

R13

VCC

AUX

H15

VCC

AUX

N15

VCC

INT

G6

VCC

INT

P6

VCC

INT

F7

VCC

INT

G7

VCC

INT

P7

VCC

INT

R7

VCC

INT

F14

VCC

INT

G14

VCC

INT

P14

VCC

INT

R14

VCC

INT

G15

C10

610

0n

VEXT

C10

910

0nC

108

100n

C97

3.3u

F

C99

33uF

C96

3.3u

F

C10

033

uF

L11

100M

Hz

C10

133

uF

L7 8.86

uH

D13

B340

LB-1

3

12

D14

SMAZ

6V2

R11

6N

/A

R11

910

K

U26 LM

1117

MPX

VIN

3VO

UT

2

TAB/

VOU

T4

ADJ/

GN

D1

R11

71K

VIN

VIN

P2,6

,8

3V3

5VU

SB

1V2

2V5A

UX

SINK

- G

ND

U23 LM

2676

SWITCH_OUT 1INPUT 2C BOOST 3GND 4CURRENT ADJ 5FEEDBACK 6ON / OFF 7

C11

410

0nC

115

100n

C11

610

0nC

117

100n

2V5A

UX

R11

510

POW

ER_E

N_T

P6

VOUT

= 1

.24

VOUT

= 1

.21

* (1

+(R1

15/R

117)

)

3V3I

O

CERA

MIC

ONLY

C11

910

uF

C94

100n

C92

100n

C95

100n

1V2

C93

100n

C10

410

0nC

102

100n

C10

510

0n

1V2

C10

310

0n

C98

10n

L10

N/A

Page 12: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

12

7.6 Schematic Drawing ADC08D1000DEV – Expansion Header Interface

Page 13: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

13

8.0 Bill of Materials (Page 1 of 2)

NATIONAL SEMICONDUCTOR

BIG GIG REF BOARD (ADC08D1000) B0 BUILD Last Updated:

Assembly Revision: Pre-ProductionSchematic Revision: 1.1

Number of Boards to Build =

Item Qty Part Reference Value Description Manufacturer Manufacturer Part Number

SMT Capacitors1 8 C1,C2,C6,C7,C9,C11,C16, 100pF Capacitor, SMT 0603, MLC, NPO, 5%, 50V Panasonic ECJ-1VC1H101J

C182 4 C3,C5,C13,C159 470pF Capacitor, SMT 0603, MLC, NPO, 5%, 50V Panasonic ECJ-1VC1H471J3 2 C56,C4 1uF Capacitor, SMT 0603, MLC, X5R, 10%, 16V Panasonic ECJ-1VB1C105K4 1 C8 27nF Capacitor, SMT 0603, MLC, X7R, 10%, 16V Panasonic ECJ-1VB1C273K5 9 C10,C17,C19,C79,C80,C88, 10n Capacitor, SMT 0603, MLC, X7R, 10%, 16V Panasonic ECJ-1VB1C103K

C89,C98,C1636 1 C12 1500pF Capacitor, SMT 0603, MLC, X7R, 10%, 50V Panasonic ECJ-1VB1H152K7 6 C14,C15,C24,C25,C26,C27 4n7 Capacitor, SMT 0603, MLC, X7R, 10%, 50V Panasonic ECJ-1VB1H472K9 60 C20,C21,C23,C28,C31,C32, 100n Capacitor, SMT 0603, MLC, X7R, 10%, 16V Panasonic ECJ-1VB1C104K

C33,C34,C35,C36,C37,C38,C39,C40,C41,C42,C43,C44,C45,C46,C47,C48,C49,C50,C51,C52,C53,C54,C55,C57,C60,C63,C64,C65,C66,C67,C68,C69,C70,C71,C72,C73,C74,C77,C78,C84,C87,C112,C113,C120,C122,C123,C148,C149,C150,C151,C152,C155,C158,C162

10 8 C30,C81,C82,C90,C91,C160, 22uF CAP 22UF 16V TANTALUM TEL SMD EPCOS Inc B45197A3226K309C164,C165

11 2 C59,C58 33pF CAP CERAMIC 33PF 50V 0603 SMD Panasonic ECJ-1VC1H330J12 4 C61,C62,C153,C154 1n Capacitor, SMT 0603, MLC, X7R, 10%, 50V Panasonic ECJ-1VB1H222K13 9 C75,C76,C85,C86,C110, 10uF CAP 10UF 20V TANTALUM TEL SMD Kemet T491C106K020AS

C118,C121,C125,C16114 2 C124,C83 47uF CAP 47UF 20V TANTALUM TEL SMD AVX TAJC476K020R15 38 C92,C93,C94,C95,C102, 100n Capacitor, SMT 0402, MLC, X5R, 10%, 10V Panasonic ECJ-0EB1A104K

C103,C104,C105,C106,C107,C108,C109,C114,C115,C116,C117,C126,C127,C128,C129,C130,C131,C132,C133,C134,C135,C136,C137,C138,C139,C140,C141,C142,C143,C144,C145,C146,C147

16 2 C97,C96 3.3uF Capacitor, SMT 1206, MLC, X5R, 10%, 25V Kemet C1206C335K3PACTU17 3 C99,C100,C101 33uF CAP 33UF 16V TANTALUM TEL SMD, 10% Kemet T491C336K016AS18 2 C119,C111 10uF CAP 10UF 20V CERAMIC TEL SMD Kemet C1210C106K4PACTU19 1 C157 33uF CAP 33UF 10V TANTALUM TEL SMD 25V, 10% Kemet T495X336K025ASE175

Diodes20 5 D1,D4,D5,D9,D16 1N4148W DIODE SWITCH 75V 400MW SOD-123 Diodes Inc 1N4148W-721 3 D2,D3,D8 BZX84C5V1 DIODE ZENER 5.1V 350MW SOT-2 Diodes Inc BZX84C5V1-722 5 D6,D7,D11,D12,D17 10BQ030 DIODE SCHOTTKY 30V 1A DO-214AA International Rectifier 10BQ03023 1 D10 BAT42W DIODE SCHOTTKY 30V 200MW SOD-123 Diodes Inc BAT42W-724 1 D13 B340LB-13 RECTIFIER SCHOTTKY 40V 3A SMB Diodes Inc B340LB-1325 1 D14 SMAZ6V2 DIODE ZENER SMD 6.2V 1W SMA DIODES INC. SMAZ6V2-1326 1 D15 Z5238BLT1 DIODE ZENER 8.7V 225MW SOT-23 ON Semiconductor MMBZ5238BLT1

Connectors27 3 JP3,JP2,JP1 JUMPER 2X1 HEADER 2X1 0.1" SP MALE STR Sullins PTC36SAAN28 4 J1,J2,J3,J4 SMA CONN JACK SMA RT ANG PCB GOLD AMP/Tyco Electronics 221790-129 1 J5 CONN 6 PIN SINGLE ROW HEADER 6X1 0.1" SP MALE STR Sullins PTC36SAAN30 1 J6 USB-B USB Connector Type B, Single Through Hole Mill-Max 897-30-004-90-00000031 1 J7 CONN PWR JACK CONN PWR JACK 2.5X5.5MM HIGH CUR CUI Inc PJ-102BH32 1 J8 CONN 38 PIN MICTOR MICTOR VERTICAL RECEPT. 38 POS AMP/Tyco Electronics 767054-141 3 P1,P2,P3 FUTUREBUS_24 CONN RCEPT RTANG 2MM 24POS 30AU AMP/Tyco Electronics 536511-1

Ferrites35 9 L1,L8,L9,L11,L12,L13,L14, 100MHz FERRITE CHIP 120 OHM 3000MA 1206 Murata BLM31PG121SN1L

L15,L1736 1 L2 CM CHOKE CHOKE COMMON MODE 170 OHMS PCB Steward CM2545X171B-0037 5 L3,L4,L5,L6,L16 10uH INDUCTOR SHIELD PWR 10UH 7032 TDK SLF7032T-100M1R4-2-PF38 1 L7 8.2uH INDUCTOR SHIELD PWR 8.2UH SMD Coiltronics DR127-8R2-R

Resistors45 2 R98,R2 680 RES 680 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ681V46 6 R3,R10,R12,R143,R144, 18 RES 18 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ180V

R14747 2 R5,R4 270 RES 270 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ271V48 3 R1,R6,R115 10 RES 10 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ100V49 24 R7,R8,R16,R17,R25,R26, 10K RES 10K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ103V

R28,R29,R35,R54,R68,R81,R82,R83,R84,R85,R105,R106,R113,R114,R119,R124,R149,R150

THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY TO NATIONAL SEMICONDUCTOR CORPORATION. USE OR DISCLOSURE WITHOUT WRITTEN PERMISSION IS EXPRESSLY FORBIDDEN. COPYRIGHT 2006.

Page 14: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

14

8.1 Bill of Material (Page 2 of 2)

Item Qty Part Reference Value Description Manufacturer Manufacturer Part Number

Resistors (cont.)50 1 R9 2K7 RES 2K7 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ272V53 3 R14,R27,R30 100 RES 100 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ101V56 7 R19,R21,R22,R55,R57,R62, 0 RES 0 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEY0R00V

R13559 11 R40,R41,R42,R43,R44,R45, 3K3 RES 3.3K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ332V

R46,R47,R48,R49,R5060 1 R53 4.7K RES 4.7K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ472V

61A 1 R56 0 RES 0 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEY0R00V61B 1 R118 0 RES 0 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEY0R00V

62 10 R58,R86,R87,R88,R89,R90, 330R RES 330 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ331VR91,R92,R93,R128

63 1 R59 10K RES 10K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ103V64 9 R60,R61,R64,R66,R67,R78, 47 RES 47 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ470V

R129,R130,R13165 1 R63 1M RES 1.0M OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ105V66 1 R65 1.5K RES 1.5K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ152V67 5 R69,R70,R94,R95,R127 3.3K RES 3.3K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ332V68 2 R71,R72 24.3 RES 24.3 OHM 1/16W 1% 0603 SMD Panasonic ERJ-3EKF24R3V69 4 R73,R74,R112,R117 1K RES 1K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ102V70 6 R79,R80,R120,R121,R122, 51 RES 51 OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ510V

R12373 4 R96,R97,R104,R140 4.12K RES 4.12K OHM 1/10W 0.1% 0603 SMD Susumu Co Ltd RR0816P-4121-B-T5-60H74 2 R99,R100 22.1K RES 22.1K OHM 1/10W 0.1% 0603 SMD Susumu Co Ltd RR0816P-2212-D-34C75 5 R101,R102,R110,R111,R141 10.2K RES 10.2K OHM 1/10W 0.5% 0603 SMD Susumu Co Ltd RR0816P-1022-D-02C76 4 R103,R107,R146,R148 100K RES 100K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ104V77 1 R108 14.3K RES 14.3K OHM 1/10W 0.5% 0603 SMD Susumu Co Ltd RR0816P-1432-D-16C78 1 R109 32.4K RES 32.4K OHM 1/10W 0.5% 0603 SMD Susumu Co Ltd RR0816P-3242-D-50C79 1 R134 49.9 RES 49.9 OHM 1/10W 1% 0603 SMD Panasonic ERJ-3EKF49R9V81 1 R142 54.9K RES 54.9K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3EKF5492V82 1 R145 18K RES 18K OHM 1/10W 5% 0603 SMD Panasonic ERJ-3GEYJ183V

IC's89 3 U1,U4,U6 RELAY-RF303 RF RELAY DPDT Teledyne RF303-590 1 U2 LMX2312 Frequency Systhesizer (PLL) - LMX2312 NSC LMX2312USLDX91 1 U3 VCO190-992 1GHz Centre Frequency VCO, 5V VARIL VCO190-992T92 1 U5 LMH6555 NSC94 4 U8,U11,U27,U28 74LVC1G17 IC SCHMITT-TRIG BUFF SOT-23-5 TI SN74LVC1G17DBVR95 1 U9 XC4VLX15_363FBGA VIRTEX 4 363 pin FPGA Xilinx XC4VLX15-10SF363C96 1 U10 ADC08Dxxxx ADC08D1000 128 PIN Exposed Pad TQFP NSC ADC08D1000-CIYB97 1 U12 Cypress CY7C64613-80NC EZ USB Microcontroller 80 Pin PQFP Cypress CY7C64613-80NC98 1 U13 LM95221CIMM LM95221 Dual Remote Diode Digital Temperature Sensor NSC LM95221CIMM

100 1 U15 24C02/SO8 EEPROM 2 WIRE 2Kbit (256 x 8) 8 Pin SOIC ATMEL AT24C02N-10SI-2.7101 1 U16 74LVC541 IC OCT BUFF/DRVR TRI-ST 20-SSOP Texas Instruments SN74LVC541ADBR102 1 U17 74LVC1G00 IC NAND GATE 2-IN SOT-23-5 Texas Instruments SN74LVC1G00DBVR103 1 U18 74LVC1G04 IC SINGLE INVERTER-GATE SOT-23-5 Texas Instruments SN74LVC1G04DBVR104 5 U19,U20,U21,U22,U32 LM2734 TSOT-6 IC PWM STP-DWN REG 1A SOT23-6 NSC LM2734YMK105 1 U23 LM2676 IC REG SIMPLE SWITCHER TO-263-7 NSC LM2676S-ADJ106 1 U24 LP2986 IC REGULATOR MICROPWR LDO 8-SOIC NSC LP2986IM-5.0107 1 U25 LP2989LV IC REGULATOR MICROPWR LDO 8-SOIC NSC LP2989IM-1.8108 1 U26 LM1117MPX IC REG 3.3V 800MA LDO SOT-223 National Semiconductor LM1117MPX-3.3109 1 U29 74LVC1G06 IC INVERTER BUFF/DRVR SOT-23-5 TI SN74LVC1G06DBVR110 1 U31 LM321_SOT23 LM321 Low POwer Single Op-Amp National LM321MF

Misc33 4 LD1,LD2,LD3,LD4 LED_2x1 LED 3MM 2-HIGH GREEN/GREEN PCMNT Lumex SSF-LXH2103GGD/434 1 LD5 GREEN LED LED 3MM RA FAULT-IND GRN PC MNT Lumex SSF-LXH103GD42 7 Q1,Q2,Q3,Q5,Q6,Q7,Q8 BC817-25 TRANS NPN GP 500MA 45V SOT23 ON Semiconductor BC817-25LT182 1 SW1 RESET SWITCH TACT MOM 130GF H=5MM ITT INDUSTRIES PTS635SL5083 1 SW2 ROCKER SWITCH ROCKER SPDT HORZ ACT RA ITT Industries/C&K Div 7101J1AQE288 3 T1,T2,T3 ADTL2-18 RF TRANSFORMER SMT 6 PINS upto 1.8GHz Mini Circuits ADTL2-18

111 1 Y1 10MHz CRYSTAL 10.000MHZ SERIES HC49/US ECS Inc. ECS-100-S-4112 1 Y2 12MHz CRYSTAL 12.000MHZ SERIES HC49/US ECS Inc. ECS-120-S-4113 1 Y3 OSC (SM) OSCILLATOR 100.0000 MHZ SMT Citizen CSX750ABB100.000MTR

Page 15: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

9.0 Using the Wavevision4 software with the ADC08D1000DEV IMPORTANT NOTE: Before connecting this board to the PC, please install the Wavevision 4 Software from the CDROM included with the development kit. (See Appendix B)

Connecting the Development Board before installation may result in the board being registered as an unknown USB device. If this happens you will need to uninstall the device using the Windows Device Manager before installing the Wavevision 4 Software.

9.1 Getting Started This development board is designed to connect over a USB interface to a PC running the Wavevision 4 Software.

Ensure the board is connected to the 12V power supply (included in the package) and that the switch on the rear panel is pushed to the “ON” position. The Green LED on the rear panel should be illuminated if on.

Connect the USB cable between the PC which has Wavevision 4 software installed and the ADC08D1000DEV board. The USB port can also be found on the rear panel (shown below).

If this is the first time the board has been connected to the PC, Drivers may be required to be installed (automatic) by the Operating System. Follow the on screen instructions and use the recommended settings.

Start the Wavevision 4 software (Start -> All Programs -> Wavevision -> Wavevision 4) The software may take several seconds to initialize, but should display a welcome screen similar to the following.

Page 16: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

16

If the board is connected correctly the following popup box should appear to indicate that the board has been recognized and the firmware for the FPGA is being downloaded over the USB interface

If the “Downloading firmware” box does not appear automatically, click on the “Settings” pulldown menu and then click Capture Settings as shown below.

This will display the System Settings Window which should appear as below

Page 17: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

17

If the board has not been detected click the “Test” button under the Communication heading and the development board should be found. If the communications fail, check that the USB drivers are installed correctly, then disconnect and re-connect the USB cable. Finally restart the Wavevision 4 software See Appendix B for more information.

9.2 Control Panel Once the FPGA Firmware download has completed the development board Control Panel will automatically be displayed as shown below.

The Following section describes the Function of the pull-down selection tabs in the left hand side of the ADC08D1000DEV product Control Panel

Channel Selection I – Displays the data captured from the I Channel Only after acquiring Samples

Q- Displays the data captured from the Q Channel Only after acquiring Samples

I and Q – Displays the data captured from I and Q channels in 2 windows after acquiring samples.

I/Q Interleaved – Displays the data captured from the I and Q channels interleaved in a single window,

after acquiring samples (Use when DES mode is enabled).

Temp Sensor Displayed below the Channel Selection tab is the die temperature of both the FPGA and the ADC.

Page 18: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

18

Hardware/Serial Control Hardware Pin Control – The ADC is controlled by the logic states on the dedicated control pins. The logic on these pins is determined by the setting of OUTV, OUTEDGE, DDR, DES and FSR below. Serial Register Program – The ADCs registers are accessed through the Extended Control Mode. In this mode the hardware pin control is disabled and the programmable registers are available for fine tuning.

NOTE: The Following Pull-down Tabs are available only when Hardware Pin Control is selected.

Out V Low Amplitude – LVDS output voltage amplitude is set to 510mV pk-pk.

High Amplitude – LVDS output voltage amplitude is set to 710mV pk-pk.

OutEdge Falling Edge – Data outputs are changed on the falling edge of DCLK+ (Single Data rate mode only).

Rising Edge – Data outputs are changed on the rising edge of DCLK+ (Single Data rate mode only).

DDR Disable Dual Data Rate – DDR Mode is disabled (data output follows OutEdge Setting).

Enable Dual Data Rate – Data is output with rising and falling edge of DCLK (Default for 1.0GHz clock).

DES Disable Dual Edge Sample – DES Mode is disabled (I and Q are independent).

Enable Dual Edge Sample – The I channel is sampled on the rising and falling edge of the clock.

FSR 650mV Full Scale – Sets the full scale range to 650mV pk-pk.

870mV Full Scale – Sets the full scale range to 870mV pk-pk.

NOTE: The Following Pull-down Tabs are available regardless of Hardware/Serial Control setting.

Standby Disable Standby – Enable all on-board power regulators.

Enable Standby – Board is put into standby mode – All power is shutdown except USB power.

PDQ Disable Q Shutdown – The ADC’s Q Channel is powered up and Active.

Enable Q Shutdown – The ADC’s Q Channel is shutdown.

PD Disable Shutdown – The ADC is powered up and Active.

Enable Shutdown – The ADC is put into low power mode. Register Settings are retained.

Page 19: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

19

DC_Coup AC Coupling – The I Channel is AC coupled to the ADCs input

DC Coupling – The I Channel is DC coupled to the ADCs input (not available on AC only model)

Ext_Clock Internal Clock – The ADC is clocked using the on-board 1.0GHz clock

External Clock – The ADC is clocked from an External clock source connected to the “CLOCK” input.

Reset FPGA This button resets the FPGA, and also returns all the pulldown tabs to their default values.

Calibrate ADC This button issues an on-command calibration to the ADC by toggling the ADCs calibrate pin.

9.3 Serial Control Mode When the Hardware/Serial Control tab is selected as “Serial Register Program”, the control panel display

will be changed to the following view.

In this mode the register settings can be changed simply by clicking on the bits. Doing so will toggle the bit

value and any linear values such as Full Scale Range or Offset will automatically be updated.

The “Reset Registers” button at the bottom of the Control Panel will reset and write all the values to the

power-on default settings.

Please refer to the ADC08D1000 datasheet for a full description of the ADCs internal registers.

Page 20: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

20

9.4 Capturing Waveforms When the ADC has been configured as required, the selected input(s) can be sampled by clicking the

“Acquire” pull-down menu and selecting “Samples”. Alternatively press F1 then the Escape key.

10.0 Appendix A - Hardware Information

10.1 LED functions The function of the LEDs on the front panel of the boards is as follows

STB – STANDBY, illuminates when the board is in standby mode.

TRG – TRIGGER EVENT, illuminates when the Trigger Input makes low to high transition

OVR – ADC OVER RANGE, illuminates when the I or Q channel exceeds the full scale range of the ADC

CLK – CLOCK INPUT, flashes with 50% duty cycle if the ADC is receiving a good clock input.

PWR – POWER, illuminates when the external 12V is connected and the system is not in Standby.

UPL – UPLOAD, illuminates when the FPGA is uploading sample data to the PC

SMP – SAMPLE, illuminates when the FPGA is sampling data and storing to the FIFO buffers

IDL – IDLE, illuminates when the system is IDLE.

Page 21: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

21

10.2 Expansion Header A 72 pin Future Bus Expansion Header is provided on the rear panel to allow easy connection to a third party microprocessor board to allow for the reading and analysis of the data captured by the FPGA. The signals connector to this expansion bus will be as follows PIN DESCRIPTION PIN DESCRIPTION A1 I2C - SDA B1 GROUND A2 I2C - SCL B2 GROUND A3 SSP - SERIAL DATA B3 GROUND A4 SSP - SERIAL CLOCK B4 GROUND A5 FPGA RESET B5 GROUND A6 READ FIFO B6 GROUND A7 WRITE FIFO B7 GROUND A8 FIFO FULL B8 GROUND A9 FIFO EMPTY B9 GROUND A10 ADC DCLK RESET B10 GROUND A11 FPGA CONF DONE B11 GROUND A12 FPGA JTAG – TMS B12 GROUND A13 FPGA JTAG - TCK B13 GROUND A14 FPGA JTAG – TDI B14 GROUND A15 FPGA JTAG – TDO B15 GROUND A16 notSHUTDOWN B16 GROUND A17 3.3V SUPPLY B17 GROUND A18 12V SUPPLY B18 GROUND C1 DATA BUS A P0 (LVDS or CMOS) D1 DATA BUS A N0 (LVDS or CMOS) C2 DATA BUS A P1 (LVDS or CMOS) D2 DATA BUS A N1 (LVDS or CMOS) C3 DATA BUS A P2 (LVDS or CMOS) D3 DATA BUS A N2 (LVDS or CMOS) C4 DATA BUS A P3 (LVDS or CMOS) D4 DATA BUS A N3 (LVDS or CMOS) C5 DATA BUS A P4 (LVDS or CMOS) D5 DATA BUS A N4 (LVDS or CMOS) C6 DATA BUS A P5 (LVDS or CMOS) D6 DATA BUS A N5 (LVDS or CMOS) C7 DATA BUS A P6 (LVDS or CMOS) D7 DATA BUS A N6 (LVDS or CMOS) C8 DATA BUS A P7 (LVDS or CMOS) D8 DATA BUS A N7 (LVDS or CMOS) C9 INPUT STROBE P D9 INPUT STROBE N C10 DATA BUS B P0 (LVDS or CMOS) D10 DATA BUS B N0 (LVDS or CMOS) C11 DATA BUS B P1 (LVDS or CMOS) D11 DATA BUS B N1 (LVDS or CMOS) C12 DATA BUS B P2 (LVDS or CMOS) D12 DATA BUS B N2 (LVDS or CMOS) C13 DATA BUS B P3 (LVDS or CMOS) D13 DATA BUS B N3 (LVDS or CMOS) C14 DATA BUS B P4 (LVDS or CMOS) D14 DATA BUS B N4 (LVDS or CMOS) C15 DATA BUS B P5 (LVDS or CMOS) D15 DATA BUS B N5 (LVDS or CMOS) C16 DATA BUS B P6 (LVDS or CMOS) D16 DATA BUS B N6 (LVDS or CMOS) C17 DATA BUS B P7 (LVDS or CMOS) D17 DATA BUS B N7 (LVDS or CMOS) C18 OUTPUT STROBE P D18 OUTPUT STROBE N The Data busses on this header can be configured as follows

• Two 8 bit busses with LVDS differential signaling, plus two LVDS strobes • Four 8 bit busses with LVCMOS (3.3V IO) signaling plus four CMOS strobes

All control signals on pins A1 to A15 will be at LVCMOS 3.3V levels.

Page 22: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

22

10.3 System Block Diagram

Page 23: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

23

11.0 Appendix B - Installing and running the Wavevision 4 software

11.1 Install the WaveVision Software. • Insert the WaveVision CD-ROM into your computer’s CD-ROM drive. • The WaveVision software requires a Java™ Runtime Environment or Java™ Development Kit,

version 1.4 or higher, from Sun Microsystems, Inc. For detailed information on WaveVision’s use of Java technology, please see below. If your computer does not have this software, the WaveVision installer will instruct you on how to install it.

• Locate and run the WaveVision 4 Setup.exe program on the CD-ROM. Follow the on-screen instructions to finish the install.

11.2 Java™ Technology The WaveVision software uses Sun Microsystems® Java technology. The underlying Java software must be installed on your computer in order for the WaveVision software to run. The software can run on top of either the Java Runtime Environment (JRE) or the Java Development Kit (JDK), version 1.4 or higher. A suitable copy of the JRE is included on your WaveVision CD-ROM. The WaveVision installer will first look for an existing copy of the JRE or JDK on your computer. If neither is found, the installer will instruct you to first install a JRE. To do this, run the J2RE*.exe installer program off the CD-ROM. Follow the on-screen instructions to finish the install. After a suitable JRE or JDK is installed, run the WaveVision installer again. The installer will detect the Java software and configure the WaveVision software to use it. Java technology can allow software to run on different platforms. However, the WaveVision software contains Windows specific hardware interface code and therefore is only currently supported under Windows.

11.3 Automatic Device Detection & Configuration The WaveVision system provides automatic hardware detection and configuration for the device under test. The FPGA is re-programmed on the fly by the host PC when the Development board is turned on. Normally, the configuration process is totally transparent to the user, and requires no intervention. However, this process can be overridden if required by specifying a new Xilinx configuration image by clicking the Xilinx Image Settings button within the Capture Setting window (Settings -> Capture Settings).

11.4 Windows Driver The WaveVision software communicates with the WaveVision hardware through the Windows device driver software. If you are unable to connect to the Wavevision board after installing the software, do the following to uninstall and reinstall the driver. Go to the Windows Control Panel and select System. If you are using Windows 2000/XP select the Hardware tab. Then click on Device Manager and go down to the Universal Serial Bus controllers. With the WaveVision board connected, you will see it (or an unknown device) listed. Right click on it and uninstall the driver. Then unplug and plug in the board again to reinstall the driver.

Page 24: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

24

12.0 Appendix C - Using WaveVision Plots The WaveVision software provides several tools to help you interact with plots. A toolbar appears above each plot, similar to Figure 4.

Figure 4: WaveVision Plot Tools

Seen from left to right, the following tools are available: Plot Actions menu: This menu contains commands that pertain to this particular plot. You may export the plot data to a file, print the plot, save it as a graphic, or change the plot’s colors. Plot Options: This button opens a dialog box with options that pertain to this particular plot. You may turn off labels, annotations, or other elements in this dialog. The WaveVision software maintains default options for new plots. You may edit the default options by choosing Default Plot Options from the Settings menu. FFT Options: The toolbar shown in Figure 4 is from an FFT plot, and thus contains a button to edit the options for the FFT calculation. Depending upon the type of plot, various options may be present on the toolbar. Please consult the appropriate section below for more information about these options. Magnifying glass tool: This tool allows you to zoom in and out to see fine details in the plot. Click and drag a box from upper-left to lower-right to zoom in on a particular region of your plot. Click and drag a box from lower-right to upper-left to zoom out. With the magnifying glass tool selected, click the right mouse button to return to a normal, 100% view. Arrow Tool: The arrow tool is used to select, move, and edit annotations. To edit an annotation, double click it with the arrow tool. To delete an annotation, select it with the arrow tool and press the Delete key on your keyboard. Line Annotation Tool: To draw lines on the plot, select this tool. Drag to draw new lines. To add arrowheads or fix the endpoints of the line, double-click it with the arrow tool. Text Annotation Tool: To draw labels on the plot, select this tool and click at the desired location in the plot. To edit the justification, location, or text of an annotation, double-click it with the arrow tool.

The Waveform Plot The Waveform plot shows you the raw samples collected from the hardware. This plot is mainly used to verify the integrity of collected data – the waveform is the best view in which to diagnose a distorted signal, an irregular clock, a low-amplitude signal, and many other common ADC system problems. The Waveform plot also quickly shows you how much of the ADC’s dynamic range your signal occupies.

The FFT Plot The WaveVision software automatically computes a Fast Fourier Transform (FFT) of the sample set, and displays the results in an FFT plot. The FFT plot is, in many respects, the heart of the software. The FFT shows you the frequency content of your input signal. It marks the fundamental frequency, and a selectable number of harmonics. It also labels their order and frequencies. It shows the power in the fundamental and harmonics. Try hovering your mouse cursor over a harmonic to get information about it. The FFT can be used to diagnose common ADC problems such as input spectral impurity, clock phase noise, and clock jitter. The FFT plot also shows several statistics on the quality and purity of the collected

Page 25: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

25

samples, such as SNR, SINAD, THD, SFDR, and ENOB. These statistics are to be interpreted with the following definitions (which are repeated in every National Semiconductor ADC datasheet): Signal to Noise Ratio (SNR) is the ratio, expressed in dB, of the RMS value of the input signal to the RMS value of the sum of all other spectral components below one-half the sampling frequency, not including harmonics or DC. Signal to Noise Plus Distortion (S/N+D or SINAD) Is the ratio, expressed in dB, of the RMS value of the input signal to the RMS value of all of the other spectral components below half the clock frequency, including harmonics but excluding DC. Total Harmonic Distortion (THD) is the ratio, expressed in dBc, of the RMS total of the first five harmonic levels at the output to the level of the fundamental at the output. THD is calculated as

21

222log20THD

fff N++

=L

where f1 is the RMS power of the fundamental (output) frequency and f2 through fN are the RMS power in the first N harmonic frequencies. Spurious-Free Dynamic Range (SFDR) is the difference, expressed in dB, between the RMS values of the input signal and the peak spurious signal, where a spurious signal is any signal present in the output spectrum that is not present at the input. Effective Number of Bits (ENOB, or Effective Bits) is another method of specifying Signal-to-Noise and Distortion or SINAD. ENOB is defined as (SINAD - 1.76) / 6.02 and says that the converter is equivalent to a perfect ADC of this (ENOB) number of bits.

FFT Options FFT plots can be configured in many different ways. Clicking the “FFT Options” button at the top of the plot will display a dialog showing the options for that particular plot. The software also maintains default options for new FFT plots, which are editable. You can edit the default FFT options by choosing Default FFT Options from the Settings menu. The options are: Windowing: You may choose from one of five different window functions. The window function is applied to the samples before computing the FFT to compensate for the fact that the sample set may not be an integral number of wavelengths of the input signal. In general, Flat-Top will give the best results, but you may find it easier to compare data with other systems when the windowing functions are the same. dB Scale: You may select to represent power on the FFT in dBc (decibels relative to carrier), in which 0 dB is taken to be the fundamental (carrier) power, or dBFS (decibels relative to full-scale), in which 0 dB is taken to the be power contained in a signal which uses the entire dynamic range of the ADC. Harmonics: You may select the number of harmonics recognized (and labeled) by the software. You may also select the number of FFT bins excluded around harmonics in, for example, SNR calculations. The exclusion region around each harmonic will be shown in a different color than the rest of the data points. IMD Calculations: The WaveVision software is capable of performing Intermodulation Distortion calculations. When two fundamental frequencies within 3 dBFS are present in the waveform, The software will normally perform IMD calculations. You may inhibit this behavior by deselecting the “Allow IMD calculation” checkbox. When IMD calculation is enabled, you may also select whether the software will include only 2nd order or both 2nd and 3rd order terms.

Page 26: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

26

Histogram Plots Histogram plots are created by counting the number of times each ADC output code appears in a dataset. Histograms may be computed by software, or by hardware. A software histogram is computed from a dataset which is normally 128k samples or smaller. A hardware histogram is collected directly by the hardware, and may include millions of counts per code. The resulting histogram will show discontinuities between comparators, gain or offset errors, and other common ADC system problems. The Histogram plot also displays the number of codes that were never counted (missing codes), followed by the first ten such missing codes.

Information Viewer The information viewer is not a plot, but it displays a variety of useful information about the dataset, such as the sampling rate, and any warnings generated by the software. You may also store comments about the dataset here, to be saved in a WaveVision file.

Data Import and Export The WaveVision software provides a variety of means to share data with others, in both textual and graphical formats. The most flexible way to import data into the software is from a tab-delimited ASCII text file. The contents can be either a sample set or a histogram, provided with or without time information. The simplest example of this would be a file with a single column of samples. You can open tab-delimited text files by choosing Open from the File menu; you can interleave data from multiple columns and/or files. You can choose ReOpen to reopen the same file later with the same settings (for example when you update the file with new data), There are a variety of ways to export data from the software:

• Save the file as a normal WV4 (*.wv4) file. WV4 files are ASCII, tab-delimited text files. Samples are stored one per line in a single column. You can open a WV4 file directly in a spreadsheet program.

• Save the file as a TXT (*.txt) file. You will produce a one- or two-column tab-delimited ASCII text file of samples or histogram information, without the header information that is contained in a WV4 file.

• You can export the contents of an individual plot by choosing Export Data… from the plot’s Plot Actions menu. The format of the data is always tab-delimited ASCII text.

• You can export a plot as either a GIF (*.gif) or Encapsulated Postscript (*.eps) graphic by choosing Export Plot as Graphic from the plot’s Plot Actions menu. GIF files are suitable for the web or for emails. Encapsulated Postscript files are high-resolution scalable files suitable for direct publication.

Page 27: Development Board Instruction Manual SEMICONDUCTOR/ADC08D1000D… · USB Interface to PC and a Signal Source. A 1.0GHz Clock generator is provided on board and the system also allows

27

BY USING THIS PRODUCT, YOU ARE AGREEING TO BE BOUND BY THE TERMS AND CONDITIONS OF NATIONAL SEMICONDUCTOR'S END USER LICENSE AGREEMENT. DO NOT USE THIS PRODUCT UNTIL YOU HAVE READ AND AGREED TO THE TERMS AND CONDITIONS OF THAT AGREEMENT. IF YOU DO NOT AGREE WITH THEM, CONTACT THE VENDOR WITHIN TEN (10) DAYS OF RECEIPT FOR INSTRUCTIONS ON RETURN OF THE UNUSED PRODUCT FOR A REFUND OF THE PURCHASE PRICE PAID, IF ANY. The ADC08D1000DEV Development Boards are intended for product evaluation purposes only and are not intended for resale to end consumers, is not authorized for such use and is not designed for compliance with European EMC Directive 89/336/EEC, or for compliance with any other electromagnetic compatibility requirements.

National Semiconductor Corporation does not assume any responsibility for use of any circuitry or software supplied or described. No circuit patent licenses are implied

.LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2.

National does not assume any responsibility for any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

National Semiconductor Corporation Americas Customer Support Center Tel: 1-800-272-9959 Email: [email protected]

National Semiconductor Europe Customer Support Center Fax: +49 (0) 1 80-530 85 86 Email: [email protected] Deutsch Tel: +49 (0) 699508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +49 (0) 141 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: [email protected]

National SemiconductorJapan Customer Support Center Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 Email: [email protected]