Determining Host Rock Protolith in an Altered VMS...

104
Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 386 Determining Host Rock Protolith in an Altered VMS Deposit in the Rävliden Area, North Sweden Fastställande av ursprungsbergart i en omvandlad malm av VMS-typ i Rävlidenområdet, norra Sverige Zana Mataruga INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES

Transcript of Determining Host Rock Protolith in an Altered VMS...

Page 1: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences

ISSN 1650-6553 Nr 386

Determining Host Rock Protolith in an Altered VMS Deposit in the

Rävliden Area, North Sweden Fastställande av ursprungsbergart i en omvandlad malm av VMS-typ i

Rävlidenområdet, norra Sverige

Zana Mataruga

INSTITUTIONEN FÖR GEOVETENSKAPER

D E P A R T M E N T O F E A R T H S C I E N C E S

Page 2: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden
Page 3: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences

ISSN 1650-6553 Nr 386

Determining Host Rock Protolith in an Altered VMS Deposit in the

Rävliden Area, North Sweden Fastställande av ursprungsbergart i en omvandlad malm av VMS-typ i

Rävlidenområdet, norra Sverige

Zana Mataruga

Page 4: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

ISSN 1650-6553 Copyright © Zana Mataruga Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016

Page 5: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

Abstract Determining Host Rock Protolith in an Altered VMS Deposit in the Rävliden Area, North Sweden Zana Mataruga The Rävliden mine is located in the Skellefte district in northern Sweden. In close proximity lays the Kristineberg deposit containing zinc, copper and lead ore which has been mined since the 1940’s. The district is rich in massive sulphide deposits and the mining history can be dated back to the 1920’s. New deposits are still being discovered and understanding the origin of the ores and their formation processes are more and more important when looking for new orebodies. The area itself is ca 1.8 Ga and most rocks have undergone hydrothermal alteration and been metamorphosed. The main purpose of this study was to determine the host rock protolith and the method chosen was developed by MacLean and Barrett (2005) in which immobile element ratios are used for determining the chemostratigraphy.

Two main alteration types are recognized and two minor ones. The dominant ones being sericite and chlorite alteration. The boreholes also display some silicification and carbonate alteration. While the TAS-diagram shows that most samples are either dacitic or rhyolitic with a small group of andesitic rocks. Further usage of both the Alteration box plot and various immobile element plots show that the amount of dacitic samples are low. Instead rhyolite is the predominant rock type with four subgroups, there is also one dacite group and one probable andesitic intrusion. The mineralisation is low so it was not possible to correlate alteration type to ore occurrence, nor was it possible to see any correlation between protolith and mineralisation. The study did determine the protolith for the boreholes and the data and therefore the method can be used for exploration in other areas. Keywords: Rävliden, lithogeochemistry, immobile elements, protolith, alteration Degree Project E1 in Earth Science, 1GV025, 30 credits Supervisors: Abigail Barker, Mac Fjellerad Persson and Nils Jansson Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, No. 386, 2016 The whole document is available at www.diva-portal.org

Page 6: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

Populärvetenskaplig sammanfattning Fastställande av ursprungsbergart i en omvandlad malm av VMS-typ i Rävlidenområdet, norra Sverige Zana Mataruga Rävlidengruvan ligger i Skelleftedistriktet i norra Sverige och i dess närhet ligger även Kristinebergs-gruvan där zink, koppar och bly har brutits ur malmkroppen sedan 1940-talet. Distriktet är rikt på massiva sulfidavlagringar och gruvdrift i området kan dateras tillbaka till 1920-talet. Nya fyndigheter upptäcks fortfarande och förståelse för deras uppkomst och malmernas bildningsprocesser blir allt viktigare när man ska söka nya malmkroppar. Skelleftedistriktet är ca 1,8 Ga och de flesta bergarter har antingen genomgått metamorfos eller hydrotermal omvandling. Huvudsyftet med denna studie var att fastställa ursprungsbergarten för området, innan hydrotermal omvandling skedde, med hjälp av en metod som har utvecklats av MacLean och Barrett. Metoden grundar sig i att man jämför relationerna mellan immobila grundämnen för att på så sätt fastställa kemostratigrafin.

Fyra omvandlingstyper återfinns i borrhålen där två är mer prominenta, serecit och klorit omvandling. De mindre vanliga omvandlingstyperna är silicifiering eller kvartsomvandlig samt karbonatomvandling. De flesta prover är antingen daciter eller ryoliter med en liten grupp andesiter så visar de olika diagrammen med immobila elementet på att mängden daciter är få. Istället finns det fyra typer av ryoliter, en grupp daciter och en trolig andesitisk intrusion. Mängden mineralisering var låg så det var inte möjligt att korrelera omvandlingstyp till malm bildning, inte heller var det möjligt att se något samband mellan protoliten och mineralisering. Studien besvarade hypotesen om ursprungs-bergarten för borrhålen och metoden kan användas för andra prospekteringsområden. Nyckelord: Rävliden, lithogeokemi, immobila element, protolit, omvandlingar Examensarbete E1 i geovetenskap, 1GV025, 30 hp Handledare: Abigail Barker, Mac Fjellerad Persson och Nils Jansson Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se) ISSN 1650-6553, Examensarbete vid Institutionen för geovetenskaper, Nr 386, 2016 Hela publikationen finns tillgänglig på www.diva-portal.org

Page 7: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

Table of Contents

1. Introduction .................................................................................................................................................................... 1

2. Geological Background .............................................................................................................................................. 2

2.1 Regional Geology .......................................................................................................................... 2

2.1.1 Geology of Rävliden ..................................................................................................................................... 3

2.2 Volcanogenic Hosted Massive Sulphide deposits ......................................................................... 4

2.2.1 Alteration ......................................................................................................................................................... 4

3. Methodology ................................................................................................................................................................... 6

3.1 Sample selection and lithogeochemistry ....................................................................................... 6

3.2 Alteration box plot ......................................................................................................................... 6

3.3 Immobile element plots ................................................................................................................. 8

3.3.1 Magmatic affinity .......................................................................................................................................... 9

3.3 Microscopy and Qemscan ........................................................................................................... 12

4. Results ............................................................................................................................................................................. 14

4.1 Core logs...................................................................................................................................... 14

4.2 Immobile element geochemistry ................................................................................................. 16

4.2.1 Magmatic affinity ........................................................................................................................................ 24

4.4 Microscopy .................................................................................................................................. 25

4.5 Qemscan ...................................................................................................................................... 35

5. Discussion ...................................................................................................................................................................... 37

5.1 Host rock protolith ....................................................................................................................... 37

5.2 Classification of the host rock ..................................................................................................... 37

5.3. Distribution of different host rocks ............................................................................................ 42

5.4. Alteration trends ......................................................................................................................... 42

5.5 Evidence from the microscopy .................................................................................................... 43

6. Conclusion ..................................................................................................................................................................... 44

7. Acknowledgements ................................................................................................................................................... 45

8. References ..................................................................................................................................................................... 46

Appendix ............................................................................................................................................................................. 48

A.1. Summary of core log obervations .............................................................................................. 48

A.2. Lithogeochemical data, whole rock composition for all samples .............................................. 52

A.3. Core logs .................................................................................................................................... 77

Page 8: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden
Page 9: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

1

1. Introduction

The aim of this project is to explore the hypothesis that the original composition of the host rocks for

the Rävliden volcanogenic hosted massive sulphide deposit were mostly rhyolitic and what we see in

the rocks today is simply caused by alteration and metamorphism. VHMS deposits are associated with

alteration zones of distinct types that consist of identifiable alteration minerals. What can be hard to

determine is the alteration precursor. The aim of the study is to find out what the original pre-alteration

rock-type was in three boreholes from the Skellefte district, provided by Boliden Mineral AB, which

are approximately 500 m in length each. By logging the cores and taking samples for lithogeochemical

analysis we will be able to determine where there was a change in rock type or simply alteration.

By looking at immobile element ratios we get an indication of what the original rock type was

before hydrothermal alteration (MacLean & Barrett, 1993). The immobile elements I will look at and

the ratios between them are Ti, Al, Y and Zr. The data will be compared to known data for different

volcanic rocks, which will help in drawing conclusions of what the protolith in Rävliden was. It is

important to know what the protolith was so that alteration patterns can be recognized and it will help

future prospecting since certain protoliths are more prone to host ore than others.

Page 10: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

2

2. Geological Background

2.1 Regional Geology

Northern Scandinavia and West Russia rest on what is called the Fennoscandian shield (Lindström, et

al., 2000). Its formation started some 3.2 Ga ago, during the Archean and was concluded some 2.5 Ga.

In the West of the Archean continent there was sedimentation in the ocean all the while it was drifting

towards a collision with another continent (Lindström, et al., 2000).

At approximately 2.1-1.9 Ga the parts of the Fennoscandian shield known as the Svekofennian

magmatic province started accumulating. The province includes one of Sweden’s most prominent

mining areas, the Skellefte field in North Sweden (Carranza & Sadeghi, 2010). There is much dispute

about how the Skelleftefield was created. Recent studies, based on geological and geophysical

information, propose a combination of collisional and accretionary tectonic events during five orogenies

(Skyttä, et al., 2011). But the theory that is best recognized suggests that a period of intensive volcanism

led to mafic magmas penetrating the sand and clay sediments previously settled on the ocean floor. The

period of intensive volcanism only lasted 150 Ma and came to a halt when there were movements in the

crust which led to deformation, folding and metamorphism, causing the sedimentary rock types to lose

their initial structures. The formation of the major bedrock in the province was concluded at

approximately 1.8 Ga when new magmas intruded and there was some additional folding in the area

(Lindström, et al., 2000).

The Skellefte mining district has well documented geology due to its economic importance. One

of the first mines of northern Sweden was discovered here, the Boliden mine that started operating

during the 1920’s. This led to more exploration and documentation of the area and the discovery of

many massive polymetallic sulphide ore bodies (Berglund, 2010). There are 85 known deposits in the

district that covers an area of 30 km by 120 km and 30 of them either have been or are being mined

today (Allen, et al., 1996).

There is a lingering debate about the actual crustal evolution in the area, older theories suggest that

the district was created as a volcanic arc accreted onto the Karelian craton (Hietanen 1975 and Gaal

1990). While more recent studies of the area by Rutland et al (2001) led to the theory that the district

was deposited in a rift setting on the Bothnian Basin metasedimetary rocks. This occurred during a time

of crustal extension simultaneous with an active margin that was located West of the Svecofennian rocks

that are exposed today (Rutland, et al., 2001).

Nevertheless the district is comprised of three main supracrustal rock types. The Skellefteå and

Arvidsjaur groups consist predominantly of metavolcanic rocks while the Vargfors Group is mainly

comprised of metasedimentary rocks (Barrett, et al., 2005).

Page 11: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

3

2.1.1 Geology of Rävliden

The area of Rävliden is located in North Sweden in the Skellefte mining district (figure 1). The geology

of the area can therefore be explained in relation to the formation of the Skellefte district. Pyroclastic

activity, at ca. 1.88 Ga, caused by submarine volcanoes erupting in the area is the probable cause of the

formation of the metavolcanic Skellefte Group. To the West of Rävliden and overlaying the Skellefte

Group in which the Rävliden mine is situated, lays the Vargfors metasedimentary Group (figure 1). The

formation of the Vargfors metavolcanic Group was shortly followed by the formation of the Rävliden

VHMS-deposit, which was deformed during the Svekokarelian orogeny, at ca. 1.85 Ga. The

Kristineberg area, which is more exploited and hosts the Kristineberg mine, has undergone two

metamorphic events, causing the rocks in the area to be of low to medium metamorphic grade (Allen,

et al., 1996).

Figure 1. Regional geology of the area. The Rävliden mine is situated near the intersection of the Vargfors and

Skellefte groups marked with a red circle, modified after MacLean & Barrett (1993).

Page 12: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

4

2.2 Volcanogenic Hosted Massive Sulphide deposits

Volcanogenic hosted massive sulphide deposits or sometimes simply “VHMS” deposits are created in

the uppermost part of the Earth’s crust and are abundant in the Skellefte district and common as

economic ore deposits around the world (Barrett, et al., 2005). They are created in marine environments

of the seafloor and are hosts for mainly copper, zinc and lead, while gold and silver are valuable by-

products. The deposits commonly form lenses that are polymetallic, either on the seafloor or in close

proximity to it (Pirajno, 2009). VHMS deposits are formed due to hydrothermal processes related to

extensional tectonic processes, both seafloor spreading and rifting arc environments. Deposits preserved

to this day are formed in nascent-arc, back arc and rifted arc settings. Deposits formed at mid ocean

ridges will be lost due to subduction of the seafloor hosting the deposits (Pirajno, 2009).

Rifting causes cracks and faults in the ocean floor which get flooded with saltwater, as magma rises to

the surface the saltwater will heat up and leach the magma of metals and form metal enriched fluids.

VHMS-deposits mostly consist of two easily recognizable components (Pirajno, 2009). Since the

deposit is mushroom shaped the mound is a massive sulphide lens mostly consisting of sulphide,

phyllosilicates, quartz, iron oxides and an altered silicate wallrock. Underlying this is the “root-system”

consisting of discordant to semi-concordant stock work veins and disseminated sulphides. The pipe

looking veins are surrounded by an alteration halo (Galley, et al., 2007).

2.2.1 Alteration

Changes in mineral composition in the host rock, also known as the foot wall, are caused by

hydrothermal processes and are referred to as hydrothermal alteration and the new minerals assembled

are alteration minerals (Gifkins, et al., 2005). The metasomatic alteration, as mentioned, is often seen as

a halo around the “root-system” but may appear as an endless variety of styles. Factors controlling

metasomatism are temperature in the surrounding rocks, pressure, composition in the host rock, the

composition of the hydrothermal fluid as well as fluid to rock ratio (Robb, 2005) (Pirajno, 2009).

When looking at VHMS alteration there are three main minerals that offer some explanation of the

conditions of the alteration. Sericite is a white mica created by transformation of feldspar by

metamorphism, it has the same mineral chemistry as muscovite. While sericite is a light coloured mica,

chlorite is darker and often occurs in dark grey or green streaks. Dark silica minerals rich in Mg and Fe

such as pyroxenes, biotite and amphiboles undergo chlorite alteration. The third most common alteration

type is carbonate alteration. Despite its common occurrence in alteration environments it is sparsely

described in literature. The alteration is often rich in Fe, Mg and Mn (Gifkins, et al., 2005).

A model presented by Gifkins et al. (2005) illustrates occurrence of the alteration minerals as

we approach the centre of the halo where the ore deposit is often located (figure 2). The outskirts of the

Page 13: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

5

halo contain the least altered zone, which is dominated by sericite and quartz (Gifkins, et al., 2005).

Since this part of the alteration zone sometimes express so little alteration it is possible to find primary

structures of the host rock (Gifkins, et al., 2005). Following the sericite and quartz zone is the sericite

zone which is mainly dominated by sericite, but may also contain chlorite and rocks that are silicified

(Gifkins, et al., 2005). One can also find sporadic sulphides but not as many as in the two inner zones

(Gifkins, et al., 2005). The chlorite and carbonate zone mainly consists of chlorite alteration but can

contain minerals from the previous alteration zones. Primary structures are not visible in this zone but

minerals such as pyrite and chalcopyrite are quite abundant. The inner most zone is the siliceous core,

it has undergone the most alteration and represents the highest alteration temperatures. Characteristic

for this zone are the sulphide rich stringers (Gifkins, et al., 2005).

Figure 2. Alteration halo as described by Gifkins et al,. (2005), image modified after (Galley, et al., 2007).

Page 14: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

6

3. Methodology

The method for the study was divided into three parts. The first part being logging the provided cores

and selecting samples for lithogeochemical analysis. The second step was to interpret the information

gained through various immobile element plots. The last part of the method was to confirm the results

from the data analysis in the second step by conducting microscopy and Qemscan studies.

3.1 Sample selection and lithogeochemistry

The 147 samples gathered and sent for lithogeochemical analysis were taken from existing drill cores at

Boliden drill core storage facility. The 3 chosen drill cores were 673, 674 and 675 from the Rävliden

area in the Skellefte-district, North Sweden. To obtain a good spread of data, samples were taken

approximately 10 m apart while logging the core. Once an appropriate area in the core was chosen a

sample most representative of that area was taken out with a hammer and then sawed in 2 in the lab.

One half was marked as a sample going for analysis and one half was put back into the core-box. A

small sample for future reference, was taken adjacent to the selected sample and stored in a separate

box. All samples were washed and sanded to avoid contamination from rust and dirt. To be able to

conduct a quality control, 13 Boliden standard reference samples were included.

The obtained samples with the 13 references were first sent for preparation to the ALS Chemex lab in

Piteå. They were washed, crushed and milled before being sent to ACME laboratories in Vancouver,

Canada. The analytical methods used were inductively coupled plasma atomic emission spectroscopy

(ICP-ES) and inductively coupled plasma mass spectrometry (ICP-MS) (Ltd, 2014). The initial

information about the samples are gathered in the summary of observations appendix 9.1. The whole

rock compositions of the samples are available in appendix 9.2. Once the data was acquired it was

incorporated to IoGas software.

3.2 Alteration box plot

Since zonal alteration is common around deposits of VHMS type (Pirajno, 2009), geochemical indexes

have been developed throughout the years to better measure the intensity of the alteration or simply the

intensity of the replacement of sodic feldspar and glass by sericite, chlorite, pyrite and carbonates. The

alteration box plot was developed using two different indexes plotted against each other, the Ishikawa

alteration index (AI) and the chlorite-carbonate-pyrite index (CCPI), (fig 3-4) (Large, et al., 2001). The

simple graphic illustration is helpful as a tool in defining whether the alteration trends are hydrothermal

or were caused by regional diagenetic alteration as well as for identifying different alteration trends

towards the alteration minerals.

Page 15: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

7

Figure 3. Alteration box plot showing trends towards hydrothermal or diagenetic alteration (Large, et al., 2001).

Figure 4. Most common mineral trends in hydrothermal alteration modified after Large, et al., (2001).

The AI was defined by Ishikawa (1976) as a way to measure the intensity of chlorite and sericite

alteration occurring in the footwall volcanics close to Kuroko deposits. He quantified it as follows:

𝐴𝐼 =100(𝐾2𝑂 + 𝑀𝑔𝑂)

(𝐾2𝑂 + 𝑀𝑔𝑂 + 𝑁𝑎2𝑂 + 𝐶𝑎𝑂)

The top row contemplates alkali-feldspar and volcanic glass while the bottom row measures chlorite

and sericite, disregarding the silica oxides. Simply resulting in a high AI equalling high intensity

substitution which occurs during intensive hydrothermal alteration. An example of such a replacement

reaction is sericite replacing Na-rich plagioclase feldspars such as albite. The reaction is important in

the outer parts of alteration zones and can be written as:

Page 16: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

8

3𝑁𝑎𝐴𝑙𝑆𝑖𝑠𝑂8 + 𝐾+ + 2𝐻+ = 𝐾𝐴𝑙3𝑆𝑖3𝑂10(𝑂𝐻)2 + 6𝑆𝑖𝑂2 + 3𝑁𝑎+

The CCPI was developed as a complement to the AI and can be described as:

𝐶𝐶𝑃𝐼 = 100(𝑀𝑔𝑂 + 𝐹𝑒𝑂)

(𝑀𝑔𝑂 + 𝐹𝑒𝑂 + 𝑁𝑎2𝑂 + 𝐾2𝑂)

where 𝐹𝑒𝑂 = 𝐹𝑒𝑂 + 𝐹𝑒2𝑂3 which is the total rock content. The AI has two limitations that created

the need for a complementary index. Firstly it does not account for carbonate alteration in VHMS

deposits since those are rare. In some specific VHMS deposits there is carbonate alteration which then

makes the AI value low even though the alteration in reality is high. Secondly it does not distinguish if

the alteration is either chlorite or sericite (Large, et al., 2001).

3.3 Immobile element plots

Immobile elements are used in binary plots to identify protolith rocks in altered volcanic terrains

(MacLean & Barrett, 1993). MacLean and Kranidiotis (1987), showed that in alteration zones around

VMS deposits, the elements Al, Ti and Zr and also Nb, Y and the REE are immobile elements. In an

ideal single precursor system, a pair of immobile elements will form a highly correlated linear trend that

passes through the origin, see figure 9 (MacLean & Barrett, 1993). Immobile elements in rocks

undergoing hydrothermal alteration are either concentrated during net mass loss, or diluted during net

mass gain (fig 5) (MacLean, 1990). Calculations for net mass loss differ if the system has a single or

multiple precursor in origin.

For the plots vertical axis, a highly compatible element is used, such as Al or Ti usually in the form of

Al2O3 or TiO2 and for the horizontal axis the incompatible element zirconium, Zr is used, as a monitor

of primary crystal fractionation (MacLean & Barrett, 1993).

Page 17: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

9

Figure 5. Illustration of mass gain and loss in an altered volcanic rock, modified after MacLean & Barrett, (1993).

Using the chemostratigraphic method Barrett and MacLean (2005) identified 6 main rock types and

one subtype, see table 1. Their rock classification was the foundation for ordering the samples taken in

the Rävliden area. The ratios of Al2O3/TiO2 and Zr/TiO2 were regarded as most significant for an

accurate classification.

Table 1. The main chemical rock types from the Kristineberg deposit and their characteristic ratio ranges (Barrett,

et al., 2005).

Ranges of ratios /

Rocktype

Al2O3/TiO2 Zr/TiO2 Zr/Al2O3 Zr/Y Zr/Nb

Rhyolite A 34-42 670-820 18-22 9-13 18-23

Rhyolite B 28-40 500-660 15-19 7-12 18-22

Rhyolite X 40-52 580-720 13-16 5-9 17-21

Dacite 24-31 260-380 10-14 5-10 17-21

Andesite 21-30 160-250 7-11 4-7 17-20

Mafic 18-27 40-150 9-13 2-6 17-20

3.3.1 Magmatic affinity

The magmatic affinity of igneous rocks can be divided into alkaline and sub-alkaline depending on their

concentration of alkali elements. Alkaline rocks are deficient in silica and rich in alkalis such as sodium

Page 18: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

10

and potassium. The definition is in theory rigid but in practice alkali rocks encompass a much wider

range of compositions, (fig 6) (Fitton & Upton, 1987). The subalkaline magma series is further divided

into a calc-alkaline and a tholeiitic magma series. The calc-alkaline rocks form from oxidized magma

while tholeiitic rocks form from reduced magmas represented by the Fe content, (fig 7) (Wilson, 1989).

The magmatic affinity of rocks shows the origin of the magma from which they formed (Wilson, 1989).

Figure 6. The division of alkali and subalkalic rocks, nomenclature after (Cox, et al., 1979) and dividing line from

(Miyashiro, 1978) image altered by Zana Mataruga after (Wilson, 1989).

Figure 7. AFM diagram showing differences in trends depending on tholeiitic and calk-alkaline affinities. Image

altered by Zana Mataruga after (Wilson, 1989).

Page 19: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

11

According to Barret and MacLean (1999) the magmatic affinity of rocks in the Kristineberg can be

assessed due to Zr/Y ratios (table 2).

Table 2. The classifications due to magmatic affinity according to Barret and MacLean (1999).

Zr / Y ratio Affinity towards

< 4 Tholeiitic rocks

4 – 7 Transitional

> 7 Calc-alkaline

Page 20: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

12

3.3 Microscopy and Qemscan

Guided by the values provided from the lithogeochemical analysis 12 samples of high interest were

selected and re-sent to the ACME laboratories in Canada to be made into thin sections for analysis in

combined reflected light and petrographic microscope. They were either selected as they were least

altered or because they were standing out in the Alteration box plot. The samples were analysed both

using plane polarised light and with crossed polars, some of the ore grains were viewed using reflected

light microscopy. Additionally the slabs from the thin section samples were stained. It is a method where

the slabs surface is etched with hydrofluoric acid and then dipped into a barium-chloride solution. The

slabs are then rinsed and treated with a potassium-rhodizonite solution to stain all feldspars, excluding

the ones containing sodium, a brick red colour. The staining valid for our studies is a combination of the

mentioned procedure with a cobaltrinite solution to stain the alkali feldspar yellow on the slab surfaces

(Bailey & Stevens, 1960). Distinguishing between certain minerals viewed in thin section can be very

complicated. Therefore additional analysis with QEMSCAN was carried out. QEMSCAN stands for

“quantative evaluation of minerals by scanning electron microscopy” and is a non-destructive micro-

analysis system that provides mineral data from all inorganic materials. QEMSCAN uses both back

scattered electrons (BSE) and energy dispersive (EDS) x-ray spectra to create digital mineral images

(fig 8) (Goodall, et al., 2005). The images taken in the QEMSCAN show minerals containing heavier

atoms as lighter while dark minerals contain less metals and more light elements. Since it was hard to

separate the feldspars from the quartz in the microscope, using this technique makes distinction easier.

The sample were carbon coated and the area of interest was marked with a pen before examination in

the QEMSCAN (fig 9). Quartz consists of purely light elements and is the dark material presented in

the image viewed through the QEMSCAN. The gray areas are feldspars. The microscopy and

QEMSCAN analysis was done as a secondary control to the rock characterizations.

Figure 8. Illustration showing the Qemscan process. Modified after FEI (2014).

Page 21: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

13

Figure 9. Image of marked area for scanning.

Page 22: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

14

4. Results

4.1 Core logs

A summary of the observations made on the core logs can be found in appendix 9.1. Pictures were taken

of both the entire core but also individual samples and can be found in the appendix. The table contains

information about the sample number, the length of the sample and also location and what core it was

taken from. In addition, the table also contains a short description of the samples and an estimate of the

rock protolith. Only the first core stood out remarkably from the two others (fig 10). While cores 674

and 675 are mostly dominated by rhyolite, there are some dacitic rocks and mafic intrusions in bore hole

674. The first core, 673, contains a large amount of andesitic rocks, while the first 140 meters were

rather homogeneous with some sericite and chlorite altheteration present as well as silicificaion. At a

depth of almost 140 meters a narrow graphite layer appeared which does not occur in the following two

bore holes. The graphite layer was only approximately 5-10 meters thick and was follow by a drastic

change in the core, from rhyolitic appearance at the start to looking more like an andesite. The andesite

layer lasted for 200 meters to a depth of approximately 340 meters and is rather unaltered. The rest of

the core had various degrees of sericite and chlorite alteration. The second core, number 674, was

dominated by rhyolite that was sericite and chlorite altered. Only small sections, less than 10 meters,

were tremolite-skarn or carbonate altered. Near the end of the second core a small change in appearance

towards a darker colour and less pronounced texture gave indications of a mafic intrusion. The third

core, number 675, had the greatest depth, 640 meters, and was also mostly dominated by rock that had

sericite or chlorite alteration. It had more occurrences of carbonate alteration and tremolite-skarn. The

tremolite-skarn often appeared in patches.

Page 23: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

15

Figure 10a. The lithology and observed alteration of the three boreholes. See Fig. 10b for legend

Page 24: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

16

Figure 10b. Legend of symbols used on Fig 10a.

4.2 Immobile element geochemistry

The following plots were produced from the results of the lithogeochemical analysis in the software

“IoGas” (Reflex, 2014) in a ”TAS-classification diagram” LeMaitre et, al.( 1989). The first rock type

classifications were made for the data points and the points were recolored and sorted accordingly. As

seen in figure 11, the data points are scattered and don’t fit perfectly in any of the fields. Therefore this

diagram only serves as an indication of the classes to which the samples belong. As the work progressed

samples were renamed and recolored to fit with the results from the immobile element plots, Alteration

box plot as well as the ratio-ratio plot. The final results and rock types can be seen in figure 12. The

three bore holes that were sampled contained rhyolite, dacite, andesite and mafic intrusions as well as

one graphite sample and one sample that was anomalous, assigned with a pink colour. Due to the

variation in immobile elements the rhyolite was subdivided into four distinct groups, that each got a

different colour. The single graphite sample didn’t get its own colour but changed to a round blue circle,

Page 25: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

17

see arrow (fig 11). As well as different colours for each rock type, the least altered samples, once located,

were changed into diamonds with a colourless centre for easier identification and location throughout

the plots, see samples with assigned sample numbers (fig 11). The attribute table (fig 12) also contains

information about the number of samples assigned to each rock type. Since all data was handled in one

software, IoGas, once one samples attributes were changed, colour or shape, it was changes

simulatiously for all plots.

Figure 11. Classification of the protolith for the samples according to LeMaitre et, al.(1989).

Figure 12. Image taken of the “Attribute table” for the rock types found in the Rävliden boreholes and their

assigned colours. The “rows” indicate how many samples there are for each rock type.

Page 26: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

18

The following plots display the immobile elements and the distribution of the classified rock samples.

Table 2 displays chemical rock groups and the immobile element ratios according to Barret and

MacLean (2005), which were initially used to set the rock types apart. The ratios for the rock types in

the study are summarised in table 3. Usually in the various immobile element plots the rock types could

be set apart from each other by taking into consideration the trends in the diagrams, but as seen in the

immobile elements plots (fig 13-15) the four different rhyolite rocks are close to each other in immobile

element ratio values.

Table 3. The main chemical rock types from the three boreholes from the Rävliden deposit and their characteristic

ratio ranges.

Ranges of ratios /

Rocktype

Al2O3/TiO2 Zr/TiO2 Zr/Al2O3 Zr/Y

Rhyolite 1 31-38 584-600 16-18 3-11

Rhyolite 2 32-40 667-733 18-19 11-13

Rhyolite 3 36-41 520-667 12-17 6-15

Rhyolite 4 29-30 433-511 15-16 9-12

Dacite 30-37 290-457 8-11 5-7

Andesite 28-30 142-160 5-6 3-9

Mafic 18-19 121-133 6-7 3-6

Page 27: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

19

Figure 13. All samples plotted for Al2ZO3 versus Zr, the figure shows that the rhyolite clearly separates themselves

from the andesite and Dacite rock types as well as the mafic intrusions.

Figure 14. All samples plotted for Ti/Al ratio.

Page 28: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

20

Figure 15. All samples plotted for TiO2 versus Zr.

The chemical classification of the rock types can be further improved. By assuming that the immobile

elements have stayed immobile and using ratios between immobile elements on each axis the effect of

alteration can be eliminated. In the Zr/TiO2-Al2O3/TiO2 plot (figure 16) are more clearly separated than

shown in immobile element plots displayed in figures 11-13.

Figure 16. Ratio plots for all samples that further separates the rock types.

The alteration box plot in the IoGas software was used as a complement to find the least altered samples

for each rock type. The samples chosen were compared to each of the immobile element plots (figures

13-15). The best fit samples were changed into a diamond shaped symbol but with its original colouring.

Page 29: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

21

Figure 17 shows all samples with the sample numbers which were selected for further analysis with a

microscope.

Figure 17. Alteration box plot showing distribution of the rock samples and also least altered as well as some most

altered samples selected for microscopy study samples and their sample number.

The three boreholes and the samples taken and analysed can be viewed in a spatial 3D plot (fig 18).

Here it is possible to see variations in rock composition over depth and distance in meters. Also

information about the spacial positioning of the least altered samples and mafic intrusions are more

easily viewed. This information was used to create the chemostratigraphic map (fig 19).

Page 30: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

22

Figure 18. Spatial 3D plot of distribution of samples where the colours and different shapes dictate host rock. The

least altered samples from all the groups are labelled as well as the most altered samples from the group 3

Rhyolites.

Page 31: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

23

Figure 19. The chemostratigraphic map of the boreholes.

Page 32: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

24

4.2.1 Magmatic affinity

The sub-alkaline magma series consists of rocks undersaturated in Na2O and K2O compared to silica,

see figure 6. The alkaline rock series consists of more mineralogically diverse igneous rock types but

the majority of igneous rocks belong to the sub-alkaline rock series. Sub-alkaline magmas have a diverse

origin but most of them originate from partial melting of mantle rocks at shallow depths (Wilson, 1989).

The ratio between the two incompatible elements Zr and Y can be used to assess the magmatic affinity

for altered volcanic rocks (Gifkins, et al., 2005). Most of the samples plot as Calc-alkaline rocks (figure

20). The andesitic, dacitic and the mafic intrusion samples plot either as transitional or close to the

border. Indicating that the magma from which they formed might have a different origin than the

rhyolitic samples. Calc-alkaline magmas form from a magma that is in a redox state. By crystal

fractionation of a mafic magma the tholeiitic rocks which have a higher Fe content will form first, and

the felsic magmas will crystalize and form last. Olivine and pyroxenes are commonly found in tholeiitic

rocks, and can be found in the samples that plot in the transitional zone.

Figure 20. Plot of Zr/Y showing magmatic affinity according to Barret and MacLean, (1993).

Page 33: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

25

4.4 Microscopy

Once the 7 rock types were distinguishable from the immobile element plots and the least altered

samples were recognized they were sliced into thin sections and the slabs were stained. This was done

to see if the mineral composition of the samples fit with the assigned rock types, as well as to further

investigate the four types of rhyolite groups.

Rhyolite 3

Since most of the samples from the three boreholes were sorted as rhyolites belonging to the third group,

n=77 (fig 11), and as they had undergone such a varying degree of alteration three samples from were

selected to further study with a microscope. The least altered sample, LK20140318, can be found in

borehole 675. The rock has an approximate distribution of 15 % plagioclase phenocrysts (fig 20c), and

a matrix mainly consisting of quartz (ca 70 %) fig 21 a+b, as well as minor amounts of biotite and

muscovite. Its matrix is dominated by small grains of quartz and muscovite, and the whole sample has

large plagioclase phenocrysts that display twinning. The ratio is typically sanidine 2: 1 plagioclase in

rhyolite in general. There could have been more sanidine among the feldspar, slight alteration may have

transformed the potassium feldspar to quartz. The chemistry of the whole rock corresponds to a rhyolite,

appendix 1. The AI value of the sample is 50.85 and the CCPI value was 36.84. The sample is described

as being thinly laminated, quartz-feldspar phyric sandstone with a grain size of less than 1 mm and

having a dark colour (fig 22) (appendix 9.3).

Figure 21. Images taken of sample LK20140318 with different magnification. a-Matrix displaying quartz and

muscovite in with crossed polars, 5X-magnification. b - Matrix in plane-polarized light, 5Xmagnification. Figure

c - Plagioclase crystals in crossed polarized light displaying twinning, 5X magnification.

Page 34: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

26

Figure 22. Least altered reference sample of the group 3 rhyolites, showing texture and plagioclase phenocrysts,

LK20140318.

The sample from the rhyolite 3 group that plots most towards chlorite in the alteration-box-plot, fig 15,

is LK20140297. The sample is taken from borehole 673 and mostly consists of a very fine-grained

quartz and muscovite matrix with no visible phenocrysts. The only anomaly being one section of very

large quartz grains, (fig 23). The values for AI and CCPI for this sample were 97.99 and 84.15. Even

though the sample plots close to the chlorite in the alteration box plot, not much chlorite can be seen in

the microscope. The ratio is 80 % quartz to 15 % chlorite. According to the whole rock chemical

composition the least altered sample and most altered sample are similar in silica content but vary in

Mg content, explaining the lack of chlorite in the least altered sample (appendix 9.2). The hand specimen

also shows high chlorite alteration and a lack of phenocrysts which is to be expected. The grain size is

less than 1 mm (fig 24).

Figure 23. Images taken of sample LK20140297 showing the boundary between fine- and coarse-grained quartz

in crossed polarized light with 5X magnification.

Page 35: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

27

Figure 24. Most chlorite altered sample of the group 3 rhyolites, LK20140297.

The third end member to the varying samples plotting as rhyolite 3 is sample LK20140206 from bore

hole 674 which plots closest to sericite in the alteration box plot (fig 17). The thin-section is dominated

by quartz at various sizes, from very small grain to large grains (fig 25 a+b). Some of the quartz displays

bluish extinction. The quartz is mixed with muscovite and the reflected light shows that the opaque

mineral is pyrite (fig 25 c). The sericite altered sample lacks phenocrysts but has a higher amount of

mica minerals, mostly muscovite ca 25 %, compared to the two previous samples. The silica content is

a bit higher while Mg and Al are both lower in comparison to the least altered sample (LK2014318)

(appendix 2). The values for AI and CCPI are 95.32 and 53.12. The reference sample shows intense

sericite alteration as well as pyrite imprints while the grain size is approximately 0.5 mm (figure 26).

Figure 25. Images taken of sample LK20140206. a- Quartz/muscovite with crossed polars, 5X-magnification. b

- Quartz/muscovite in plane-polarized light, 5X-magnification. c - Pyrite in reflected light.

Page 36: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

28

Figure 26. Most sericite altered sample of the group 3 rhyolites, LK20140206. Pyrite can be seen in top right

corner scattered as imprints on the rest of the sample.

The fourth sample selected for thin section analysis from the group of rhyolite 3 samples was

LK20140329 and can be found on the left side of the box plot with the values for AI and CCPI being

12.69 and 80.11. It is the taken from borehole 675. The sample is strongly carbonate-altered and it can

be seen in the thin section as calcite present ca 20 % (fig 27 a+b). Studying appendix 1 it is evident that

the sample displays higher amounts of Ca compared to the previous samples see table 8. There are small

specks of zoisite and sillimanite, ca 6-7% in total (fig 27 c), but no phenocryst and the sample is

dominated by quartz ca 50%. The sample was taken in a tremolite-skarn dominated section (appendix

3), as can be seen both in the reference sample, (fig 28), and the results from the lithogeochemical

analysis (appendix 9.2). The sample is a carbonated rhyolite and had a reaction when it came into contact

with acid.

Figure 27. Images taken of sample LK20140329. a- Calcite with crossed polars and 20X magnification. b- Chlorite

in plane polarized light with 10X magnification. c- Zoisite, blue mineral, seen with crossed polars with a 50X

magnification.

Page 37: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

29

Figure 28. Most carbonate altered sample of the group 3 rhyolites, LK20140329.

Rhyolite 1

Rhyolite 1 was the group containing the second largest amount of samples n= 42 . Only the least altered

sample was chosen for further analysis. Sample LK2014288 was the first sample taken in bore hole 675.

Quartz and muscovite, 70% and respectively 20% dominate the sample, but there are also large, zoned

plagioclase phenocrysts, approximately 10% (fig 29). The sections with less alteration have some

phenocrysts (fig 30). The chemical composition of the sample differs a lot in comparison to the rhyolites

assigned to group 3, table 9. Neither silica content nor values for aluminium or magnesium are similar

(appendix 9.2). The reference sample shows weakly and moderately sericite altered streaks.

Figure 29. Zoned plagioclase in crossed-polarized light with 20X magnification

Page 38: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

30

Figure 30. Least altered reference sample of LK20140288.

Rhyolite 2

A total of 28 samples were sorted as rhyolite group 2 samples (fig 11). Amongst them the least altered

sample, LK20140281, was selected for thin section analysis. The sample was found in borehole 673 and

displays only a few percentage of phenocryst, 3%, that are plagioclase. The matrix has a high amount

of mica, both biotite and muscovite, that make up approximately 40 % while quartz in the matrix make

up about 55%. The rest is small grains of pyrite. The quartz and the micas appear to be almost layered

(fig 31). The streakiness from the thin section is reflected in the reference sample (fig 32), where some

parts are very fine grained layered with coarser grains of 0.5 millimetres in size (fig 32). The values for

AI and CCPI were 52.27 and 54.25.

Figure 31. a- Streakiness as seen in plane polarized light with a 5X magnification. The dark stripes are biotite. b-

Plagioclase crystal seen in crossed polarized light, at 5X.

Page 39: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

31

Figure 32. Least altered reference sample of the group 2 rhyolites, LK20140281.

Rhyolite 4

There were only 10 samples that were sorted in to the rhyolite group 4. The sample that was least altered

was 20140360 and it is the last sample of borehole 675. At first glance the sample seems to mainly

consist of quartz with a small amount of plagioclase phenocrysts, 5 %. But a closer look shows that

some of the quartz are smaller grains of plagioclase and microcline which can be seen with crossed

polars (fig 33 b+c). One section of the sample also displays calcite (fig 33a), which can be confirmed

by the relatively high amount of Ca (appendix 9.2). The thin section samples were stained and this was

the first sample with a yellow slab indicating an abundancy of potassium feldspar (fig 34). The section

of the core from which the sample was taken is described as being mostly silicified with carbonates that

react with acid (fig 35). The values for AI and CCPI were 62.82 and 32.35 respectively.

Figure 33. 1- Calcite in crossed polarized light with a 10X magnifIication. 2- Plagioclase crystals in crossed

polarized light and 20X magnification. 3- Microcline crystal seen with crossed polars and 50X magnification.

Page 40: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

32

Figure 34. Stained slab showing staining of sample LK20140360, the yellow colour shows alkali feldspar.

Figure 35. Least altered reference sample of the group 4 rhyolites, LK20140360.

Dacitic rock

The least altered dacite sample was LK20140313 and plots close to the border of rhyolite and dacite in

the alteration box plot (fig 11). This sample contained a high amount of phenocryst, 25 %, and all but

one were plagioclase. In one of the plagioclase grains an inclusion of microcline can be seen (fig 35).

The rock slab of the sample was somewhat stained and the yellow colour indicates a presence of

potassium feldspar (fig 36). An enhanced amount of potassium is confirmed in appendix 1. Quartz is

dominating the matrix 50 %, followed by an equal amount of chlorite and pyrite, each 10 %, and a small

amount of muscovite and microcline, less than 5 %. The core is described as being a polymict breccia

with a silty groundmass which is weakly sericite altered, (appendix 9.1). The phenocrysts in the

reference sample are almost 2 mm (fig 38). The AI and CCPI values were 49.54 and 39.41 respectively.

Page 41: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

33

Figure 36. Microcline inclusion in plagioclase visible in crossed polarized light with 50X magnification.

Figure 37. Slab rock of sample LK20140313 showing Kspar staining.

Figure 38. Least altered reference sample of the dacitic rocks, LK20140313.

Page 42: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

34

Andesitic intrusion

The last sample that was analysed with the microscope was andesitic, LK20140275, and it was

the least altered one from the group. The sample has a matrix consisting of mainly quartz 40%

and hornblende 35 % (fig 39 a+b). Other minerals such as chlorite, calcite, zoisite, pyrite and

plagioclase only occur in small amounts. The pyroxenes have metamorphosed to hornblende as can

be seen in figure 39 a+b. The plagioclase grains are zoned with a halo, which is most likely albite and a

core, probably consisting of anorthite (fig 39 c). The sample is low in silica content while Fe, Al and

Mg are quite high as well as Ca (appendix 9.2). The AI and CCPI values were 28.17 and 81.14

respectively.

Figure 39. a- Hornblende in crossed polarized light and 10X magnification. b- Hornblende seen in plane polarized

light with a 10X magnification. c- Zoned plagioclase crystal seen with crossed polarized light and 10X

magnification.

Figure 40. Least altered reference sample of the andesitic intrusion, LK20140275.

Page 43: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

35

4.5 Qemscan

After examination of the thin sections using a microscope with both ore and petrographic settings, three

samples were selected for further analysis using the QEMSCAN. The purpose was to identify those

minerals that were too hard to separate with the microscope. The sample most thoroughly examined was

LK20140329 which is presumed to be a rhyolite from the third group. The lighter area shows denser

materials while the dark spots are light materials or minerals. The light grey area marked with an arrow

in the left corner is a pyrite (fig 41). The streaky appearance of the mineral in thin section led to the

identification of sillimanite. Since it is rare and hard to distinguish from chlorite it was examined with

QEMSCAN, (fig 41). Chlorite is a group of minerals with four end members, the general formula is

(Mg,Fe)3(Si,Al)4O10*(OH)2·(Mg,Fe)3(OH)6 with Mg, Fe, Mn and Ni being the substituting elements in

the silicate lattice. Sillimanite is an aluminumsilcate with the mineral formula Al2SiO5. According to the

mineral data in table 4 the mineral is more likely to be hornblende or a meta-amphibole like actinolite

which has the mineral formula Ca2(Mg, Fe, Al)5 (Al, Si)8O22(OH)2.

Figure 41. Image of scanned area for sample LK20140329, the left arrow pointing towards a pyrite and the right

arrow indicating scanned area.

Page 44: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

36

Table 4. Table of element composition for scanned area in figure X. Mineral data indicates that the scanned

mineral might be Horneblenede NaCa2(Mg,Fe)4AlSi6Al2O22(Oh,F)2 .

Element Atom nr Un normalized. C

[wt %]

Normalized. C

[wt %]

Atom. C [at

%]

1 sigma

[wt %]

O 8 37.03 42.31 58.63 3.99

Si 14 20.75 23.71 18.72 0.93

Mg 12 11.20 12.80 11.68 0.66

Ca 20 9.72 11.11 6.15 0.31

Fe 26 6.65 7.60 3.02 0.20

Al 13 1.70 1.94 1.59 0.11

Mn 25 0.46 0.53 0.21 0.04

Page 45: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

37

5. Discussion

5.1 Host rock protolith

The aim of this study was to investigate the hypothesis that the original composition of the host rocks

for the Rävliden volcanogenic hosted massive sulphide deposit were mostly rhyolitic and that what we

see in the rocks today is simply caused by alteration and metamorphism. This was to be done using

immobile elements in a technique developed by MacLean & Barrett (1993). While the method is simple

to apply with the right instruments, it leaves unanswered questions and room for error. The gaps in

information were somewhat dealt with by further studying the sections selected for analysis using other

instuments such as microscopy and the Qemscan.

5.2 Classification of the host rock

The process of classifying the samples in IoGas according to their chemical composition was not precise

for every single sample. As seen in figure 8, the data was scattered over a large area. By looking at the

different plots and selecting one group at the time the samples were first sorted into large groups that

were likely to belong to the same rock type. Since all the samples are sorted by hand and the accuracy

in the overlapping area is rather low between several of the rhyolite groups the risk of error is rather

high if only one plot is considered i.e. figure 3. To clarify I have selected one sample that is classified

as rhyolite 1 and coloured it gray so that it is possible to see it in the various plots and diagrams. As

previously mentioned, once one sample is selected and given a certain attribute it will change in all of

the plots, therefore giving this sample a gray colour will enable tracing of the sample throughout all of

the immobile element plots. The arrow indicates where the sample was located previous to an attribute

change (fig 42).

Page 46: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

38

Figure 42. Samples in a Zr-TiO2 diagram, with arrow indicating selected sample.

As seen in figure 31, the samples are so close in composition they could belong to any one of the rhyolite

groups 1 to 4. For further classification and distinction immobile element plots were used displaying

different variables (fig 12-14). Below are just a few extracts with the arrow pointing towards the selected

sample. Figure 32 displays plots of Zr/Al against Zr/Ti and Al/Ti against Zr/Ti. Here we can see a

distinction between the four groups of rhyolite and also follow the marked sample as it clearly has a

preference to the group of rhyolite 3. The special 3D plot indicates very strongly that the selected sample

very likely is a rhyolite 3 because it plots among other group 3 rhyolites (fig 43).

Page 47: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

39

Figure 43. Immobile element ratio-ratio plots. Left plot showing Zr/Al plotted against Zr/Ti and the right one

showing Al/Ti plotted against Zr/Ti. The arrows point towards the gray sample more clearly plotting as a rhyolite

3.

Figure 44. Spacial 3D plot showing that the selected sample, gray and marked with an arrow, plots in the midst

of other rhyolite 3.

Page 48: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

40

Figure 45. Immobile element plot of Zr plotted against Al/Ti. Here all seven rock types are clearly separated.

In figure 46 we can see that the rhyolites 1 to 4 are fairly close to each other as while the dacitic and

andesitic rocks as well as the mafic intrusion are being separated from each other. While figure 45 on

the other hand shows the rock types being very different in composition and easily recognized as

separate groups. The method may not be perfect and demands much individual interpretation but it still

provided necessary information towards the host rock protolith being a rhyolite in this specific area.

Figure 46. Additional examples where the gray sample in the bottom picture could be either red, green or even

yellow. While it in the top plot most likely has red rhyolite characteristics. The circles in the bottom plot highlight

the occurring rockt types: dark blue= andesite, red= rhyolite, light blue= dacites, green= mafic intrusions.

My studies show that the three selected boreholes are dominated by four types of rhyolites and an

andesitic rock type, while occurrence of dacitic rocks and mafic intrusions are sparse. According to the

Page 49: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

41

TAS-diagram in figure 44 the distribution of rock types if far different from the results obtained by

plotting immobile elements. Here for instance a lot more of the samples are dacites than rhyolites. This

is due to the TAS-diagram plotting combined alkali content against silica content. The alkalis are mobile

elements and will change due to alteration leading back to the importance of immobile elements. The

diagram is still useful for looking at the probability of the results being accurate after immobile elements

studies. The least altered samples for the rock types will still plot rather close to origin which can be

seen in figure 3 and in the alteration box plot (fig 17). The arrows show that all the least altered samples

for the rhyolite and dacite plot within the range, the andesite plots right on the border between andesite

and basaltic andesite, which is still acceptable.

Figure 47. TAS-diagram with all samples plotted. The arrows point out the least altered samples.

The microscopy and QEMSCAN was carried out as a way to confirm the results gained from the

immobile element study. The focus was to look at the minerals in the matrix and at the phenocrysts in

the samples to see if they correlate with those common for assigned rock types. The sample that was

hardest to define was sample nr 20140360, rhyolite 4. Even though the matrix looked like quartz, the

chemical data for the sample pointed towards it being more dominated by feldspar (appendix 9.2). This

does not however change the origin of the sample being a rhyolite it only changed the estimate of the

actual mineral compositions from mostly having a quartz matrix to it probably being mostly feldspars.

Since the purpose of the study was to find the host rock protolith the use of QEMSCAN in this particular

study was unnecessary. It did clarify the question of a mineral being either sillimanite or chlorite or

neither of them, but it did not change the outcome of the results.

Page 50: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

42

5.3. Distribution of different host rocks

The maps showing the lithogeochemistry and chemostratigraphy, fig 10 and 19, are very similar in

regards to the andesitic samples with the difference being that according to the lithological map the

andesitic sample should be cut by a dacite layer. Since the map of the chemostratigraphy doesn’t have

a dacite cutting the andesite the difference could be explained by the occurrence of blue quartz in that

particular area. Blue quartz is usually, but not always, associated with dacite in the Kristineberg area.

Rhyolites from groups 1 and 2 dominate the top layers of each of the three boreholes with no affinity

towards any of the alteration types. All of the rhyolites are either sericite or chlorite altered and in some

places the alteration types occur simultaneously. There is no evident pattern where one group of rhyolite

prefers one of the alteration types. Rhyolite 1 and 2 most often occur in close proximity to each other

and mostly in the top part of each hole. The group 4 rhyolite is most inconsistent appearing both at the

top and bottom of the bore holes. Dacitic samples usually form as intrusive rocks and have a mineral

composition between that of andesite and rhyolite. Its occurrence in the studied boreholes, adjacent to

the andesite, indicates that it was created in the process of the andesitic rock intruding. The lack of

alteration in the andesite indicates that it was formed post alteration of the rhyolite groups in the cores.

5.4. Alteration trends

Samples plotted in the alteration box plot (fig 17) show certain trends that can be traced throughout the

bore holes. For instance, in figure 10 it was observed that most of the samples were either sericite or

chlorite altered, while a few samples were silicified or had undergone carbonate alteration. As seen in

the alteration box plot, most samples have a trend towards being chlorite or sericite altered, plotting

towards the right side of the plot. While only a few samples have a trends towards carbonate alteration.

Sample LK20140297 was selected for further analysis with a microscope and did indeed show enhanced

amounts of calcite, as can been seen in the appendix. The combination of the information about the least

and most altered samples provides an alteration trend throughout the bore holes (fig 48). Most of the

least altered samples plot in two clusters. The positioning of the least altered andesitic and dacitic

samples can be explain by their limited occurrence in the boreholes. One could then argue that the

intensity of alteration decreases towards core 675 and increases towards core 673. This would make

sample LK20140360 an anomaly.

Page 51: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

43

Figure 48. Spatial 3D plot of all samples. Blue circled area shows least altered areas while red circles indicate

most altered areas.

5.5 Evidence from the microscopy

The thin section analyses were consistent with what was assumed by doing the immobile element

method of rock classification. Samples classified as rhyolites, type 1 to 4, display minerals characteristic

for such rock types. Also the four groups display differences between the least altered samples which

can be viewed both in thin section as well as in the reference samples. Looking at figures 22, 30, 32 and

35 the colour, grainsize, chemical composition as well as mineral occurrences in matrix and phenocrysts

change. The andesitic intrusion stands out the most compared to the rhyolitic rock types, while the

dacitic sample shows some resemblance to the group 3 rhyolites, judging by the reference sample. Only

by thin section analysis are they easily told apart.

Page 52: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

44

6. Conclusion

In conclusion of this study the host rock protolith was a rhyolite that later probably was intruded by an

andesitic rock type. The dacitic rock type that can be seen might be a mixing of the two major rock

components. The chemical composition of the rocks made it possible to distinguish several groups of

rhyolites, which was confirmed with thin section microscopy. The information gathered only confirmed

what was estimated when conducting core logging. In the future such extravagant studies of these areas

should be unnecessary, the study more proved that the method of using immobile elements is competent

when determening host rock protolith and should be used in areas with higher alteration and a more

complex geological background.

Page 53: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

45

7. Acknowledgements

In the course of writing this paper many people have aided me in different ways, a grateful thanks to

everyone involved for your patience and belief that I eventually would get over the finish line. A special

thanks to my two skilled supervisors at Boliden Mineral AB, Mac Fjellerad Persson and Nils Jansson,

without your knowledge and ability to share your wisdom I would never have made it out of the core

shed. Your guidance has been invaluable. A much appreciated thank you also to Abigail Barker at

Uppsala University, you never made it sound like you doubted me, something that kept me writing.

Lastly I would like to thank my family, my parents who stopped asking but kept hoping that I would

finish. My brother, Dani Mataruga for his photoshop skills and my boyfriend who patiently fed me all

this time. Thanks also to Boliden Mineral AB for the opportunity, materials and the equipment needed

for this study.

Page 54: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

46

8. References

Allen, R. L., Weihed, P. & Svenson, S.-A., (1996). Setting of Zn-Cu-Au-Ag massive sulfide deposits

in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden.

Economic Geology, 91(6), pp. 1022-1053.

Bailey, E. H. & Stevens, R. E., (1960). Selective staining of K-feldspar and plagioclase on rock slabs

and thin sections. The American Mineralogist, 45, pp. 1020-1025.

Barrett, T. J., MacLean, W. H. & Årebäck, H., (2005). The paleaproterozoic Kristineberg VMS

deposit, Skellefte district, northern Sweden. Part II: chemostratigraphy and alteration. Mineralium

Depostia, 40, pp. 368-395.

Berglund, A., (2010). The Svartliden gold deposit - ductile deformation and metamorphic conditions

(Master's thesis). Uppsala: Institutionen för geovetenskap.

Bureau Veritas Commodities Canada Ltd, (2014). AcmeLabs.

Available at: http://acmelab.com/wp-content/uploads/2014/05/2014_1_Acme_Price_List.pdf

[Accessed 14 July 2014].

Carranza, E. J. M. & Sadeghi, M., (2010). Predictive mapping of prospectivity and quantitative

estimation of discovered VMS deposits in Skellefte district (Sweden). Ore geology reviews, 38(3), pp.

219-241.

Cox, K. G., Beil, J. D. & Pankhurst, R. J., (1979). The interpretation of igneous rocks. London: Allen

& Unwin .

Fitton, J. G. & Upton, G. J., (1987). Alkaline igneous rocks. Geological sociaty special publications.

Galley, A. G., Hannington, M. D., & Jonasson, I. R., (2007). Volcanogenic massive sulphide deposits. In: Goodfellow, W. D. (ed). Mineral deposits of Canada: A synthesis of major deposit-types, district

metallogeny, the evolution of geological provinces, and exploration methods: Geological Association

of Canada, Mineral Deposits Division, Special Publication, 5, pp. 141-161.

Gifkins, C., Herrmann, W. & Large, R. L., (2005). Altered Volcanic Rocks: A Guide to Description

and Interpretation. Hobart: Centre of ore deposit research.

Goodall, W. R., Scales, P. J. & Butcher, A. R., (2005). The use of QEMSCAN and diagnostic leaching

in the characterisation of visable gold in complex ores. Minerals Engineering, 18, pp. 877-886.

Large, R. R., Gemmell, B. J., Paulick, H. & Huston, D. L., (2001). The Alteration Box Plot: A simple

approach to understanding the realtionship between alteration mineralogy and lithogeochemistry

associted with volcanic hosted massive sulfide deposits. Economic Geology, 96, pp. 957-971.

Lindström, M., Lundqvist, J. & Lundqvist, T., (2000). Sveriges geologi från urtid till nutid. 2nd ed.

Lund: Studentlitteratur.

MacLean, W., (1990). Mass change calculations in altered volcanic rock series. Mineral deposita, 25,

pp. 44-49.

MacLean, W. & Barrett, T., (1993). Lithogeochemical techniques using immobile elements. Journal

of Geochemical Exploration, 48, pp. 109-133.

Page 55: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

47

MacLean, W. & Kranidiotis, P., (1987). Systematics of chlorite alteration at the Phelps Dodge massive

sulfide deposit, Matagami, Quebec. Economic Geology, 82(7), pp. 1898-1911.

Miyashiro, A., (1978). Nature of alkalic volcanic rock series. Contributions to Mineralogy and

Petrology, 66(1), pp. 91-104.

Pirajno, F., (2009). Hydrothermal processes and mineral systems. Perth: Springer .

Reflex, 2014. Reflex.

Available at: http://reflexnow.com/iogas/

[Accessed 24 September 2014].

Robb, L., (2005). Ore-forming processes. Padstow: Blackwell science Ltd.

Rutland, R. W. R., Kero, L., Nilsson, G., & Stølen, L. K. (2001). Nature of a major tectonic

discontinuity in the Svecofennian province of northern Sweden.Precambrian Research, 112(3), pp.

211-237.

Skyttä, P., Hermansson, T., Whitehouse, M. & Weihed, P., (2011). New zircon data supporting

models of short-lived igneous activity at 1.89 Ga in western Skellefte District, central Fennoscandian

shield. Solid Earth, 2(2), pp. 205-217.

Thermo Fisher Scientific, (2014) FEI.

Available at: http://www.fei.com/products/sem/qemscan/

[Accessed 5 November 2015].

Wilson, M., (1989). Igneous petrogenesis. Leeds: Springer.

Page 56: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

48

Appendix

A.1. Summary of core log obervations

Table A1. Descriptions for collected samples during core logging process.

Sample-

name: Hole:

From.

m: To. m: Description:

Sample

taken:

Lk20140201 674 11.40 11.65 Strongly Se-Si-altered. rhyolite? 11/03-2014

Lk20140202 Ref BSLG2

Lk20140203 674 17.15 14.44 Chlorite-phlogopite-altered. mafic? 11/03-2014

Lk20140204 674 20.40 20.60 Strongly Se-Si-alt. rhyolite? 11/03-2014

Lk20140205 674 34.44 34.66 Strongly Se-Si-alt. rhyolite? 11/03-2014

Lk20140206 674 61.00 61.33 Strongly Se-Si-alt. rhyolite? 12/03-2014

Lk20140207 674 73.15 73.34 Transitionzone from Se/si alt to chlorite 12/03-2014

Lk20140208 674 89.55 89.76 Predominantly chlorite-alt 12/03-2014

Lk20140209 674 94.96 95.13 Strongly chlorite altered with some Crd. mafic? 13/03-2014

Lk20140210 674 104.03 104.24 Tremolite-skarn alt. similar to se/si-alt. rhyolite? 13/03-2014

Lk20140211 674 106.30 106.47 Chlorite alteration. possibly mafic origin? 13/03-2014

Lk20140212 674 111.60 11.83 Chlorite alteration. possibly mafic origin? 13/03-2014

Lk20140213 674 116.10 116.28 Lamellar Se-alteration. felsic siltstone? 13/03-2014

Lk20140214 674 123.26 123.49 Tremolite-skarn alt with coarse fsp grains. 13/03-2014

Lk20140215 674 131.96 132.21 Se-si alteration. rhyolite again? 13/03-2014

Lk20140216 674 147.55 147.87 Se-si alteration. rhyolite again? 13/03-2014

Lk20140217 Ref BSLG1

Lk20140218 674 163.93 164.14 Se-si alteration. rhyolite again? 13/03-2014

Lk20140219 674 165.86 166.04 Sample with blue-qz. dacite origin? 13/03-2014

Lk20140220 674 171.62 171.82 Sample in BQ-zone. dacite origin? 13/03-2014

Lk20140221 674 178.07 178.26 Suspisious-zone. andesite? 13/03-2014

Lk20140222 674 183.40 183.59 Strongly se/si altered. rhyolite? 13/03-2014

Lk20140223 674 191.51 191.71 Mixed zone with tremolite-skarn and se/si alt.

rhyolite? 14/03-2014

Lk20140224 674 211.15 211.43 CaCo3-altered zone with tremolite skarn. still

rhyolite? 14/03-2014

Lk20140225 674 220.54 220.81 Strongly silicified rock. 14/03-2014

Lk20140226 674 239.92 240.23 Se-si alteration. rhyolite again? 14/03-2014

Lk20140227 674 259.19 259.46 Se-si alteration. rhyolite again? 14/03-2014

Lk20140228 674 284.88 285.14 Se-si alteration. rhyolite again? 14/03-2014

Lk20140229 674 303.64 303.95 Se-si alteration. rhyolite again? 17/03-2014

Lk20140230 674 326.70 326.90 Strongly silicified rock. 17/03-2014

Lk20140231 674 343.83 344.08 Mostly strongly silicified rock. some se-alt. still

rhyolite? 17/03-2014

Lk20140232 674 348.39 348.61 Se-si alteration with biotite streaks or patches. 17/03-2014

Lk20140233 674 362.67 362.88 Increase in amount and size of fsp-grains. se/si alt. 17/03-2014

Lk20140234 Ref BSLG2

Lk20140235 674 378.19 378.32 Se/si alteration with BT-patches. close to brecciated

zone. 17/03-2014

Lk20140236 674 392.82 393.09 Se/si alteration followin brecciated zone. 18/03-2014

Lk20140237 674 397.56 397.75 Coarsening in fsp-grains. but still clear se/si alt. 18/03-2014

Lk20140238 674 398.75 399.00 Chlorite alteration. possibly mafic intrusion? 18/03-2014

Lk20140239 674 404.34 404.54 Fsp more abundant with coarser grains. 18/03-2014

Lk20140240 674 408.20 408.47 Fsp grains change in shape. get less euhedral. 18/03-2014

Lk20140241 674 413.26 413.59 Stronger si-alt than se alt. Rhyolite? 18/03-2014

Lk20140242 Ref BSLG1

Lk20140243 674 425.43 425.64 Stronger si-alt than se alt. Rhyolite? 18/03-2014

Lk20140244 674 439.62 439.86 Stronger si-alt than se alt. Rhyolite? 18/03-2014

Page 57: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

49

Sample-

name: Hole:

From.

m: To. m: Description:

Sample

taken:

Lk20140245 673 201.87 202.15 Zoned fsp-grains. Andeseite? 24/03-2014

Lk20140246 673 211.56 211.74 Coarser zoned fsp grains: plag. Andesite? 24/03-2014

Lk20140247 673 223.06 223.31 Rock is less altered. Still andeseite? 24/03-2014

Lk20140248 673 233.02 233.38 Less homogenous fsp size and the rock is less alt

still andeseite 24/03-2014

Lk20140249 673 241.41 241.84 Blue qz in sample. Dacite? 24/03-2014

Lk20140250 673 243.82 244.19 Blue qz in rock. Dacite? 24/03-2014

Lk20140251 673 249.85 250.14 Trem/skarn with Apy. Back to andeseite? 24/03-2014

Lk20140252 673 263.18 263.61 Increase in biotite and amount of zoned fsp grains.

Andeseite? 24/03-2014

Lk20140253 673 274.05 274.42 Trem/skarn alt with some traces of bt and fsp

grains. Andesite? 24/03-2014

Lk20140254 673 281.90 282.15 Hyaloclasite - least altered sample of andeseite. 24/03-2014

Lk20140255 673 297.90 298.23 Sample with streaks of trem/skarn with an

andesitic origon? 24/03-2014

Lk20140256 673 8.10 8.23 Compacted pumice clast that are weakly chl

altered. 24/03-2014

Lk20140257 673 26.98 27.21 Pumice clasts are finer grained, more sitly in

texture. 25/03-2014

Lk20140258 Ref BSLG2

Lk20140259 673 28.92 29.19 Blackshale streaks mixed with lighter parts with

fspand qz. Polimict. 25/03-2014

Lk20140260 673 34.50 34.73 Very finegrained rock that is strongly chl altered. 25/03-2014

Lk20140261 673 44.45 44.71 Weakly si/chl altered rhyolitic pumice? 25/03-2014

Lk20140262 673 54.82 55.10 Mod si/chl altered rhyolitic pumice? 25/03-2014

Lk20140263 673 66.81 67.12 More findegrained rock that is silicified. 25/03-2014

Lk20140264 673 71.42 71.60 Sandstone pumice of rhyolitic origin? 25/03-2014

Lk20140265 673 82.10 82.35 Mod si/se altered sandstone pumice of rhyo

origin? 25/03-2014

Lk20140266 673 96.00 96.25 Mod si/se altered rhyo-sandstone. 25/03-2014

Lk20140267 673 107.69 108.00 Weakly chl altered siltstone. 26/03-2014

Lk20140268 673 119.39 119.69 Weak-mod se alt sandy/siltstone. 26/03-2014

Lk20140269 673 134.71 134.83 Weakly se/chl altered sandstone with some relict

qz grains. 26/03-2014

Lk20140270 673 143.90 144.05 Weakly se altered sandstone with some relict qz

grains. 27/03-2014

Lk20140271 673 161.48 161.79 Graphitic phyllite. 27/03-2014

Lk20140272 673 169.60 170.03 Se altered transition between graphite and

andesite. 27/03-2014

Lk20140273 673 177.00 177.10 Possibly a mafic intrusion, dark clasts might be

pyroxene. 27/03-2014

Lk20140274 673 180.77 181.23 Zoned fsp-grains. Andeseite? 27/03-2014

Lk20140275 673 191.64 192.00 Coherent andeseite. 27/03-2014

Lk20140276 Ref BSLG2

Lk20140277 673 199.33 199.77 Homogeneous andesite with some blue qz. 27/03-2014

Lk20140278 673 316.50 231.74 Less coarse grained andesite, transition zone. 27/03-2014

Lk20140279 673 332.62 332.88 Coherent andeseite. 27/03-2014

Lk20140280 673 342.76 343.04 Weakly se alt silty/sandstone, few fsp grains. 27/03-2014

Lk20140281 673 344.49 344.77 Mod se alt sandsone of andasitic sed. 27/03-2014

Lk20140282 673 350.22 350.64 Strongly se alt andesitic sandstone? 27/03-2014

Lk20140283 673 357.73 358.04 Transition to a mofre rhyolitic less alt sandstone. 28/03-2014

Lk20140284 673 365.35 365.58 Weakly se alt rhy-sandstone? 28/03-2014

Lk20140285 673 375.25 375.56 Weakly se alt rhy siltstone? 28/03-2014

Page 58: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

50

Sample-

name: Hole:

From.

m: To. m: Description:

Sample

taken:

Lk20140286 673 384.22 384.50 Weakly se alt rhy siltstone with high biotite

content. 28/03-2014

Lk20140287 673 395.94 396.15 Rhyo/dacite with fps crystals and high biotite

content. 28/03-2014

Lk20140288 675 7.21 7.46 Weakly se alt fsp/qz phyric rhyosandstone. 01/04-2014

Lk20140289 673 406.06 406.36 Weakly se/chl alt fsp phyric sandstone. 31/03-2014

Lk20140290 Ref BSLG1

Lk20140291 673 414.28 414.49 Fsp phyric sandstone weakly se/chl alt. 31/03-2014

Lk20140292 673 425.84 426.11 Texture and alt is less visable. Still sandstone? 31/03-2014

Lk20140293 673 433.80 434.07 Large qz-clast with fsp-rich sandstone within

clast. Weak se alt. 31/03-2014

Lk20140294 673 443.65 443.84 Transition to more se/chl alt with less fsp. 31/03-2014

Lk20140295 673 454.51 454.85 Moderatly se/chl altered rock. 31/03-2014

Lk20140296 673 460.59 460.84 Both strongly se and chl altered rock with no

relict grains. 31/03-2014

Lk20140297 673 474.66 474.96 Strongly chlorite altered rock with some biotite

streaks. 31/03-2014

Lk20140298 673 489.40 489.64 Strongly chlorite altered rock with local weak se

alt. 31/03-2014

Lk20140299 673 505.44 505.73 Silicified rock with weak local chl alt. 31/03-2014

Lk20140300 673 518.82 519.02 Strongly se alt with no visable primary textures. 01/04-2014

Lk20140301 673 533.06 533.35 Strongly se alt with no visable primary textures. 01/04-2014

Lk20140302 Ref BSLG1

Lk20140303 673 551.16 551.37 Strongly se alt with no visable primary textures. 01/04-2014

Lk20140304 673 566.49 566.71 Dark chl altered matrix and some weak se alt. 01/04-2014

Lk20140305 675 28.45 28.68 Predominantly strongly chl alt with some se alt as

well. 01/04-2014

Lk20140306 Ref BSLG1

Lk20140307 675 41.02 41.21 Weakly se alt fsp/qz phyric rhyosandstone. 02/04-2014

Lk20140308 675 50.50 50.70 Weakly se alt fsp/qz phyric rhyosandstone with

afew biotite streaks. 02/04-2014

Lk20140309 675 58.02 58.19 Increase in fsp/qz grains. 02/04-2014

Lk20140310 675 67.57 67.80 Only visable qz grains and weakly se/si alt. 02/04-2014

Lk20140311 675 78.62 78.77 Strongly silicified rock. Possibly silty/sandstone

origin. 02/04-2014

Lk20140312 675 99.30 99.50 Less silicificatioon and more se alt. Still

siltysandstone. 02/04-2014

Lk20140313 675 110.21 110.38 Poltmict breccia with silty/sandstone groundmass

also weakly se alt. 03/04-2014

Lk20140314 675 115.56 115.81 Weakly chl alt sandstone. Rhyolitic origin? 03/04-2014

Lk20140315 675 121.21 121.40 Fsp/qz phyric weakly chl alt sandstone with more

fsp than qz. 03/04-2014

Lk20140316 675 125.00 125.19 Strongly fsp/qz phyricsandstone. No alt. 03/04-2014

Lk20140317 675 129.40 129.57 Strongly fsp/qz phyricsandstone that is more dark

in color. Brownish. 03/04-2014

Lk20140318 675 143.28 143.48 Strongly fsp/qz phyricsandstone with a decrease

in grainsize. 03/04-2014

Lk20140319 675 155.85 156.00 Greyischgreenish rock with fine grains. Chl

altered Siltstone. 03/04-2014

Lk20140320 Ref BSLG2

Lk20140321 675 165.88 166.15 Weakly se alt rhosandstone. 03/04-2014

Lk20140322 675 176.29 176.51 Weakly chl altered sandstone. 03/04-2014

Lk20140323 675 185.11 185.29 Strongly chl altered. Still rhyosandstone? 03/04-2014

Page 59: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

51

Sample-

name: Hole:

From.

m: To. m: Description:

Sample

taken:

Lk20140324 675 194.68 194.84 Some relict qz grains in a sandstone with weak chl

alt. 03/04-2014

Lk20140325 675 206.16 206.30 Strongly chl alt sandysiltstone. 03/04-2014

Lk20140326 675 211.80 211.98 Mod chl alt silysandstone. 03/04-2014

Lk20140327 675 228.53 228.75 Strongly chl alt sandysiltstone. 03/04-20014

Lk20140328 675 308.73 308.89 Weakly se alt qzrich sandstone. 04/04-2014

Lk20140329 675 318.13 318.28 Strongly crb alt rock. Same rhyosandstone? 04/04-2014

Lk20140330 675 326.27 326.44 Finer more biotite rich groundmass still rhyolite? 04/04-2014

Lk20140331 675 341.47 341.64 Mod chl alt silysandstone. 04/04-2014

Lk20140332 675 352.71 352.92 Clear relict fsp grains. Se/chl alt. 04/04-2014

Lk20140333 675 364.86 365.08 Weakly silicified and weakly se alt siltstone. 04/04-2014

Lk20140334 Ref BSLG1

Lk20140335 675 240.80 240.97 Shistlike chl alt and a decrease in grainsize. 04/04-2014

Lk20140336 675 248.67 248.83 Finegrained chl alt rhyolite interbedded with crb

alt. 04/04-2014

Lk20140337 675 262.78 262.96 Strongly se alt with clear foliation still rhyolite. 04/04-2014

Lk20140338 675 274.24 274.36 Fsp/qz phyric rock. Possibly a rhyolitic massflow. 04/04-2014

Lk20140339 675 288.54 288.76 Fsp/qz phyric rock. Possibly a rhyolitic massflow,

local silicification. 04/04-2014

Lk20140340 675 295.30 295.52 Strongly se alt rhyolitic rock? 04/04-2014

Lk20140341 675 382.78 383.03 Fsp/qz phyric rock. Possibly a rhyolitic massflow. 07/04-2014

Lk20140342 675 401.01 401.21 Fsp/qz phyric rock. Weakly se alt. 07/04-2014

Lk20140343 675 421.84 422.02 Weakly fsp/qz phyric chl alt shist. 07/04-2014

Lk20140344 675 443.07 443.28 Vaguely relict fsp/qz phyric rock. 07/04-2014

Lk20140345 675 453.93 454.12 Weakly fsp/qz phyric weakly se alt. 07/04-2014

Lk20140346 675 466.15 466.32 Weakly fsp/qz phyric weakly se alt with biotite

streaks. 07/04-2014

Lk20140347 675 475.40 475.57 Fsp/qz phyric unaltered rock with some blue qz.

Rhyodacite protolith? 07/04-2014

Lk20140348 675 491.18 491.37 Biotiterich streaky rock. Rhyodacite

siltysandstone. 07/04-2014

Lk20140349 Ref BSLG1

Lk20140350 675 505.11 505.32 Fsp/qz phyric rhyolite? 07/04-2014

Lk20140351 675 526.58 526.72 Fsp/qz phyric rhyolitewith weak se alt? 07/04-2014

Lk20140352 675 544.02 544.22 Fsp/qz phyric rhyolitewith weak se alt? 08/08-2014

Lk20140353 675 562.00 562.21 Weakly silicified qz-phyric mod se alt rock. 08/04-2014

Lk20140354 675 573.20 573.35 Strongly chl altrock with a greenish color and

some skarn. 08/04-2014

Lk20140355 675 582.65 582.80 Strongly silicified rock, no visable relict

structures. 08/04-2014

Lk20140356 675 591.25 591.40 Strongly fsp/qz phyric sandstone rock with weak

chl alt. 08/08-2014

Lk20140357 675 605.25 605.48 Fsp rich ryolite or dacite? Weak chl se alt. 08/04-2014

Lk20140358 675 616.54 616.73 Aphyric biotiterich rhyodacite slaty/silty. 08/04-2014

Lk20140359 Ref BSLG2

Lk20140360 675 634.78 635.00 Silicified calcrich faultrelated altered rock? 08/04-2014

Page 60: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

52

A.2. Lithogeochemical data, whole rock composition for all samples

Table A2. Results from lithogeochemical analysis.

Page 61: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

53

Sample LK20140201 LK20140203 LK20140204 LK20140205 LK20140206 LK20140207

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 73.25 51.01 76.26 80.66 83.28 74.16

Al2O3 % 12.46 11.29 11.68 10.27 8.69 8.86

Fe2O3 % 3.84 4.46 2.69 1.89 2.07 5.15

MgO % 1.93 16.11 2.55 1.87 1.22 4.92

CaO % 0.32 10.73 0.16 0.11 0.12 0.87

Na2O % 0.19 0.39 0.08 0.12 0.07 0.06

K2O % 3.87 1.67 3.47 2.87 2.65 1.45

TiO2 % 0.396 0.202 0.344 0.271 0.231 0.279

P2O5 % 0.031 0.032 0.027 0.044 0.029 0.025

MnO % 0.07 0.37 0.03 0.03 0.02 0.08

Cr2O3 % <0.002 <0.002 <0.002 0.002 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 8 6 6 6 5 4

LOI % 3.5 3.4 2.6 1.8 1.5 3.9

Sum % 99.87 99.64 99.87 99.90 99.91 99.77

Ba ppm 304 299 312 399 434 180

Be ppm <1 <1 <1 1 <1 <1

Co ppm 2.2 4.2 1.0 0.8 1.6 0.6

Cs ppm 1.1 2.0 0.9 0.5 0.5 0.6

Ga ppm 12.7 13.0 10.5 8.8 7.5 7.1

Hf ppm 5.5 3.0 6.1 4.1 3.5 4.4

Nb ppm 9.8 4.2 9.3 6.9 6.1 7.1

Rb ppm 64.5 49.4 54.1 41.7 38.8 23.2

Sn ppm 2 4 2 1 1 1

Sr ppm 26.7 83.9 13.6 16.6 11.1 13.6

Ta ppm 0.7 0.3 0.7 0.4 0.4 0.5

Th ppm 5.8 3.4 6.5 4.2 4.1 4.9

U ppm 3.6 2.1 3.9 2.5 2.6 2.5

V ppm 12 12 <8 <8 8 9

W ppm 1.6 0.6 1.2 1.6 1.9 1.5

Zr ppm 200.2 106.9 220.0 146.0 129.7 158.9

Y ppm 21.1 23.5 20.7 14.9 14.8 14.9

La ppm 35.6 17.8 25.9 24.5 22.0 26.9

Ce ppm 73.1 40.4 56.5 51.2 46.9 55.2

Pr ppm 8.74 4.98 7.02 6.22 5.67 6.53

Nd ppm 33.0 20.5 27.3 22.9 21.2 24.5

Sm ppm 5.69 4.19 4.96 3.85 3.91 3.96

Eu ppm 0.82 0.65 0.84 0.66 0.70 0.89

Gd ppm 4.56 3.73 4.17 3.18 3.04 3.23

Tb ppm 0.63 0.61 0.62 0.45 0.41 0.48

Dy ppm 3.17 3.65 3.39 2.55 2.27 2.58

Ho ppm 0.68 0.82 0.74 0.52 0.48 0.53

Er ppm 2.13 2.28 2.03 1.53 1.42 1.51

Tm ppm 0.32 0.32 0.33 0.25 0.24 0.23

Yb ppm 2.16 2.03 2.22 1.68 1.62 1.51

Lu ppm 0.37 0.32 0.34 0.27 0.27 0.27

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 0.19

TOT/S % 2.64 0.42 1.01 0.49 0.77 1.46

Mo ppm 2.7 0.9 3.1 1.5 3.9 2.0

Cu ppm 9.8 5.0 28.1 25.8 6.4 678.9

Pb ppm 71.5 5.1 3.7 9.5 6.3 3.6

Zn ppm 108 95 74 44 19 70

Ni ppm 0.6 0.4 0.4 0.3 0.6 0.5

As ppm 32.1 6281.7 6.9 4.6 2.1 0.9

Cd ppm 0.2 0.4 <0.1 0.2 <0.1 0.2

Sb ppm 2.2 2.1 0.2 0.1 0.2 0.3

Bi ppm 0.1 0.2 0.2 0.2 0.6 0.1

Ag ppm 0.6 0.1 0.2 0.2 0.2 1.8

Au ppb 7.4 3.8 1.3 <0.5 <0.5 7.9

Hg ppm 0.10 0.01 0.01 <0.01 <0.01 0.04

Tl ppm 0.4 0.6 0.2 <0.1 <0.1 <0.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 62: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

54

Sample LK20140208 LK20140209 LK20140210 LK20140211 LK20140212 LK20140213

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 66.43 31.29 55.28 75.77 76.51 79.34

Al2O3 % 9.22 22.02 9.22 6.28 10.06 10.31

Fe2O3 % 5.86 11.62 3.43 7.27 2.81 1.72

MgO % 8.34 21.09 15.84 5.65 4.36 2.28

CaO % 5.65 1.20 12.37 1.34 1.32 0.47

Na2O % 0.30 0.01 0.35 0.11 0.22 0.12

K2O % 1.11 0.72 0.56 0.59 2.01 2.80

TiO2 % 0.306 0.706 0.309 0.155 0.310 0.294

P2O5 % 0.030 0.032 0.029 0.015 0.022 0.030

MnO % 0.17 0.28 0.22 0.11 0.04 0.08

Cr2O3 % 0.002 <0.002 <0.002 0.004 <0.002 0.003

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 6 12 5 3 6 5

LOI % 2.4 10.5 2.0 2.6 2.1 2.1

Sum % 99.78 99.51 99.63 99.86 99.81 99.56

Ba ppm 257 72 60 66 660 995

Be ppm <1 <1 <1 <1 1 1

Co ppm 0.9 2.3 0.8 0.3 1.7 1.2

Cs ppm 0.9 1.3 0.9 1.2 1.4 0.7

Ga ppm 7.7 26.6 10.9 6.8 8.3 9.8

Hf ppm 4.0 10.9 4.7 3.0 4.7 5.7

Nb ppm 6.5 18.1 8.4 4.3 7.0 8.1

Rb ppm 42.5 22.0 17.2 16.1 39.9 43.4

Sn ppm 1 1 2 <1 <1 2

Sr ppm 74.0 11.7 105.1 19.4 62.2 31.6

Ta ppm 0.5 1.4 0.5 0.4 0.4 0.6

Th ppm 4.3 11.6 4.7 3.2 5.2 5.8

U ppm 2.5 6.7 2.7 1.9 3.2 3.2

V ppm 11 17 <8 9 10 <8

W ppm <0.5 1.2 1.1 0.5 1.5 1.3

Zr ppm 152.2 388.3 172.8 107.3 170.1 200.1

Y ppm 12.6 41.9 17.6 11.2 15.1 17.5

La ppm 24.2 57.6 28.4 19.8 25.9 34.4

Ce ppm 53.4 115.3 58.0 40.1 57.3 72.0

Pr ppm 6.35 13.63 6.65 4.86 6.80 8.33

Nd ppm 22.7 50.5 25.7 18.4 25.5 31.7

Sm ppm 3.87 8.56 4.40 2.99 4.67 5.26

Eu ppm 0.61 1.80 0.72 0.56 0.91 0.69

Gd ppm 2.86 7.33 3.80 2.54 3.83 4.06

Tb ppm 0.42 1.02 0.54 0.36 0.52 0.58

Dy ppm 2.20 6.35 3.05 1.99 2.69 3.13

Ho ppm 0.45 1.44 0.62 0.39 0.55 0.61

Er ppm 1.38 4.26 1.77 1.21 1.59 1.90

Tm ppm 0.21 0.66 0.28 0.18 0.22 0.29

Yb ppm 1.49 4.32 1.94 1.16 1.58 2.00

Lu ppm 0.25 0.72 0.30 0.18 0.23 0.31

TOT/C % 0.03 0.18 0.05 <0.02 0.02 <0.02

TOT/S % 0.40 <0.02 0.17 1.74 0.25 0.24

Mo ppm 0.8 4.9 14.7 2.2 2.7 3.7

Cu ppm 44.0 2.5 52.1 118.4 19.0 27.2

Pb ppm 4.6 4.2 22.0 1.9 2.7 2.0

Zn ppm 39 177 221 52 62 1917

Ni ppm 0.7 0.1 0.3 0.8 0.5 0.3

As ppm 0.7 <0.5 29.2 272.5 9.6 1.3

Cd ppm <0.1 0.2 0.7 <0.1 <0.1 5.8

Sb ppm 0.2 0.1 0.4 0.4 0.1 <0.1

Bi ppm <0.1 <0.1 0.3 <0.1 <0.1 <0.1

Ag ppm <0.1 <0.1 0.3 0.2 <0.1 <0.1

Au ppb <0.5 <0.5 <0.5 4.8 <0.5 <0.5

Hg ppm <0.01 0.01 0.01 <0.01 <0.01 0.07

Tl ppm 0.1 0.2 0.2 0.5 0.8 0.3

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 63: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

55

Sample LK20140214 LK20140215 LK20140216 LK20140218 LK20140219 LK20140220

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 71.80 69.15 75.26 65.22 68.53 67.46

Al2O3 % 12.11 12.02 12.35 15.03 15.69 16.82

Fe2O3 % 2.86 3.89 2.40 4.75 3.13 3.35

MgO % 5.68 4.70 3.60 2.99 2.52 1.92

CaO % 2.56 7.11 1.00 6.02 2.59 1.92

Na2O % 0.72 0.96 0.53 2.20 2.80 3.06

K2O % 1.48 0.55 2.01 1.15 1.71 2.96

TiO2 % 0.325 0.384 0.362 0.484 0.481 0.525

P2O5 % 0.019 0.028 0.031 0.085 0.163 0.158

MnO % 0.05 0.13 0.03 0.10 0.03 0.02

Cr2O3 % <0.002 0.007 <0.002 0.006 <0.002 0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 6 7 6 10 15 16

LOI % 2.2 0.9 2.2 1.8 2.2 1.6

Sum % 99.80 99.84 99.82 99.80 99.84 99.83

Ba ppm 418 57 494 335 340 370

Be ppm <1 <1 <1 2 <1 <1

Co ppm 0.9 2.2 1.4 6.4 6.4 10.9

Cs ppm 1.7 0.8 0.3 0.6 0.2 0.6

Ga ppm 11.2 10.6 10.8 13.6 14.7 15.8

Hf ppm 6.3 5.6 6.4 6.1 4.2 4.5

Nb ppm 9.1 8.6 9.5 9.9 6.0 7.1

Rb ppm 35.6 17.3 34.9 31.7 33.0 54.3

Sn ppm 2 1 6 2 1 1

Sr ppm 132.5 258.2 111.9 463.4 339.3 257.8

Ta ppm 0.6 0.6 0.8 0.6 0.4 0.5

Th ppm 6.9 6.0 7.2 6.7 4.3 4.4

U ppm 3.6 3.1 3.6 3.6 3.3 2.9

V ppm <8 12 <8 41 43 45

W ppm 0.7 <0.5 0.9 1.0 0.8 1.0

Zr ppm 231.2 205.5 232.2 227.2 143.9 163.3

Y ppm 18.4 23.5 20.8 21.1 19.5 22.8

La ppm 34.3 35.2 37.5 35.0 28.4 33.7

Ce ppm 74.6 73.4 80.0 77.1 59.1 70.1

Pr ppm 8.97 8.89 9.57 9.61 7.41 9.10

Nd ppm 33.1 33.3 36.5 36.0 30.1 35.3

Sm ppm 5.75 5.91 6.10 6.40 5.77 6.69

Eu ppm 0.80 1.16 0.89 1.04 1.25 1.44

Gd ppm 4.24 4.61 4.65 5.04 4.75 5.42

Tb ppm 0.62 0.68 0.66 0.72 0.68 0.75

Dy ppm 3.26 3.80 3.50 4.03 3.61 4.07

Ho ppm 0.68 0.81 0.72 0.81 0.76 0.82

Er ppm 2.08 2.44 2.22 2.25 2.12 2.49

Tm ppm 0.31 0.39 0.34 0.35 0.34 0.37

Yb ppm 2.15 2.60 2.30 2.26 2.20 2.42

Lu ppm 0.33 0.41 0.35 0.36 0.35 0.38

TOT/C % <0.02 <0.02 <0.02 0.14 <0.02 0.02

TOT/S % 0.06 0.99 <0.02 1.55 0.89 1.22

Mo ppm 0.9 3.2 2.4 14.2 3.1 4.9

Cu ppm 6.2 24.7 13.2 20.3 11.7 17.1

Pb ppm 2.8 6.8 2.2 11.1 3.4 8.0

Zn ppm 31 30 27 36 85 141

Ni ppm 0.2 1.2 0.2 9.2 1.5 8.0

As ppm 0.6 0.6 <0.5 2.0 10.2 1.1

Cd ppm <0.1 <0.1 <0.1 0.2 <0.1 0.5

Sb ppm <0.1 0.2 0.1 0.6 0.3 0.4

Bi ppm <0.1 0.1 <0.1 0.8 0.2 0.4

Ag ppm <0.1 0.4 <0.1 1.0 0.1 0.2

Au ppb <0.5 <0.5 <0.5 13.0 1.0 0.8

Hg ppm <0.01 <0.01 <0.01 0.01 <0.01 0.02

Tl ppm 0.8 0.5 <0.1 0.3 0.2 0.5

Se ppm <0.5 <0.5 <0.5 0.8 0.5 0.6

Page 64: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

56

Sample LK20140221 LK20140222 LK20140223 LK20140224 LK20140225 LK20140226

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 65.54 73.01 68.41 61.34 68.50 71.24

Al2O3 % 9.19 13.23 16.53 14.00 15.53 14.15

Fe2O3 % 8.75 2.58 1.94 2.43 2.00 2.39

MgO % 4.93 3.86 2.73 7.94 4.61 4.49

CaO % 8.17 0.45 3.45 11.48 3.34 1.86

Na2O % 0.61 0.17 2.06 1.26 2.11 1.24

K2O % 0.08 3.33 2.84 0.03 0.79 1.14

TiO2 % 0.324 0.433 0.427 0.421 0.427 0.391

P2O5 % 0.053 0.074 0.061 0.044 0.062 0.047

MnO % 0.11 0.03 0.04 0.11 0.04 0.03

Cr2O3 % 0.005 0.002 <0.002 0.006 <0.002 <0.002

Ni ppm 34 <20 <20 <20 <20 <20

Sc ppm 9 9 9 9 9 8

LOI % 1.9 2.7 1.3 0.7 2.4 2.8

Sum % 99.67 99.83 99.83 99.77 99.78 99.81

Ba ppm 19 557 388 58 424 298

Be ppm <1 <1 3 2 2 2

Co ppm 13.9 2.4 1.7 2.2 1.5 0.9

Cs ppm <0.1 0.6 0.9 <0.1 <0.1 0.2

Ga ppm 11.3 11.7 14.7 12.1 13.6 12.2

Hf ppm 3.9 4.6 6.1 6.3 5.8 5.4

Nb ppm 5.5 8.1 9.8 10.0 9.3 8.7

Rb ppm 2.4 56.4 55.9 <0.1 16.2 20.4

Sn ppm 3 2 2 2 2 2

Sr ppm 119.9 42.0 288.3 341.6 382.5 301.0

Ta ppm 0.4 0.5 0.6 0.6 0.7 0.6

Th ppm 4.6 5.1 6.4 6.3 6.3 5.8

U ppm 3.3 2.9 3.5 4.4 3.1 3.0

V ppm 46 14 9 <8 9 9

W ppm <0.5 1.6 1.1 1.0 0.8 1.2

Zr ppm 136.9 175.0 219.2 232.2 211.4 207.6

Y ppm 18.5 22.5 17.3 21.1 19.8 17.6

La ppm 24.3 29.6 35.1 29.3 45.4 26.9

Ce ppm 48.6 65.6 75.8 62.8 96.0 55.8

Pr ppm 5.53 8.11 9.05 7.54 11.38 6.76

Nd ppm 21.5 34.0 34.1 29.6 42.8 25.8

Sm ppm 3.95 6.10 5.88 5.01 7.41 4.30

Eu ppm 0.72 1.03 1.14 0.89 1.27 0.87

Gd ppm 3.59 5.00 4.43 4.18 5.26 3.73

Tb ppm 0.52 0.70 0.61 0.58 0.72 0.53

Dy ppm 2.97 3.93 3.27 3.57 3.87 2.90

Ho ppm 0.64 0.79 0.69 0.73 0.69 0.64

Er ppm 1.85 2.35 2.03 2.27 1.95 2.09

Tm ppm 0.28 0.38 0.33 0.39 0.30 0.30

Yb ppm 1.89 2.50 2.15 2.65 2.08 2.02

Lu ppm 0.30 0.41 0.33 0.43 0.32 0.34

TOT/C % 0.13 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % 3.34 0.18 0.16 0.38 0.11 <0.02

Mo ppm 5.7 2.8 3.6 5.0 2.4 2.0

Cu ppm 200.2 0.6 2.2 3.2 0.6 1.2

Pb ppm 150.5 1.6 5.7 7.6 2.6 2.2

Zn ppm 1279 44 41 7 27 33

Ni ppm 34.6 0.3 0.5 1.1 0.2 1.0

As ppm 584.9 0.7 8.0 28.1 <0.5 <0.5

Cd ppm 5.2 <0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm 1.8 0.1 0.2 0.3 <0.1 <0.1

Bi ppm 4.4 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm 4.3 <0.1 <0.1 0.1 <0.1 <0.1

Au ppb 37.4 1.8 <0.5 <0.5 <0.5 <0.5

Hg ppm 0.10 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm 0.3 0.2 0.4 <0.1 <0.1 <0.1

Se ppm 1.2 <0.5 <0.5 <0.5 <0.5 <0.5

Page 65: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

57

Sample LK20140227 LK20140228 LK20140229 LK20140230 LK20140231 LK20140232

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 73.30 70.86 75.21 71.21 72.91 74.19

Al2O3 % 14.13 14.00 12.96 14.84 14.18 12.10

Fe2O3 % 1.91 2.65 2.20 2.53 2.56 3.25

MgO % 3.44 4.77 3.13 3.05 2.63 3.06

CaO % 1.01 2.81 1.14 2.96 2.34 3.44

Na2O % 0.65 1.94 0.83 1.94 1.58 1.51

K2O % 2.65 0.26 1.68 0.98 1.63 0.75

TiO2 % 0.395 0.370 0.357 0.408 0.389 0.328

P2O5 % 0.049 0.051 0.039 0.048 0.050 0.038

MnO % 0.03 0.05 0.03 0.05 0.05 0.08

Cr2O3 % <0.002 <0.002 <0.002 <0.002 <0.002 0.003

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 8 8 7 8 8 7

LOI % 2.2 2.1 2.3 1.8 1.5 1.1

Sum % 99.78 99.83 99.85 99.83 99.84 99.87

Ba ppm 1009 78 325 191 306 91

Be ppm <1 <1 <1 <1 <1 1

Co ppm 1.1 1.6 0.9 0.8 1.6 1.9

Cs ppm 0.3 <0.1 0.1 <0.1 0.1 0.5

Ga ppm 12.3 12.8 11.3 13.2 12.8 11.5

Hf ppm 5.2 5.1 5.1 5.4 5.7 4.4

Nb ppm 8.5 8.1 8.5 9.4 9.6 7.5

Rb ppm 47.4 4.4 30.6 16.8 29.2 24.8

Sn ppm 2 1 1 2 1 <1

Sr ppm 131.0 362.4 195.2 393.1 298.8 260.2

Ta ppm 0.6 0.6 0.6 0.6 0.7 0.5

Th ppm 5.7 5.1 5.5 7.1 6.3 5.2

U ppm 2.8 2.7 2.9 3.4 3.2 2.6

V ppm 10 15 12 13 11 10

W ppm 1.9 1.3 0.9 1.6 1.0 2.1

Zr ppm 194.9 184.2 192.6 218.4 214.0 173.4

Y ppm 16.4 22.1 17.0 24.1 20.7 18.0

La ppm 31.3 26.4 30.1 37.0 34.8 28.4

Ce ppm 65.3 55.4 64.0 78.3 72.9 60.7

Pr ppm 7.83 6.79 7.52 9.54 8.79 7.16

Nd ppm 29.2 26.1 28.6 36.5 33.0 26.3

Sm ppm 5.08 4.65 5.01 6.16 5.92 4.79

Eu ppm 0.88 1.03 0.94 1.33 1.15 1.01

Gd ppm 3.67 3.98 3.97 4.99 4.71 3.88

Tb ppm 0.54 0.57 0.56 0.71 0.68 0.55

Dy ppm 3.11 3.40 2.89 3.78 3.56 3.01

Ho ppm 0.63 0.74 0.60 0.81 0.74 0.64

Er ppm 1.82 2.38 1.97 2.27 2.25 1.88

Tm ppm 0.29 0.34 0.30 0.35 0.34 0.29

Yb ppm 1.92 2.46 2.03 2.26 2.36 1.93

Lu ppm 0.31 0.41 0.33 0.36 0.37 0.33

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % <0.02 <0.02 <0.02 0.03 <0.02 0.16

Mo ppm 1.8 2.5 3.7 9.0 3.0 1.8

Cu ppm 0.8 11.4 4.6 5.0 8.1 19.8

Pb ppm 2.1 2.6 1.6 3.8 2.5 4.5

Zn ppm 26 45 34 41 39 50

Ni ppm 0.2 0.3 0.2 0.2 0.3 0.4

As ppm <0.5 <0.5 0.5 <0.5 <0.5 0.7

Cd ppm <0.1 0.2 <0.1 0.1 <0.1 <0.1

Sb ppm <0.1 0.1 0.1 <0.1 0.1 0.1

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 0.2

Ag ppm <0.1 0.1 <0.1 <0.1 <0.1 0.1

Au ppb <0.5 1.1 <0.5 <0.5 <0.5 6.0

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm <0.1 <0.1 <0.1 <0.1 <0.1 0.2

Se ppm <0.5 0.5 <0.5 <0.5 <0.5 <0.5

Page 66: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

58

Sample LK20140233 LK20140235 LK20140236 LK20140237 LK20140238 LK20140239

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 72.76 74.36 72.46 71.29 52.25 69.70

Al2O3 % 13.78 13.15 13.85 13.58 13.03 14.91

Fe2O3 % 2.62 2.71 2.98 3.16 8.53 3.31

MgO % 2.48 2.34 2.52 3.05 10.83 2.35

CaO % 2.98 1.84 1.93 3.88 9.89 4.56

Na2O % 1.64 1.53 1.90 2.68 1.16 2.03

K2O % 1.92 1.86 2.05 0.37 0.65 1.82

TiO2 % 0.373 0.358 0.378 0.406 0.667 0.414

P2O5 % 0.042 0.042 0.046 0.061 0.226 0.064

MnO % 0.05 0.04 0.06 0.04 0.16 0.08

Cr2O3 % <0.002 0.003 <0.002 0.011 0.156 0.004

Ni ppm <20 <20 <20 <20 255 <20

Sc ppm 8 7 8 8 24 8

LOI % 1.2 1.6 1.7 1.3 2.1 0.6

Sum % 99.84 99.85 99.84 99.81 99.69 99.83

Ba ppm 461 365 440 58 79 437

Be ppm <1 1 <1 <1 2 2

Co ppm 1.5 1.6 1.4 4.2 35.4 1.6

Cs ppm 0.7 0.4 0.7 0.3 0.7 0.8

Ga ppm 12.2 13.3 14.0 13.5 14.0 13.9

Hf ppm 5.5 5.3 5.4 5.3 2.4 5.7

Nb ppm 9.4 10.1 9.2 9.2 4.4 9.6

Rb ppm 41.3 35.0 46.2 10.5 24.0 46.9

Sn ppm 1 2 2 1 1 1

Sr ppm 216.0 214.5 237.7 787.1 463.2 269.9

Ta ppm 0.6 0.7 0.6 0.7 0.2 0.7

Th ppm 6.1 5.5 5.8 5.6 2.4 6.0

U ppm 3.0 3.0 2.9 2.7 1.7 3.0

V ppm 10 <8 10 30 140 9

W ppm 1.0 1.0 1.2 <0.5 <0.5 0.7

Zr ppm 212.9 197.2 199.9 191.9 86.0 211.4

Y ppm 19.2 18.8 17.5 19.0 12.3 19.8

La ppm 32.6 31.4 33.7 32.3 18.8 34.7

Ce ppm 67.5 66.0 71.9 69.1 44.4 73.5

Pr ppm 7.90 7.81 8.41 8.40 5.87 8.82

Nd ppm 30.1 29.7 31.9 32.5 25.2 33.0

Sm ppm 5.45 5.45 5.76 5.79 4.63 5.78

Eu ppm 1.03 0.97 1.19 1.18 1.41 1.19

Gd ppm 4.11 4.18 4.41 4.52 3.79 4.35

Tb ppm 0.61 0.57 0.61 0.60 0.51 0.66

Dy ppm 3.23 3.25 3.24 3.39 2.65 3.37

Ho ppm 0.67 0.65 0.66 0.68 0.44 0.69

Er ppm 1.99 1.89 1.89 1.91 1.19 2.09

Tm ppm 0.30 0.32 0.33 0.30 0.17 0.32

Yb ppm 2.05 2.12 2.11 2.10 1.17 2.23

Lu ppm 0.34 0.34 0.34 0.33 0.18 0.34

TOT/C % <0.02 0.03 <0.02 <0.02 0.02 <0.02

TOT/S % <0.02 <0.02 <0.02 0.12 0.85 0.03

Mo ppm 3.9 1.6 0.3 1.2 2.4 1.4

Cu ppm 1.7 4.0 1.7 8.9 70.1 4.6

Pb ppm 3.6 2.4 2.4 2.9 11.6 6.3

Zn ppm 46 44 56 39 46 54

Ni ppm 0.3 0.3 0.4 14.4 241.2 0.6

As ppm 0.5 0.6 0.5 6.0 12.9 1.4

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm 0.1 0.1 <0.1 0.2 0.6 <0.1

Bi ppm <0.1 <0.1 <0.1 <0.1 0.9 0.1

Ag ppm <0.1 <0.1 <0.1 <0.1 0.3 <0.1

Au ppb 4.7 <0.5 1.2 3.8 7.4 1.9

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm 0.2 <0.1 <0.1 <0.1 0.1 0.2

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 67: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

59

Sample LK20140240 LK20140241 LK20140243 LK20140244 LK20140245 LK20140246

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 72.54 73.35 73.29 73.14 57.42 59.26

Al2O3 % 13.98 13.06 13.57 13.68 17.41 16.29

Fe2O3 % 2.65 3.01 2.53 2.48 7.92 7.98

MgO % 2.75 3.16 3.03 2.84 3.85 3.31

CaO % 0.73 1.29 1.55 2.48 6.38 5.92

Na2O % 1.63 1.45 1.28 2.00 3.51 2.81

K2O % 2.79 1.89 1.86 1.03 0.91 1.51

TiO2 % 0.401 0.350 0.383 0.370 0.626 0.617

P2O5 % 0.048 0.058 0.050 0.054 0.135 0.127

MnO % 0.03 0.05 0.04 0.04 0.10 0.10

Cr2O3 % 0.002 0.002 <0.002 <0.002 0.008 0.009

Ni ppm <20 <20 <20 <20 24 22

Sc ppm 8 7 7 8 30 28

LOI % 2.3 2.2 2.3 1.7 1.5 1.8

Sum % 99.82 99.85 99.84 99.84 99.77 99.77

Ba ppm 581 417 428 272 403 437

Be ppm 2 <1 1 1 2 <1

Co ppm 1.7 1.7 1.4 1.3 27.4 24.4

Cs ppm 0.3 0.3 <0.1 <0.1 1.6 2.6

Ga ppm 13.0 11.9 12.4 12.1 15.8 15.6

Hf ppm 5.3 4.4 4.8 4.9 2.5 2.8

Nb ppm 9.6 7.2 8.4 8.6 3.9 3.7

Rb ppm 57.2 38.6 37.3 21.6 23.7 45.9

Sn ppm 1 1 1 1 <1 <1

Sr ppm 182.6 205.8 221.0 303.2 425.7 435.9

Ta ppm 0.6 0.4 0.5 0.6 0.3 0.3

Th ppm 5.6 4.5 5.5 5.8 3.0 3.2

U ppm 2.8 2.4 2.6 2.5 4.8 3.2

V ppm 13 14 11 11 239 229

W ppm 1.5 0.9 1.0 0.9 <0.5 <0.5

Zr ppm 207.3 162.6 186.0 191.0 96.3 99.6

Y ppm 19.5 15.6 17.3 16.7 12.4 12.8

La ppm 33.1 26.3 30.5 33.7 16.8 18.8

Ce ppm 72.6 57.0 63.6 72.8 35.3 41.7

Pr ppm 8.62 6.78 7.65 8.35 4.43 5.19

Nd ppm 32.1 25.8 29.2 32.0 18.3 21.0

Sm ppm 5.49 4.63 4.98 5.28 3.10 3.95

Eu ppm 1.04 0.96 1.03 1.03 0.85 1.00

Gd ppm 4.35 3.43 3.87 3.98 2.69 2.92

Tb ppm 0.62 0.48 0.56 0.54 0.39 0.44

Dy ppm 3.44 2.60 3.04 3.03 2.18 2.25

Ho ppm 0.66 0.55 0.60 0.61 0.47 0.47

Er ppm 2.03 1.62 1.84 1.83 1.25 1.37

Tm ppm 0.31 0.25 0.29 0.28 0.21 0.21

Yb ppm 2.26 1.71 1.95 2.13 1.29 1.32

Lu ppm 0.34 0.27 0.31 0.33 0.21 0.21

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 0.08

TOT/S % <0.02 <0.02 <0.02 <0.02 1.07 1.34

Mo ppm 0.7 0.3 5.5 0.2 2.9 3.5

Cu ppm 3.4 1.6 2.0 1.5 74.2 93.8

Pb ppm 9.2 2.9 2.2 1.9 3.5 6.3

Zn ppm 49 60 51 51 73 76

Ni ppm 2.6 0.6 0.5 0.5 28.8 25.0

As ppm <0.5 0.6 0.7 <0.5 172.3 107.9

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 0.1

Sb ppm <0.1 <0.1 0.1 <0.1 0.3 0.2

Bi ppm 0.4 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm 0.5 <0.1 <0.1 <0.1 0.2 0.3

Au ppb 1.4 <0.5 <0.5 <0.5 14.1 10.2

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm <0.1 <0.1 <0.1 <0.1 0.6 1.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 68: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

60

Sample LK20140247 LK20140248 LK20140249 LK20140250 LK20140251 LK20140252

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 56.79 56.10 56.38 56.88 55.62 54.29

Al2O3 % 16.32 17.30 16.99 16.60 16.79 16.02

Fe2O3 % 8.10 8.50 7.94 9.04 8.28 8.59

MgO % 4.57 4.14 4.67 4.21 4.21 6.52

CaO % 7.13 5.96 7.00 4.88 8.81 6.92

Na2O % 3.18 3.48 3.30 3.36 3.39 3.43

K2O % 1.32 1.73 1.12 0.89 0.46 0.90

TiO2 % 0.602 0.640 0.617 0.601 0.608 0.685

P2O5 % 0.145 0.140 0.183 0.148 0.132 0.156

MnO % 0.15 0.11 0.11 0.11 0.14 0.17

Cr2O3 % 0.006 0.007 0.006 0.008 0.007 0.052

Ni ppm <20 25 <20 <20 23 95

Sc ppm 28 28 28 28 28 28

LOI % 1.4 1.6 1.4 3.0 1.3 1.9

Sum % 99.73 99.72 99.76 99.76 99.77 99.69

Ba ppm 523 667 394 408 248 495

Be ppm 1 1 <1 2 1 <1

Co ppm 23.4 29.2 24.4 25.9 27.0 33.2

Cs ppm 2.3 2.8 3.4 1.2 0.5 1.4

Ga ppm 15.1 15.9 17.2 16.0 15.1 16.5

Hf ppm 2.6 2.8 2.6 2.4 2.6 2.6

Nb ppm 3.5 3.8 3.7 3.6 3.5 4.5

Rb ppm 41.3 53.7 32.2 26.3 16.6 23.4

Sn ppm <1 <1 <1 <1 1 <1

Sr ppm 595.3 494.2 475.0 402.1 519.7 544.5

Ta ppm 0.2 0.3 0.2 0.3 0.3 0.3

Th ppm 2.8 3.1 2.8 2.9 3.0 3.1

U ppm 1.7 4.6 2.4 4.2 2.9 2.1

V ppm 225 242 235 228 231 219

W ppm <0.5 <0.5 <0.5 <0.5 0.7 0.5

Zr ppm 91.6 99.5 93.4 91.9 96.8 96.9

Y ppm 12.6 11.6 14.7 13.1 13.2 14.3

La ppm 16.6 16.9 19.4 19.9 17.8 19.5

Ce ppm 37.6 36.8 40.9 41.5 39.7 40.7

Pr ppm 4.55 4.53 5.00 5.12 4.81 5.09

Nd ppm 18.8 17.6 20.7 20.6 20.0 20.1

Sm ppm 3.52 3.50 3.82 3.69 3.62 4.08

Eu ppm 0.92 0.97 0.96 0.89 0.96 0.94

Gd ppm 2.86 2.88 3.17 2.95 2.92 3.34

Tb ppm 0.41 0.39 0.46 0.45 0.43 0.48

Dy ppm 2.30 2.20 2.50 2.22 2.39 2.63

Ho ppm 0.45 0.41 0.55 0.48 0.48 0.50

Er ppm 1.31 1.23 1.50 1.22 1.42 1.30

Tm ppm 0.20 0.17 0.24 0.20 0.21 0.20

Yb ppm 1.28 1.26 1.55 1.26 1.32 1.35

Lu ppm 0.19 0.19 0.26 0.20 0.22 0.21

TOT/C % 0.08 <0.02 <0.02 0.08 <0.02 <0.02

TOT/S % 0.44 1.48 0.61 1.50 1.58 0.45

Mo ppm 1.7 6.0 2.1 7.2 3.5 1.5

Cu ppm 57.8 98.8 58.5 86.2 67.9 52.1

Pb ppm 3.4 5.8 2.8 20.0 10.9 24.1

Zn ppm 58 83 58 128 30 79

Ni ppm 17.7 29.0 19.3 27.6 25.2 97.9

As ppm 33.1 486.6 226.3 92.0 >10000.0 426.1

Cd ppm <0.1 <0.1 <0.1 0.2 <0.1 0.2

Sb ppm 0.2 0.4 0.3 0.4 6.0 2.7

Bi ppm <0.1 <0.1 <0.1 <0.1 0.2 <0.1

Ag ppm 0.1 0.5 0.2 0.7 0.9 0.7

Au ppb 5.3 29.8 32.5 6.2 80.1 54.4

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm 1.1 1.8 0.9 0.3 0.3 0.2

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 69: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

61

Sample LK20140253 LK20140254 LK20140255 LK20140256 LK20140257 LK20140259

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 57.32 56.15 55.64 75.14 72.69 68.57

Al2O3 % 16.23 17.57 17.43 12.77 14.30 14.12

Fe2O3 % 8.13 8.74 7.81 2.55 2.70 4.54

MgO % 4.06 4.13 4.80 1.49 2.18 2.10

CaO % 8.41 4.28 7.45 2.66 1.45 4.54

Na2O % 3.43 4.23 3.84 1.33 0.84 3.25

K2O % 0.67 2.06 0.67 1.65 3.27 0.99

TiO2 % 0.584 0.686 0.644 0.390 0.447 0.377

P2O5 % 0.136 0.161 0.182 0.031 0.038 0.051

MnO % 0.16 0.10 0.14 0.04 0.03 0.07

Cr2O3 % 0.006 0.007 0.007 0.002 <0.002 0.006

Ni ppm <20 24 <20 <20 <20 <20

Sc ppm 27 32 29 7 8 14

LOI % 0.6 1.6 1.1 1.7 1.8 1.2

Sum % 99.72 99.71 99.74 99.80 99.78 99.85

Ba ppm 740 777 401 703 986 98

Be ppm <1 <1 <1 <1 2 2

Co ppm 25.5 30.8 28.1 2.0 2.1 10.7

Cs ppm 0.9 6.8 0.9 0.3 1.0 0.8

Ga ppm 16.2 14.2 16.4 12.8 13.9 13.9

Hf ppm 2.4 2.8 2.8 6.2 6.9 4.4

Nb ppm 3.4 4.7 4.1 9.5 11.0 4.9

Rb ppm 16.1 49.2 16.2 46.6 85.1 38.3

Sn ppm <1 <1 <1 2 2 1

Sr ppm 526.9 505.3 568.5 403.5 131.4 381.2

Ta ppm 0.3 0.4 0.3 0.7 0.7 0.5

Th ppm 2.7 3.5 3.4 6.7 7.0 4.3

U ppm 2.4 3.2 2.4 3.5 3.8 2.9

V ppm 220 235 232 <8 9 73

W ppm 0.6 <0.5 <0.5 7.8 1.1 1.2

Zr ppm 91.4 111.5 101.6 229.3 257.0 155.1

Y ppm 12.8 14.7 15.8 22.1 22.7 16.8

La ppm 17.8 21.7 20.8 38.0 39.7 21.4

Ce ppm 37.5 45.4 45.9 80.7 84.7 43.2

Pr ppm 4.54 5.44 5.50 9.42 10.09 5.09

Nd ppm 18.6 21.2 22.7 36.3 39.1 19.1

Sm ppm 3.59 3.99 4.36 6.40 6.55 3.71

Eu ppm 0.88 0.93 1.12 1.07 1.12 0.88

Gd ppm 2.88 3.34 3.44 4.86 4.97 3.49

Tb ppm 0.41 0.50 0.51 0.69 0.72 0.55

Dy ppm 2.13 2.64 2.85 3.72 3.85 3.12

Ho ppm 0.45 0.54 0.56 0.73 0.81 0.64

Er ppm 1.33 1.61 1.65 2.11 2.31 1.88

Tm ppm 0.20 0.25 0.25 0.31 0.35 0.28

Yb ppm 1.42 1.56 1.62 2.21 2.36 1.95

Lu ppm 0.22 0.26 0.26 0.37 0.39 0.28

TOT/C % 0.04 <0.02 <0.02 0.09 <0.02 0.12

TOT/S % 0.80 1.32 0.37 0.17 0.09 1.18

Mo ppm 4.1 2.8 1.6 0.9 8.9 4.1

Cu ppm 62.3 80.2 47.7 15.9 14.8 75.0

Pb ppm 3.5 3.0 1.8 4.0 3.7 13.1

Zn ppm 41 112 57 37 42 165

Ni ppm 19.9 25.4 19.8 0.4 0.4 18.5

As ppm 241.7 143.7 76.5 7.6 5.2 858.4

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 1.3

Sb ppm 0.4 0.2 0.3 0.1 <0.1 0.9

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 0.1

Ag ppm 0.4 0.3 <0.1 0.1 <0.1 0.2

Au ppb 32.9 3.9 1.3 2.2 <0.5 3.4

Hg ppm <0.01 0.01 <0.01 <0.01 <0.01 0.01

Tl ppm 0.3 1.4 0.5 0.2 0.9 1.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 70: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

62

Sample LK20140260 LK20140261 LK20140262 LK20140263 LK20140264 LK20140265

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 71.35 75.32 76.62 74.31 74.57 76.17

Al2O3 % 13.07 13.02 12.05 13.04 12.47 12.52

Fe2O3 % 4.51 2.52 2.46 3.04 3.42 2.28

MgO % 3.47 1.61 1.70 2.99 3.09 1.81

CaO % 1.58 1.96 1.71 1.40 1.57 1.84

Na2O % 1.32 1.82 2.07 1.17 1.39 2.06

K2O % 1.40 1.66 1.24 1.12 0.84 1.12

TiO2 % 0.421 0.410 0.378 0.382 0.374 0.401

P2O5 % 0.023 0.029 0.037 0.019 0.026 0.033

MnO % 0.04 0.01 0.02 0.03 0.03 0.02

Cr2O3 % <0.002 0.002 <0.002 <0.002 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 8 7 7 7 7 7

LOI % 2.6 1.5 1.6 2.3 2.0 1.6

Sum % 99.80 99.82 99.84 99.80 99.82 99.83

Ba ppm 416 530 484 488 355 448

Be ppm <1 2 1 2 1 1

Co ppm 2.1 1.6 1.6 1.4 1.9 1.6

Cs ppm 0.3 0.4 0.2 0.2 0.1 0.2

Ga ppm 13.3 11.7 11.6 12.2 11.6 11.4

Hf ppm 6.2 6.2 5.9 6.8 5.9 6.0

Nb ppm 9.7 10.1 8.8 10.6 9.0 9.3

Rb ppm 37.4 48.6 39.8 38.3 28.9 39.4

Sn ppm 2 2 2 2 2 2

Sr ppm 358.3 383.8 280.3 296.5 313.7 342.7

Ta ppm 0.7 0.7 0.6 0.8 0.7 0.7

Th ppm 6.5 6.8 6.2 7.1 6.3 6.4

U ppm 3.9 3.6 3.1 3.9 3.0 3.9

V ppm 9 9 12 10 9 <8

W ppm 1.2 1.1 1.2 0.9 0.7 0.8

Zr ppm 224.7 231.0 211.0 247.7 222.0 218.7

Y ppm 21.3 21.0 20.2 21.8 20.4 20.0

La ppm 41.0 38.2 34.1 38.5 35.0 35.8

Ce ppm 83.4 78.8 73.3 83.3 76.1 78.8

Pr ppm 9.88 9.48 8.64 10.10 9.12 9.12

Nd ppm 37.3 35.7 32.1 36.9 34.0 34.5

Sm ppm 6.27 6.18 5.73 6.51 6.01 5.87

Eu ppm 1.05 1.07 0.99 0.94 1.00 1.01

Gd ppm 4.59 4.58 4.29 4.85 4.60 4.35

Tb ppm 0.67 0.67 0.63 0.72 0.64 0.65

Dy ppm 3.70 3.75 3.51 4.00 3.76 3.57

Ho ppm 0.74 0.74 0.71 0.78 0.70 0.67

Er ppm 2.11 2.26 2.14 2.38 2.13 2.09

Tm ppm 0.33 0.35 0.32 0.36 0.32 0.33

Yb ppm 2.09 2.35 2.24 2.36 2.27 2.10

Lu ppm 0.34 0.37 0.35 0.38 0.36 0.34

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % 0.04 0.10 0.11 <0.02 0.02 <0.02

Mo ppm 3.5 2.2 4.6 4.7 2.9 1.8

Cu ppm 8.2 16.4 20.0 12.5 16.7 16.1

Pb ppm 3.3 2.9 3.5 3.1 7.0 3.0

Zn ppm 51 47 47 40 46 43

Ni ppm 1.0 0.5 0.5 0.2 0.3 0.6

As ppm 9.2 17.7 0.9 2.0 200.3 11.9

Cd ppm <0.1 <0.1 <0.1 <0.1 0.1 <0.1

Sb ppm <0.1 0.1 0.2 0.2 0.3 0.2

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm <0.1 <0.1 <0.1 <0.1 0.1 <0.1

Au ppb <0.5 <0.5 <0.5 <0.5 1.0 <0.5

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm 0.3 0.2 0.1 <0.1 <0.1 <0.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 71: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

63

Sample LK20140266 LK20140267 LK20140268 LK20140269 LK20140270 LK20140271

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 71.62 77.10 76.25 80.81 65.18 48.94

Al2O3 % 15.77 11.93 12.36 9.35 17.32 13.81

Fe2O3 % 2.42 2.69 2.63 2.84 4.87 17.50

MgO % 2.15 2.52 2.31 2.01 2.45 2.20

CaO % 1.17 0.84 1.09 1.63 1.62 1.33

Na2O % 1.77 1.06 1.33 1.14 2.49 0.63

K2O % 2.55 1.84 1.88 0.65 3.04 3.77

TiO2 % 0.475 0.296 0.333 0.267 0.413 0.514

P2O5 % 0.034 0.013 0.023 0.017 0.053 0.080

MnO % 0.02 0.03 0.02 0.02 0.05 0.03

Cr2O3 % <0.002 <0.002 <0.002 0.002 0.003 0.009

Ni ppm <20 <20 <20 <20 <20 263

Sc ppm 9 6 7 5 15 14

LOI % 1.8 1.5 1.6 1.1 2.3 10.7

Sum % 99.79 99.84 99.84 99.88 99.77 99.60

Ba ppm 613 443 513 264 964 598

Be ppm <1 1 <1 2 <1 2

Co ppm 1.6 1.1 1.2 1.5 11.0 39.3

Cs ppm 0.6 0.5 0.5 0.3 1.1 1.6

Ga ppm 15.8 15.9 16.3 12.1 19.8 17.3

Hf ppm 8.3 5.9 6.4 4.3 4.3 2.9

Nb ppm 12.1 10.2 10.6 7.5 4.7 7.5

Rb ppm 86.2 57.4 57.8 17.4 66.7 89.4

Sn ppm 2 2 2 2 2 6

Sr ppm 348.8 234.5 231.1 233.8 222.1 84.0

Ta ppm 0.9 0.8 0.7 0.5 0.4 0.6

Th ppm 8.9 6.3 6.4 4.7 4.3 10.7

U ppm 4.8 3.5 3.5 2.6 3.8 7.4

V ppm <8 <8 <8 <8 73 149

W ppm 1.0 0.7 0.8 0.9 1.5 2.1

Zr ppm 296.7 214.8 221.4 153.1 145.6 94.1

Y ppm 27.0 20.0 19.6 14.7 22.4 18.1

La ppm 49.3 33.5 34.4 24.0 16.8 24.7

Ce ppm 106.7 73.0 74.9 51.6 34.3 50.2

Pr ppm 12.25 8.57 8.70 6.44 4.26 6.03

Nd ppm 45.9 32.6 33.0 24.2 16.9 23.1

Sm ppm 8.19 5.72 5.83 4.43 3.70 4.19

Eu ppm 1.31 0.83 0.83 0.71 0.77 0.90

Gd ppm 6.08 4.33 4.46 3.27 3.79 3.45

Tb ppm 0.89 0.63 0.62 0.45 0.61 0.55

Dy ppm 4.86 3.23 3.62 2.60 3.86 3.34

Ho ppm 1.00 0.67 0.68 0.55 0.83 0.65

Er ppm 2.93 1.96 2.15 1.57 2.53 2.07

Tm ppm 0.44 0.32 0.35 0.22 0.38 0.28

Yb ppm 2.97 2.17 2.18 1.56 2.65 2.05

Lu ppm 0.47 0.36 0.34 0.25 0.44 0.31

TOT/C % <0.02 <0.02 <0.02 <0.02 0.02 3.02

TOT/S % <0.02 <0.02 <0.02 0.07 1.38 11.08

Mo ppm 1.6 3.6 4.5 0.9 3.4 13.6

Cu ppm 17.7 12.7 9.6 23.3 50.6 299.1

Pb ppm 7.9 3.2 3.4 3.2 7.9 144.0

Zn ppm 45 43 45 49 152 1611

Ni ppm 0.2 0.3 0.2 0.4 16.2 297.4

As ppm 85.7 7.3 0.8 119.6 244.1 157.1

Cd ppm 0.1 <0.1 <0.1 <0.1 0.8 5.4

Sb ppm 0.1 <0.1 <0.1 <0.1 0.3 18.1

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 1.2

Ag ppm 0.1 <0.1 <0.1 <0.1 0.4 1.9

Au ppb <0.5 <0.5 <0.5 <0.5 3.0 <0.5

Hg ppm <0.01 <0.01 <0.01 <0.01 0.02 0.56

Tl ppm <0.1 <0.1 <0.1 <0.1 0.5 1.6

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 7.9

Page 72: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

64

Sample LK20140275 LK20140277 LK20140278 LK20140279 LK20140280 LK20140281

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 56.89 56.06 54.42 58.25 77.92 74.53

Al2O3 % 16.29 16.98 17.55 16.89 11.16 13.08

Fe2O3 % 8.69 8.41 8.33 8.69 2.05 2.67

MgO % 4.14 4.16 3.65 3.06 0.65 1.95

CaO % 8.95 7.48 6.49 5.94 0.96 2.09

Na2O % 2.45 3.53 3.37 3.76 5.07 1.59

K2O % 0.33 0.60 1.48 0.78 0.22 2.08

TiO2 % 0.582 0.618 0.644 0.585 0.345 0.365

P2O5 % 0.138 0.155 0.106 0.119 0.025 0.026

MnO % 0.15 0.11 0.08 0.07 0.01 0.02

Cr2O3 % 0.008 0.006 0.008 0.006 0.006 <0.002

Ni ppm <20 25 22 26 <20 <20

Sc ppm 27 28 27 28 7 7

LOI % 1.1 1.7 3.6 1.6 1.5 1.4

Sum % 99.74 99.78 99.73 99.78 99.93 99.84

Ba ppm 220 233 636 421 37 546

Be ppm <1 <1 1 <1 <1 2

Co ppm 23.8 28.8 29.2 27.4 1.4 1.4

Cs ppm 0.7 1.0 2.2 1.0 0.1 0.8

Ga ppm 16.9 16.7 19.8 17.8 8.1 13.3

Hf ppm 2.4 2.7 2.7 2.3 5.6 6.3

Nb ppm 4.3 4.3 4.4 4.1 9.7 10.2

Rb ppm 9.1 15.3 36.2 15.5 4.2 37.4

Sn ppm <1 <1 1 1 1 2

Sr ppm 911.6 490.5 480.4 498.5 153.1 152.8

Ta ppm 0.2 0.3 0.3 0.2 0.6 0.6

Th ppm 2.7 2.9 3.3 2.7 6.0 6.8

U ppm 1.6 2.5 4.1 3.1 3.3 3.4

V ppm 219 227 249 228 <8 <8

W ppm <0.5 <0.5 <0.5 <0.5 0.5 0.7

Zr ppm 87.1 90.8 99.8 88.1 202.2 230.9

Y ppm 12.8 14.9 10.8 10.6 17.3 20.3

La ppm 15.9 17.3 17.7 15.7 32.6 36.6

Ce ppm 33.5 36.6 37.7 34.2 67.3 76.3

Pr ppm 4.37 4.55 4.63 4.15 8.15 9.23

Nd ppm 17.0 17.5 17.8 16.4 30.9 34.6

Sm ppm 3.54 3.73 3.40 3.02 5.39 5.88

Eu ppm 0.87 0.88 0.86 0.83 0.71 0.97

Gd ppm 2.86 3.04 2.57 2.50 3.93 4.51

Tb ppm 0.39 0.44 0.37 0.34 0.55 0.64

Dy ppm 2.17 2.25 2.03 1.80 3.01 3.47

Ho ppm 0.46 0.50 0.40 0.38 0.61 0.73

Er ppm 1.36 1.51 1.20 1.04 1.84 2.22

Tm ppm 0.21 0.24 0.18 0.17 0.29 0.34

Yb ppm 1.32 1.59 1.11 1.04 1.87 2.28

Lu ppm 0.22 0.26 0.18 0.17 0.33 0.37

TOT/C % <0.02 0.03 <0.02 <0.02 0.97 0.02

TOT/S % 0.18 1.20 1.42 1.84 0.33 0.26

Mo ppm 1.5 4.4 6.3 3.0 2.1 2.4

Cu ppm 60.6 94.0 99.4 114.1 17.2 13.1

Pb ppm 2.1 4.1 3.9 2.1 3.9 5.0

Zn ppm 42 56 74 62 37 42

Ni ppm 13.1 29.3 26.0 29.4 1.8 0.4

As ppm 43.4 288.6 797.7 8.1 462.5 2.3

Cd ppm <0.1 <0.1 <0.1 <0.1 0.3 0.1

Sb ppm 0.3 0.6 0.4 0.4 0.7 0.1

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm <0.1 0.3 0.2 0.2 <0.1 0.2

Au ppb 5.7 17.3 15.3 0.8 1.5 3.1

Hg ppm <0.01 <0.01 <0.01 <0.01 0.01 <0.01

Tl ppm 0.3 0.5 0.8 0.5 <0.1 0.3

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 73: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

65

Sample LK20140285 LK20140286 LK20140287 LK20140289 LK20140291 LK20140292

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 72.09 68.33 71.24 74.34 74.54 75.85

Al2O3 % 14.70 15.88 14.71 12.80 12.64 12.26

Fe2O3 % 2.06 2.47 2.52 2.80 2.69 2.26

MgO % 2.99 3.05 2.32 2.46 2.63 2.41

CaO % 1.62 2.24 1.83 1.61 1.29 1.09

Na2O % 1.51 2.44 1.62 1.44 1.24 1.40

K2O % 2.11 3.27 3.26 2.46 2.59 2.55

TiO2 % 0.412 0.459 0.386 0.338 0.327 0.319

P2O5 % 0.059 0.071 0.051 0.037 0.033 0.030

MnO % 0.04 0.05 0.06 0.07 0.06 0.05

Cr2O3 % <0.002 <0.002 <0.002 0.003 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 8 9 8 7 7 7

LOI % 2.3 1.6 1.9 1.5 1.8 1.6

Sum % 99.85 99.82 99.86 99.88 99.87 99.86

Ba ppm 359 555 396 262 302 265

Be ppm <1 2 1 1 1 2

Co ppm 1.7 1.5 2.0 2.1 2.1 1.5

Cs ppm 0.3 1.3 1.0 0.8 0.9 0.8

Ga ppm 14.6 16.0 14.4 13.2 12.5 12.2

Hf ppm 5.4 5.5 5.2 5.1 5.2 4.8

Nb ppm 9.4 10.1 8.7 8.6 8.7 8.5

Rb ppm 33.5 64.9 52.6 42.7 45.9 44.3

Sn ppm 2 2 2 2 2 2

Sr ppm 243.9 224.6 136.7 136.6 104.6 99.2

Ta ppm 0.6 0.7 0.7 0.5 0.6 0.6

Th ppm 5.7 5.7 6.5 5.3 5.8 5.8

U ppm 3.2 3.4 3.0 2.8 3.0 2.6

V ppm 9 12 <8 <8 <8 8

W ppm 1.3 2.0 1.2 0.9 0.8 1.3

Zr ppm 197.8 208.2 195.0 184.5 190.2 182.6

Y ppm 18.4 19.6 19.7 19.6 20.4 17.2

La ppm 33.8 34.8 34.4 30.8 33.7 29.5

Ce ppm 72.2 74.9 73.6 64.8 68.9 64.3

Pr ppm 8.46 9.09 8.80 7.53 8.16 7.56

Nd ppm 32.8 33.7 34.1 29.5 30.5 28.5

Sm ppm 5.57 5.93 5.57 5.06 5.41 4.83

Eu ppm 1.20 1.20 1.14 1.02 1.00 1.00

Gd ppm 4.26 4.52 4.41 3.90 4.25 3.83

Tb ppm 0.60 0.61 0.63 0.54 0.60 0.54

Dy ppm 3.22 3.49 3.47 3.15 3.27 3.09

Ho ppm 0.63 0.69 0.71 0.69 0.71 0.60

Er ppm 1.89 2.10 1.95 1.99 2.09 1.89

Tm ppm 0.29 0.32 0.31 0.32 0.31 0.30

Yb ppm 2.04 2.11 2.16 2.08 2.05 1.95

Lu ppm 0.35 0.35 0.34 0.34 0.35 0.31

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % <0.02 <0.02 0.02 0.02 0.07 0.03

Mo ppm 2.6 2.7 2.9 3.3 3.9 2.0

Cu ppm 6.8 2.4 10.3 9.1 6.7 6.5

Pb ppm 3.5 4.9 3.1 3.3 3.3 9.9

Zn ppm 46 43 59 57 58 312

Ni ppm 0.5 0.4 0.6 0.6 0.4 0.4

As ppm <0.5 <0.5 0.6 0.7 0.6 1.7

Cd ppm <0.1 <0.1 <0.1 0.1 <0.1 0.8

Sb ppm <0.1 <0.1 0.1 <0.1 0.1 0.1

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm <0.1 0.3 <0.1 <0.1 <0.1 <0.1

Au ppb 0.9 144.6 6.4 <0.5 <0.5 <0.5

Hg ppm <0.01 0.05 <0.01 <0.01 <0.01 <0.01

Tl ppm <0.1 0.7 0.2 0.3 0.5 0.2

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 74: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

66

Sample LK20140293 LK20140294 LK20140295 LK20140296 LK20140297 LK20140298

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 63.15 72.66 74.26 73.24 67.50 70.92

Al2O3 % 19.93 12.72 12.18 12.86 13.06 14.49

Fe2O3 % 2.20 2.20 2.33 2.30 3.26 1.73

MgO % 3.41 4.21 4.34 4.31 8.69 5.13

CaO % 0.78 2.11 0.51 0.69 0.11 0.14

Na2O % 1.30 2.40 0.91 0.92 0.11 0.23

K2O % 5.08 0.65 2.29 2.58 2.08 3.57

TiO2 % 0.505 0.343 0.321 0.346 0.336 0.366

P2O5 % 0.058 0.045 0.043 0.038 0.034 0.033

MnO % 0.02 0.03 0.01 0.01 0.04 0.03

Cr2O3 % <0.002 0.002 <0.002 <0.002 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 10 7 6 8 7 8

LOI % 3.4 2.5 2.7 2.5 4.6 3.2

Sum % 99.79 99.85 99.85 99.84 99.79 99.84

Ba ppm 615 122 345 440 190 287

Be ppm 2 <1 2 1 <1 1

Co ppm 1.5 1.3 1.7 1.7 1.7 1.6

Cs ppm 0.8 0.2 0.5 0.6 0.4 0.5

Ga ppm 20.9 11.2 12.2 13.4 12.6 14.0

Hf ppm 8.2 4.9 4.7 5.4 4.9 6.0

Nb ppm 13.7 8.1 8.0 9.3 8.2 9.1

Rb ppm 71.7 13.9 35.7 44.0 33.9 60.9

Sn ppm 3 1 2 2 1 2

Sr ppm 108.2 194.8 60.0 52.9 11.0 21.7

Ta ppm 1.1 0.6 0.5 0.6 0.5 0.7

Th ppm 9.3 5.1 5.3 5.8 5.9 6.1

U ppm 4.6 3.0 2.9 4.0 3.1 3.5

V ppm <8 <8 <8 <8 <8 <8

W ppm 2.2 0.6 1.1 0.9 1.4 1.5

Zr ppm 300.5 177.3 183.0 199.1 186.2 216.4

Y ppm 24.4 18.7 19.1 20.1 22.4 20.9

La ppm 50.5 32.0 29.0 34.0 33.4 31.6

Ce ppm 107.1 64.2 58.9 70.1 69.9 65.5

Pr ppm 12.92 7.75 7.20 8.23 8.54 8.11

Nd ppm 47.1 28.3 27.1 30.7 31.7 30.9

Sm ppm 8.47 5.04 4.88 5.19 5.87 5.43

Eu ppm 1.31 1.03 0.91 1.05 1.02 1.02

Gd ppm 5.73 3.97 3.76 4.23 4.65 4.40

Tb ppm 0.79 0.58 0.54 0.62 0.68 0.63

Dy ppm 4.39 3.02 3.11 3.26 3.78 3.26

Ho ppm 0.89 0.65 0.66 0.67 0.77 0.71

Er ppm 2.82 1.93 1.87 2.04 2.24 2.29

Tm ppm 0.46 0.30 0.29 0.33 0.32 0.35

Yb ppm 2.91 2.08 2.00 2.18 2.17 2.31

Lu ppm 0.51 0.32 0.32 0.34 0.35 0.38

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % <0.02 0.03 <0.02 <0.02 <0.02 <0.02

Mo ppm 2.2 3.1 2.0 3.3 15.2 2.7

Cu ppm 2.8 8.4 8.4 2.0 4.7 2.5

Pb ppm 4.9 20.0 4.6 3.4 3.6 4.9

Zn ppm 40 106 46 46 56 23

Ni ppm 0.3 0.6 0.3 0.3 0.2 0.3

As ppm 0.9 1.6 1.9 0.7 0.6 0.5

Cd ppm <0.1 0.2 <0.1 <0.1 <0.1 <0.1

Sb ppm 0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Au ppb 0.7 <0.5 <0.5 <0.5 <0.5 <0.5

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm 0.2 <0.1 0.1 0.2 <0.1 <0.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 75: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

67

Sample LK20140299 LK20140300 LK20140301 LK20140303 LK20140304 LK20140288

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 76.52 69.94 73.46 67.43 74.64 75.95

Al2O3 % 11.77 15.54 12.79 16.27 10.97 12.22

Fe2O3 % 1.48 1.83 2.05 2.82 2.79 2.57

MgO % 4.19 4.33 4.63 4.87 5.44 2.28

CaO % 0.06 0.08 0.10 0.11 0.08 0.92

Na2O % 0.10 0.14 0.21 0.19 0.10 2.28

K2O % 2.68 3.86 2.92 4.16 2.25 1.28

TiO2 % 0.298 0.406 0.335 0.436 0.302 0.378

P2O5 % 0.036 0.043 0.041 0.049 0.039 0.024

MnO % 0.03 0.04 0.04 0.05 0.05 0.02

Cr2O3 % <0.002 <0.002 <0.002 <0.002 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 6 9 7 9 6 7

LOI % 2.7 3.6 3.3 3.4 3.2 1.9

Sum % 99.87 99.84 99.86 99.83 99.85 99.84

Ba ppm 268 349 234 297 165 420

Be ppm <1 <1 <1 1 1 1

Co ppm 1.3 1.4 1.5 2.0 1.3 1.5

Cs ppm 0.2 0.3 0.3 0.5 0.3 0.1

Ga ppm 11.6 15.3 12.1 15.3 10.5 11.0

Hf ppm 4.7 6.5 4.9 6.5 4.5 5.7

Nb ppm 7.3 10.5 8.5 11.4 7.9 9.5

Rb ppm 43.9 70.7 56.2 75.3 37.3 37.3

Sn ppm 2 2 2 2 <1 2

Sr ppm 18.6 29.7 16.3 18.6 11.2 215.0

Ta ppm 0.5 0.7 0.5 0.8 0.5 0.6

Th ppm 4.9 6.6 5.8 6.8 4.7 6.3

U ppm 2.7 3.5 2.9 3.5 2.4 3.6

V ppm <8 <8 <8 9 9 11

W ppm 1.1 12.6 1.0 1.7 1.2 0.8

Zr ppm 168.2 237.0 180.1 240.2 159.0 210.5

Y ppm 18.7 21.0 19.1 21.7 18.9 19.8

La ppm 28.4 38.0 40.0 34.7 27.4 36.3

Ce ppm 58.3 79.8 77.2 73.5 61.1 78.1

Pr ppm 7.07 9.21 9.28 9.08 7.29 9.25

Nd ppm 26.7 36.0 34.1 34.2 28.5 34.4

Sm ppm 4.61 6.22 5.99 5.75 4.70 5.49

Eu ppm 0.80 1.18 1.08 1.05 0.98 0.95

Gd ppm 3.63 4.83 4.63 4.46 3.95 4.60

Tb ppm 0.56 0.65 0.63 0.63 0.60 0.63

Dy ppm 3.10 3.40 3.35 3.49 3.15 3.30

Ho ppm 0.63 0.74 0.70 0.74 0.64 0.66

Er ppm 1.91 2.32 1.96 2.34 1.81 2.08

Tm ppm 0.29 0.34 0.32 0.36 0.29 0.31

Yb ppm 1.85 2.45 2.07 2.46 1.94 2.10

Lu ppm 0.29 0.41 0.32 0.38 0.30 0.35

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % <0.02 0.08 <0.02 0.25 <0.02 0.06

Mo ppm 1.2 0.4 0.4 5.3 2.6 3.5

Cu ppm 2.8 3.4 10.3 19.4 6.2 17.9

Pb ppm 0.8 1.5 1.5 9.3 1.9 3.7

Zn ppm 23 20 23 49 78 44

Ni ppm 0.3 0.7 0.3 0.3 0.4 0.6

As ppm 0.5 0.7 <0.5 2.7 0.6 17.0

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm <0.1 <0.1 <0.1 0.1 <0.1 0.1

Bi ppm <0.1 <0.1 0.1 0.4 <0.1 <0.1

Ag ppm <0.1 <0.1 0.1 0.2 <0.1 <0.1

Au ppb <0.5 <0.5 3.6 7.8 <0.5 <0.5

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 0.02

Tl ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 76: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

68

Sample LK20140305 LK20140307 LK20140308 LK20140309 LK20140310 LK20140311

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 73.51 74.10 74.68 76.21 77.57 79.61

Al2O3 % 13.55 13.38 13.05 12.35 11.48 10.53

Fe2O3 % 2.80 2.64 2.48 2.34 2.25 2.15

MgO % 2.71 2.30 2.04 2.00 2.20 2.45

CaO % 0.70 0.91 1.15 0.98 0.92 1.01

Na2O % 1.20 1.57 2.22 1.38 1.65 1.15

K2O % 2.46 2.47 1.77 2.30 1.42 0.88

TiO2 % 0.398 0.412 0.435 0.401 0.315 0.284

P2O5 % 0.026 0.032 0.039 0.038 0.026 0.020

MnO % 0.02 0.03 0.02 0.03 0.02 0.01

Cr2O3 % <0.002 <0.002 0.002 <0.002 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 7 7 8 7 6 5

LOI % 2.4 2.0 2.0 1.8 2.0 1.8

Sum % 99.81 99.83 99.85 99.84 99.85 99.85

Ba ppm 689 634 421 573 442 375

Be ppm <1 <1 1 1 2 1

Co ppm 2.1 1.6 1.8 1.8 1.3 1.0

Cs ppm 0.3 0.5 0.3 0.5 0.1 0.2

Ga ppm 12.3 12.8 11.8 11.4 11.3 9.1

Hf ppm 5.8 6.0 5.9 5.5 6.3 5.5

Nb ppm 9.9 9.8 9.9 9.3 9.4 8.5

Rb ppm 68.9 71.4 51.9 67.2 42.5 26.4

Sn ppm 2 2 2 2 2 1

Sr ppm 160.0 109.3 151.5 104.7 162.6 205.6

Ta ppm 0.7 0.6 0.6 0.6 0.6 0.6

Th ppm 6.6 6.9 6.1 6.0 6.7 6.1

U ppm 3.8 3.9 3.6 3.6 3.2 2.9

V ppm 8 10 10 12 <8 <8

W ppm 1.4 1.4 0.7 1.2 0.8 <0.5

Zr ppm 215.9 221.1 216.0 207.8 236.0 203.8

Y ppm 19.9 20.1 21.4 18.6 19.7 18.5

La ppm 38.1 36.5 35.8 34.3 34.4 31.6

Ce ppm 79.8 78.1 74.1 72.8 76.8 69.0

Pr ppm 9.56 9.49 9.07 8.83 9.35 8.25

Nd ppm 36.0 36.3 35.5 34.3 36.0 31.1

Sm ppm 6.26 6.12 5.81 5.73 6.13 5.05

Eu ppm 1.00 1.02 1.08 0.99 0.81 0.79

Gd ppm 4.83 4.74 4.66 4.34 4.82 4.08

Tb ppm 0.67 0.65 0.63 0.60 0.67 0.56

Dy ppm 3.52 3.54 3.47 3.48 3.45 3.07

Ho ppm 0.71 0.72 0.72 0.69 0.72 0.62

Er ppm 2.16 2.11 2.08 1.89 2.17 1.80

Tm ppm 0.31 0.33 0.33 0.30 0.35 0.29

Yb ppm 2.04 2.10 2.36 2.05 2.37 1.94

Lu ppm 0.34 0.33 0.35 0.31 0.35 0.30

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % 0.05 0.08 0.08 0.05 <0.02 <0.02

Mo ppm 3.5 3.5 2.2 3.6 2.4 1.8

Cu ppm 16.9 17.2 17.8 15.7 9.9 18.9

Pb ppm 3.1 2.8 3.9 2.5 2.8 2.4

Zn ppm 52 45 44 36 33 28

Ni ppm 0.6 0.7 0.5 0.9 0.4 0.9

As ppm 5.8 2.1 <0.5 <0.5 <0.5 0.6

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm <0.1 0.1 <0.1 0.1 <0.1 0.1

Bi ppm <0.1 <0.1 0.1 <0.1 <0.1 <0.1

Ag ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Au ppb <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Hg ppm <0.01 <0.01 0.06 0.02 <0.01 <0.01

Tl ppm <0.1 <0.1 <0.1 0.1 <0.1 <0.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 77: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

69

Sample LK20140312 LK20140313 LK20140314 LK20140315 LK20140316 LK20140317

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 76.81 67.31 51.26 73.65 76.36 72.42

Al2O3 % 11.90 16.48 11.43 13.39 11.92 14.63

Fe2O3 % 2.30 3.58 8.48 2.55 2.52 2.01

MgO % 2.53 1.28 12.08 1.85 1.42 1.23

CaO % 0.83 1.61 9.69 1.05 1.16 1.54

Na2O % 0.59 3.34 2.03 1.88 3.27 4.95

K2O % 2.09 3.58 1.06 2.88 1.67 1.60

TiO2 % 0.370 0.530 0.611 0.433 0.329 0.386

P2O5 % 0.028 0.185 0.187 0.075 0.054 0.044

MnO % 0.02 0.03 0.20 0.04 0.03 0.04

Cr2O3 % <0.002 <0.002 0.174 <0.002 0.003 <0.002

Ni ppm <20 <20 321 <20 <20 <20

Sc ppm 6 15 23 9 7 8

LOI % 2.4 1.8 2.4 2.1 1.2 1.0

Sum % 99.83 99.76 99.67 99.86 99.90 99.88

Ba ppm 532 1281 135 489 205 289

Be ppm 1 <1 1 1 <1 <1

Co ppm 1.6 6.5 45.7 2.3 1.9 1.5

Cs ppm 0.2 1.1 1.7 1.1 1.2 1.0

Ga ppm 11.0 17.0 12.4 12.3 9.7 14.4

Hf ppm 6.2 4.1 2.2 4.9 4.4 5.7

Nb ppm 9.3 6.8 3.0 7.7 7.9 9.5

Rb ppm 51.0 75.0 35.1 62.7 45.5 43.4

Sn ppm 2 1 <1 1 1 1

Sr ppm 180.9 238.0 497.4 123.8 153.0 184.9

Ta ppm 0.7 0.5 0.2 0.6 0.5 0.7

Th ppm 6.5 4.2 2.5 5.1 5.2 5.9

U ppm 3.5 3.3 1.7 2.8 3.3 3.4

V ppm <8 46 156 15 11 <8

W ppm 1.3 0.9 <0.5 1.1 0.8 1.1

Zr ppm 229.3 150.4 79.8 176.9 170.3 209.6

Y ppm 20.0 22.1 11.2 21.9 17.3 19.8

La ppm 37.3 29.8 19.2 32.8 29.1 35.1

Ce ppm 77.4 63.5 43.4 67.7 63.1 71.6

Pr ppm 9.20 8.07 5.69 8.62 7.63 9.14

Nd ppm 36.2 33.1 23.6 34.6 29.8 35.0

Sm ppm 6.05 6.05 4.47 6.07 5.21 6.01

Eu ppm 0.94 1.41 1.22 1.19 1.09 1.33

Gd ppm 4.70 5.11 3.65 5.02 3.88 4.57

Tb ppm 0.63 0.73 0.48 0.71 0.55 0.65

Dy ppm 3.45 3.79 2.28 3.82 3.11 3.54

Ho ppm 0.71 0.82 0.45 0.83 0.60 0.71

Er ppm 2.00 2.27 1.18 2.40 1.82 2.09

Tm ppm 0.33 0.36 0.18 0.37 0.29 0.33

Yb ppm 2.18 2.36 1.03 2.50 1.78 2.10

Lu ppm 0.34 0.37 0.15 0.41 0.29 0.35

TOT/C % <0.02 <0.02 0.03 <0.02 <0.02 <0.02

TOT/S % 0.06 1.39 1.51 0.07 0.31 0.23

Mo ppm 0.8 5.3 0.1 5.5 3.0 2.5

Cu ppm 13.4 20.6 34.1 6.2 28.8 12.1

Pb ppm 3.1 8.5 5.9 4.8 5.2 5.6

Zn ppm 35 86 34 57 57 53

Ni ppm 1.0 4.8 221.6 1.0 1.6 0.8

As ppm <0.5 0.7 2553.7 2.3 2.5 1.4

Cd ppm <0.1 0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm <0.1 0.2 1.0 <0.1 <0.1 0.1

Bi ppm <0.1 0.2 0.1 <0.1 <0.1 0.1

Ag ppm <0.1 0.2 0.8 <0.1 <0.1 0.2

Au ppb <0.5 <0.5 10.6 <0.5 0.7 12.3

Hg ppm <0.01 0.02 <0.01 <0.01 <0.01 <0.01

Tl ppm <0.1 0.5 0.7 0.3 0.5 0.6

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 78: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

70

Sample LK20140318 LK20140319 LK20140321 LK20140322 LK20140323 LK20140324

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 69.82 69.01 73.13 72.35 72.50 68.71

Al2O3 % 16.10 15.02 13.43 14.44 14.91 15.87

Fe2O3 % 2.36 2.41 2.37 2.24 1.73 2.38

MgO % 1.64 2.65 3.19 2.50 2.18 2.71

CaO % 0.70 4.79 1.49 1.52 2.21 3.00

Na2O % 3.62 2.33 0.98 1.50 1.66 2.36

K2O % 2.83 1.37 2.36 2.36 2.10 2.71

TiO2 % 0.446 0.494 0.369 0.410 0.419 0.438

P2O5 % 0.063 0.094 0.054 0.063 0.060 0.057

MnO % 0.03 0.05 0.03 0.03 0.03 0.04

Cr2O3 % <0.002 <0.002 0.002 <0.002 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 9 11 8 8 8 9

LOI % 2.3 1.6 2.4 2.4 2.0 1.5

Sum % 99.86 99.83 99.85 99.84 99.85 99.76

Ba ppm 419 265 383 431 322 1006

Be ppm 1 2 2 1 2 2

Co ppm 3.4 5.3 1.2 1.1 0.9 1.3

Cs ppm 0.7 1.6 0.5 0.3 0.2 1.3

Ga ppm 18.9 14.3 11.4 13.4 12.9 13.3

Hf ppm 6.4 5.8 4.8 5.0 5.5 5.7

Nb ppm 10.5 9.3 7.8 8.5 9.1 9.5

Rb ppm 62.2 45.6 41.9 45.9 36.3 65.8

Sn ppm 2 2 1 1 1 2

Sr ppm 115.4 389.9 177.8 254.8 284.0 291.6

Ta ppm 0.7 0.7 0.5 0.7 0.7 0.7

Th ppm 6.8 5.8 5.7 5.4 6.1 6.7

U ppm 3.5 3.0 2.6 2.7 3.0 3.6

V ppm 11 26 8 10 14 9

W ppm 1.1 1.0 0.9 1.4 0.9 1.7

Zr ppm 228.1 210.8 181.9 187.8 200.8 222.1

Y ppm 22.7 21.9 16.6 18.9 19.6 20.0

La ppm 37.8 34.9 28.9 32.5 36.4 38.6

Ce ppm 80.4 72.5 61.7 68.2 77.3 83.3

Pr ppm 9.76 8.95 7.55 8.53 9.51 10.05

Nd ppm 37.4 35.2 27.7 32.2 36.4 38.0

Sm ppm 6.38 6.17 4.97 5.65 6.04 6.43

Eu ppm 1.34 1.47 0.92 1.33 1.25 1.25

Gd ppm 5.10 4.92 3.74 4.44 4.86 4.74

Tb ppm 0.73 0.73 0.54 0.60 0.71 0.67

Dy ppm 3.94 3.94 2.99 3.19 3.69 3.62

Ho ppm 0.76 0.75 0.59 0.65 0.69 0.72

Er ppm 2.27 2.29 1.77 1.93 2.14 2.02

Tm ppm 0.37 0.35 0.27 0.30 0.32 0.31

Yb ppm 2.43 2.44 1.79 2.09 2.07 1.96

Lu ppm 0.37 0.37 0.30 0.30 0.33 0.31

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % 0.12 0.25 <0.02 <0.02 <0.02 0.04

Mo ppm 3.9 5.2 2.5 2.9 3.0 3.9

Cu ppm 7.4 14.6 5.0 10.3 3.9 3.1

Pb ppm 4.7 8.1 3.0 3.6 3.0 6.1

Zn ppm 64 50 52 46 39 40

Ni ppm 1.0 2.6 0.6 0.5 0.7 0.4

As ppm 9.8 6.4 <0.5 0.6 0.5 <0.5

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm 0.2 0.1 <0.1 <0.1 <0.1 <0.1

Bi ppm <0.1 0.3 <0.1 <0.1 <0.1 <0.1

Ag ppm <0.1 0.3 0.1 <0.1 <0.1 <0.1

Au ppb <0.5 8.4 2.3 <0.5 <0.5 <0.5

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm 0.2 1.1 0.1 <0.1 <0.1 0.7

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 79: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

71

Sample LK20140325 LK20140326 LK20140327 LK20140328 LK20140329 LK20140330

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 64.50 74.36 71.00 73.08 58.75 72.65

Al2O3 % 17.18 12.93 15.28 14.19 9.38 13.86

Fe2O3 % 3.37 2.36 1.86 2.24 2.65 2.17

MgO % 3.77 2.77 3.16 2.59 2.53 2.73

CaO % 3.35 1.16 1.08 1.62 16.66 3.00

Na2O % 2.69 1.06 0.84 1.25 1.16 2.18

K2O % 2.80 2.41 3.23 2.25 0.06 0.96

TiO2 % 0.471 0.355 0.416 0.389 0.245 0.365

P2O5 % 0.065 0.054 0.071 0.047 0.033 0.051

MnO % 0.06 0.04 0.03 0.03 0.19 0.04

Cr2O3 % <0.002 <0.002 <0.002 0.003 0.004 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 9 7 8 8 6 7

LOI % 1.5 2.4 2.9 2.1 8.2 1.9

Sum % 99.80 99.86 99.82 99.84 99.89 99.86

Ba ppm 459 314 475 390 36 193

Be ppm 1 2 1 <1 1 1

Co ppm 1.3 1.0 1.0 1.1 0.7 1.1

Cs ppm 1.8 0.3 0.7 0.3 <0.1 0.2

Ga ppm 15.2 11.6 13.7 13.3 8.0 12.9

Hf ppm 6.2 4.6 5.0 5.5 3.6 5.1

Nb ppm 10.2 7.7 9.1 9.4 5.5 7.9

Rb ppm 68.6 42.8 60.8 44.2 0.7 18.6

Sn ppm <1 1 2 1 <1 1

Sr ppm 292.7 157.9 155.9 256.1 269.3 327.8

Ta ppm 0.8 0.5 0.5 0.6 0.4 0.5

Th ppm 7.2 5.0 6.3 5.6 3.8 5.7

U ppm 3.4 2.5 2.8 3.2 1.8 2.5

V ppm 11 12 15 11 <8 11

W ppm 1.2 1.1 1.6 1.0 <0.5 0.9

Zr ppm 235.5 171.8 194.2 204.7 129.3 190.3

Y ppm 19.2 14.9 16.6 18.4 14.3 15.9

La ppm 36.4 26.8 27.6 32.6 23.4 26.8

Ce ppm 81.1 58.0 59.0 69.3 50.5 55.6

Pr ppm 9.72 6.93 7.28 8.52 5.91 6.75

Nd ppm 36.8 26.7 28.1 31.8 23.6 26.5

Sm ppm 6.11 4.66 4.87 5.48 3.95 4.71

Eu ppm 1.16 0.93 0.98 1.13 0.79 0.97

Gd ppm 4.56 3.65 3.33 4.39 3.03 3.65

Tb ppm 0.67 0.50 0.50 0.61 0.44 0.53

Dy ppm 3.80 2.77 2.96 3.46 2.52 2.90

Ho ppm 0.68 0.54 0.59 0.64 0.51 0.57

Er ppm 2.03 1.62 1.83 1.92 1.50 1.72

Tm ppm 0.30 0.25 0.28 0.29 0.25 0.29

Yb ppm 2.16 1.77 1.89 2.12 1.61 1.98

Lu ppm 0.32 0.29 0.31 0.31 0.27 0.33

TOT/C % <0.02 <0.02 0.03 0.02 2.50 <0.02

TOT/S % 0.12 <0.02 <0.02 <0.02 0.50 <0.02

Mo ppm 2.0 1.1 3.3 2.9 1.6 2.0

Cu ppm 4.9 7.3 5.4 2.7 10.6 3.0

Pb ppm 9.1 2.5 18.3 3.2 5.9 3.6

Zn ppm 69 60 85 47 12 39

Ni ppm 0.9 1.9 0.6 0.5 <0.1 0.5

As ppm 9.3 <0.5 0.6 <0.5 36.6 <0.5

Cd ppm <0.1 <0.1 0.2 <0.1 0.2 <0.1

Sb ppm <0.1 <0.1 0.1 <0.1 0.2 <0.1

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm 0.7 <0.1 <0.1 <0.1 0.1 <0.1

Au ppb 35.4 1.3 0.5 <0.5 1.6 <0.5

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm 0.7 <0.1 <0.1 <0.1 <0.1 <0.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 80: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

72

Sample LK20140331 LK20140332 LK20140333 LK20140335 LK20140336 LK20140337

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 69.62 70.53 71.65 65.79 72.19 72.98

Al2O3 % 14.59 14.96 15.94 18.94 14.11 14.36

Fe2O3 % 2.38 2.23 1.45 1.33 2.36 1.98

MgO % 2.77 2.69 2.03 2.31 3.11 2.39

CaO % 4.58 2.35 2.50 4.43 1.42 2.29

Na2O % 2.38 1.37 1.42 2.67 1.14 1.67

K2O % 1.42 2.45 2.22 1.80 2.40 1.66

TiO2 % 0.399 0.421 0.435 0.530 0.370 0.373

P2O5 % 0.056 0.066 0.060 0.062 0.049 0.049

MnO % 0.05 0.03 0.02 0.04 0.04 0.03

Cr2O3 % 0.002 <0.002 0.002 <0.002 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 8 8 9 11 8 8

LOI % 1.6 2.7 2.1 1.9 2.7 2.1

Sum % 99.84 99.78 99.84 99.81 99.85 99.85

Ba ppm 330 925 439 386 378 331

Be ppm <1 2 1 1 1 1

Co ppm 1.6 0.9 0.9 0.9 2.4 1.4

Cs ppm 0.9 0.4 0.1 0.3 0.8 <0.1

Ga ppm 13.5 14.4 16.2 17.0 13.9 13.2

Hf ppm 5.6 4.9 5.9 7.1 5.2 5.2

Nb ppm 9.3 8.9 10.3 12.0 9.2 9.2

Rb ppm 37.1 46.8 41.6 38.2 45.4 30.2

Sn ppm 1 2 2 2 1 1

Sr ppm 335.3 239.3 332.8 438.3 194.4 334.4

Ta ppm 0.6 0.6 0.6 0.8 0.7 0.5

Th ppm 6.2 5.7 6.4 8.5 5.8 6.0

U ppm 3.0 2.9 3.1 4.3 3.1 3.1

V ppm 9 11 11 12 9 8

W ppm 0.9 1.2 1.0 2.0 1.1 1.0

Zr ppm 206.2 184.2 215.9 263.5 189.5 193.5

Y ppm 18.9 18.9 20.1 23.9 16.9 18.9

La ppm 31.9 35.9 35.7 44.6 30.7 31.5

Ce ppm 69.6 74.5 75.0 96.0 66.8 69.5

Pr ppm 8.42 8.86 8.85 11.10 7.76 8.13

Nd ppm 32.3 33.4 33.8 42.9 29.7 31.5

Sm ppm 5.63 5.72 5.77 7.49 5.14 5.34

Eu ppm 1.14 1.28 1.16 1.86 1.17 1.05

Gd ppm 4.36 4.31 4.60 5.59 4.03 4.16

Tb ppm 0.61 0.62 0.64 0.79 0.58 0.58

Dy ppm 3.36 3.54 3.41 4.40 3.12 3.26

Ho ppm 0.66 0.70 0.66 0.86 0.66 0.62

Er ppm 2.08 1.91 1.97 2.50 1.93 1.84

Tm ppm 0.31 0.29 0.31 0.38 0.30 0.30

Yb ppm 2.16 1.85 2.03 2.66 1.88 1.89

Lu ppm 0.33 0.28 0.31 0.41 0.31 0.32

TOT/C % 0.07 <0.02 <0.02 <0.02 0.04 <0.02

TOT/S % 0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Mo ppm 2.4 2.9 1.9 2.5 4.1 2.5

Cu ppm 8.5 4.8 3.7 13.1 5.3 5.7

Pb ppm 5.4 3.3 3.1 9.1 3.9 5.6

Zn ppm 53 49 30 31 57 51

Ni ppm 2.1 1.3 0.5 0.7 0.8 0.9

As ppm 0.9 <0.5 <0.5 <0.5 <0.5 <0.5

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 0.1

Sb ppm 0.1 0.1 <0.1 0.1 <0.1 <0.1

Bi ppm <0.1 <0.1 <0.1 0.2 <0.1 <0.1

Ag ppm <0.1 <0.1 <0.1 0.2 <0.1 <0.1

Au ppb 4.8 <0.5 <0.5 4.2 <0.5 <0.5

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm 0.2 <0.1 <0.1 <0.1 <0.1 <0.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 81: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

73

Sample LK20140338 LK20140339 LK20140340 LK20140341 LK20140342 LK20140343

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 70.89 71.21 72.59 72.32 70.75 71.41

Al2O3 % 15.26 14.63 13.94 14.26 13.48 14.31

Fe2O3 % 2.05 2.32 2.60 1.91 2.75 1.99

MgO % 2.56 2.37 2.80 2.93 4.21 3.65

CaO % 2.51 2.81 0.98 3.16 3.46 2.40

Na2O % 2.81 1.64 0.90 1.57 1.99 1.88

K2O % 1.27 2.57 3.31 1.08 0.64 1.40

TiO2 % 0.403 0.409 0.377 0.378 0.371 0.393

P2O5 % 0.066 0.065 0.047 0.058 0.057 0.053

MnO % 0.03 0.05 0.04 0.03 0.06 0.04

Cr2O3 % <0.002 <0.002 <0.002 <0.002 0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 8 8 8 8 7 8

LOI % 2.0 1.8 2.3 2.2 2.1 2.3

Sum % 99.85 99.86 99.85 99.85 99.84 99.81

Ba ppm 202 385 486 323 184 570

Be ppm 2 <1 <1 <1 2 3

Co ppm 0.8 1.0 1.2 1.0 1.1 1.2

Cs ppm 0.1 0.9 0.8 <0.1 0.4 0.2

Ga ppm 12.7 13.4 11.6 11.6 11.6 12.0

Hf ppm 5.3 5.0 5.3 5.2 4.7 5.3

Nb ppm 8.4 7.9 8.7 8.4 8.2 8.6

Rb ppm 25.1 54.7 65.1 18.1 20.3 24.4

Sn ppm <1 1 1 1 1 2

Sr ppm 411.5 241.6 135.7 291.7 283.2 272.1

Ta ppm 0.6 0.6 0.6 0.6 0.5 0.6

Th ppm 6.0 5.6 5.9 6.0 5.4 6.2

U ppm 2.8 2.8 3.1 2.9 2.8 2.9

V ppm 11 12 11 <8 9 <8

W ppm 0.7 1.1 0.9 1.0 2.3 1.2

Zr ppm 194.9 185.3 195.0 190.1 172.4 200.4

Y ppm 20.0 18.0 17.5 18.5 16.5 20.3

La ppm 31.5 32.2 31.5 33.5 28.5 34.8

Ce ppm 66.8 69.1 66.7 72.3 63.3 71.7

Pr ppm 7.83 7.96 7.83 8.31 7.38 8.38

Nd ppm 30.1 31.2 29.2 31.8 29.1 32.8

Sm ppm 5.31 5.10 4.95 5.57 5.01 5.80

Eu ppm 1.18 1.18 0.96 1.02 1.08 1.27

Gd ppm 4.30 4.32 3.85 4.37 3.86 4.50

Tb ppm 0.59 0.59 0.56 0.58 0.54 0.63

Dy ppm 3.32 3.21 3.11 3.22 3.10 3.53

Ho ppm 0.69 0.64 0.65 0.71 0.59 0.72

Er ppm 2.05 1.87 1.79 2.05 1.76 2.05

Tm ppm 0.33 0.29 0.29 0.33 0.26 0.31

Yb ppm 2.21 1.97 1.94 2.05 1.78 2.03

Lu ppm 0.35 0.31 0.29 0.32 0.29 0.33

TOT/C % <0.02 0.03 <0.02 <0.02 <0.02 <0.02

TOT/S % <0.02 0.03 0.03 <0.02 <0.02 <0.02

Mo ppm 0.7 5.1 2.3 1.5 1.2 3.7

Cu ppm 7.5 5.3 6.9 4.4 3.5 1.7

Pb ppm 3.7 4.5 3.2 3.8 7.5 2.8

Zn ppm 54 54 63 35 46 37

Ni ppm 0.6 0.4 0.7 0.4 0.6 0.4

As ppm <0.5 0.6 0.7 <0.5 <0.5 <0.5

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm <0.1 <0.1 <0.1 <0.1 0.1 0.1

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Au ppb <0.5 1.7 <0.5 <0.5 <0.5 <0.5

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm <0.1 0.2 0.2 <0.1 <0.1 <0.1

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 82: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

74

Sample LK20140344 LK20140345 LK20140346 LK20140347 LK20140348 LK20140350

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 70.05 71.07 68.46 70.97 70.81 71.09

Al2O3 % 15.61 14.78 15.63 14.60 14.79 14.62

Fe2O3 % 1.88 2.08 2.39 2.22 2.05 2.14

MgO % 3.41 3.47 3.46 3.05 2.91 2.32

CaO % 2.19 1.68 3.46 1.02 1.31 2.58

Na2O % 1.79 1.63 2.47 1.42 2.72 3.13

K2O % 1.71 1.85 1.70 4.11 3.33 2.73

TiO2 % 0.413 0.402 0.439 0.405 0.410 0.396

P2O5 % 0.060 0.061 0.061 0.051 0.065 0.063

MnO % 0.03 0.04 0.08 0.04 0.01 0.07

Cr2O3 % <0.002 <0.002 <0.002 <0.002 0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 7 8 9 8 8 8

LOI % 2.7 2.8 1.7 1.9 1.4 0.7

Sum % 99.81 99.83 99.85 99.82 99.83 99.85

Ba ppm 574 393 248 680 485 403

Be ppm 1 <1 <1 2 <1 <1

Co ppm 1.3 0.9 1.5 1.6 1.2 1.1

Cs ppm 0.2 0.2 0.5 1.2 1.2 1.0

Ga ppm 14.0 12.9 12.8 12.9 12.4 10.7

Hf ppm 5.9 5.1 6.1 5.7 5.2 5.5

Nb ppm 9.2 8.8 9.9 9.1 8.4 8.8

Rb ppm 29.3 30.9 28.3 53.5 47.5 40.2

Sn ppm 2 2 1 2 1 1

Sr ppm 283.3 279.0 246.3 94.2 264.0 294.4

Ta ppm 0.6 0.6 0.7 0.7 0.6 0.5

Th ppm 6.7 6.2 7.1 6.6 5.6 6.0

U ppm 3.1 3.0 3.5 3.2 3.1 3.1

V ppm 12 11 <8 <8 13 11

W ppm 0.9 0.8 0.8 1.5 0.9 2.1

Zr ppm 213.1 195.8 226.0 211.9 190.2 193.1

Y ppm 19.1 19.7 23.6 20.1 17.5 18.4

La ppm 30.2 32.7 42.8 34.8 31.3 32.1

Ce ppm 65.8 68.4 89.5 71.3 67.8 70.1

Pr ppm 7.82 8.06 10.20 8.66 8.01 8.28

Nd ppm 30.0 31.0 37.4 33.3 30.7 31.4

Sm ppm 5.09 5.24 6.80 5.72 4.99 5.75

Eu ppm 1.00 1.13 1.31 1.13 1.30 1.21

Gd ppm 4.02 4.21 5.24 4.64 4.09 4.18

Tb ppm 0.56 0.58 0.77 0.65 0.57 0.59

Dy ppm 3.14 3.22 3.92 3.70 3.17 3.27

Ho ppm 0.68 0.68 0.81 0.76 0.60 0.71

Er ppm 2.02 1.98 2.33 2.02 1.91 2.09

Tm ppm 0.31 0.31 0.36 0.32 0.32 0.33

Yb ppm 2.12 2.02 2.44 2.23 2.02 2.05

Lu ppm 0.36 0.32 0.39 0.37 0.32 0.32

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Mo ppm 9.3 2.3 1.3 1.2 4.3 1.7

Cu ppm 2.3 2.1 1.6 1.4 2.0 2.7

Pb ppm 3.4 21.9 4.7 3.5 3.8 5.5

Zn ppm 39 51 46 42 53 53

Ni ppm 0.5 0.3 0.6 0.5 0.5 0.5

As ppm <0.5 <0.5 <0.5 0.5 0.5 <0.5

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm <0.1 0.1 0.1 <0.1 <0.1 <0.1

Bi ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm <0.1 <0.1 0.1 <0.1 <0.1 <0.1

Au ppb <0.5 <0.5 22.1 <0.5 <0.5 6.6

Hg ppm <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm <0.1 <0.1 <0.1 0.1 0.2 0.2

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 83: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

75

Sample LK20140351 LK20140352 LK20140353 LK20140354 LK20140355 LK20140356

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

SiO2 % 74.97 70.61 69.95 66.08 62.10 68.87

Al2O3 % 12.48 14.77 15.43 14.66 18.51 13.66

Fe2O3 % 1.91 2.54 2.31 3.01 3.17 3.33

MgO % 2.88 2.87 3.68 6.16 4.91 4.55

CaO % 1.20 2.22 1.66 3.80 3.02 3.30

Na2O % 2.00 2.16 1.40 1.81 2.12 1.43

K2O % 2.00 2.21 2.05 1.00 2.02 2.13

TiO2 % 0.349 0.390 0.443 0.385 0.511 0.390

P2O5 % 0.056 0.055 0.077 0.053 0.060 0.044

MnO % 0.02 0.06 0.04 0.10 0.04 0.06

Cr2O3 % 0.002 <0.002 <0.002 <0.002 <0.002 <0.002

Ni ppm <20 <20 <20 <20 <20 <20

Sc ppm 7 8 8 8 11 7

LOI % 2.0 1.9 2.8 2.7 3.3 2.1

Sum % 99.87 99.85 99.81 99.80 99.77 99.83

Ba ppm 280 398 548 200 514 397

Be ppm <1 <1 1 2 1 <1

Co ppm 1.2 0.8 1.2 1.4 3.3 1.7

Cs ppm 0.4 0.5 <0.1 0.7 0.3 1.2

Ga ppm 9.2 12.7 12.6 12.8 16.3 11.1

Hf ppm 4.0 5.3 5.3 5.4 6.7 5.6

Nb ppm 6.8 8.1 9.1 8.3 11.6 8.6

Rb ppm 27.1 32.8 27.3 24.9 29.1 43.6

Sn ppm 1 1 2 1 2 1

Sr ppm 241.8 257.9 249.2 318.2 282.0 127.6

Ta ppm 0.4 0.6 0.6 0.5 0.8 0.6

Th ppm 4.4 6.0 6.2 6.2 8.0 6.3

U ppm 2.4 2.9 2.9 2.9 4.4 3.4

V ppm 10 16 12 9 11 10

W ppm 0.7 0.7 1.1 0.7 1.4 0.8

Zr ppm 149.8 191.7 192.2 199.0 252.3 195.0

Y ppm 16.0 18.5 18.4 15.1 19.8 14.3

La ppm 27.2 32.2 32.7 34.3 49.5 31.0

Ce ppm 56.9 67.3 69.6 71.4 102.8 65.8

Pr ppm 6.93 8.21 8.23 8.34 12.13 7.85

Nd ppm 25.4 30.4 30.6 31.7 46.1 30.0

Sm ppm 4.61 5.25 5.45 5.21 8.01 5.13

Eu ppm 0.96 1.12 1.17 1.00 1.57 0.99

Gd ppm 3.34 4.23 4.27 3.80 5.94 3.91

Tb ppm 0.51 0.60 0.59 0.51 0.76 0.56

Dy ppm 2.89 3.30 3.22 2.70 3.90 3.04

Ho ppm 0.56 0.66 0.66 0.57 0.74 0.62

Er ppm 1.56 2.01 2.02 1.75 2.11 1.53

Tm ppm 0.24 0.30 0.30 0.28 0.33 0.23

Yb ppm 1.62 2.16 2.03 1.92 2.20 1.35

Lu ppm 0.26 0.34 0.33 0.32 0.33 0.21

TOT/C % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

TOT/S % <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Mo ppm 2.2 1.8 0.8 0.5 0.6 1.7

Cu ppm 3.3 2.3 0.8 1.4 1.0 6.4

Pb ppm 2.6 4.0 3.0 7.2 4.6 6.7

Zn ppm 28 48 37 73 47 61

Ni ppm 0.4 0.4 0.4 0.4 0.7 0.8

As ppm <0.5 <0.5 <0.5 0.7 <0.5 <0.5

Cd ppm <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Sb ppm <0.1 0.1 <0.1 0.1 0.1 <0.1

Bi ppm 0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Ag ppm 0.2 <0.1 <0.1 <0.1 <0.1 <0.1

Au ppb 8.2 <0.5 <0.5 <0.5 <0.5 <0.5

Hg ppm 0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Tl ppm <0.1 <0.1 <0.1 0.1 <0.1 0.2

Se ppm <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Page 84: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

76

Sample LK20140357 LK20140358 LK20140360

Analyte Unit Type Rock Pulp Rock Pulp Rock Pulp

SiO2 % 68.35 68.77 73.06

Al2O3 % 13.84 13.58 11.42

Fe2O3 % 3.01 4.49 1.31

MgO % 5.05 3.92 1.93

CaO % 2.98 0.93 3.11

Na2O % 0.31 0.10 1.18

K2O % 3.88 5.14 5.32

TiO2 % 0.381 0.462 0.360

P2O5 % 0.053 0.103 0.068

MnO % 0.06 0.04 0.06

Cr2O3 % <0.002 <0.002 0.006

Ni ppm <20 <20 <20

Sc ppm 8 10 8

LOI % 1.9 2.3 2.0

Sum % 99.83 99.85 99.80

Ba ppm 301 467 1257

Be ppm <1 1 <1

Co ppm 1.8 2.8 3.6

Cs ppm 1.6 1.6 0.8

Ga ppm 11.3 11.4 8.7

Hf ppm 5.4 4.7 3.9

Nb ppm 8.2 6.9 6.6

Rb ppm 67.2 84.2 60.9

Sn ppm 1 1 <1

Sr ppm 89.3 34.7 94.8

Ta ppm 0.5 0.5 0.4

Th ppm 6.0 4.8 4.4

U ppm 3.1 2.4 2.3

V ppm 10 20 21

W ppm <0.5 1.5 0.9

Zr ppm 197.3 152.1 143.5

Y ppm 20.0 15.6 15.9

La ppm 33.5 26.8 25.8

Ce ppm 68.7 57.1 55.5

Pr ppm 8.22 6.89 7.01

Nd ppm 31.3 26.7 27.2

Sm ppm 5.44 4.55 4.89

Eu ppm 1.03 1.12 0.88

Gd ppm 4.51 3.67 3.73

Tb ppm 0.64 0.51 0.56

Dy ppm 3.78 2.70 3.25

Ho ppm 0.73 0.56 0.64

Er ppm 2.14 1.63 1.80

Tm ppm 0.35 0.25 0.29

Yb ppm 2.43 1.66 1.84

Lu ppm 0.40 0.26 0.28

TOT/C % <0.02 0.04 0.28

TOT/S % <0.02 0.13 <0.02

Mo ppm 0.8 1.4 2.4

Cu ppm 14.0 19.7 2.1

Pb ppm 7.9 2.4 1.2

Zn ppm 90 65 39

Ni ppm 0.7 0.8 3.4

As ppm 0.7 <0.5 0.5

Cd ppm 0.1 <0.1 <0.1

Sb ppm <0.1 <0.1 0.1

Bi ppm <0.1 <0.1 <0.1

Ag ppm <0.1 <0.1 <0.1

Au ppb <0.5 3.6 <0.5

Hg ppm <0.01 <0.01 <0.01

Tl ppm 0.3 0.4 0.3

Se ppm <0.5 <0.5 <0.5

Page 85: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

77

A.3. Core logs

Table A3. Legend for core logs.

Sign Description Sign Description

Tremolite skarn Strongly qz/fsp-phyric/porphyric

Clorite Weakly fsp-pyric/porphyric

Sheelite Strongly fsp-phyric/porphyric

Phologopite Silicification, quartz alteration

Pyrie impregnation Fsp- porpfyroblasts

Oreminerals Amphibolite

Sphalerite Clastic, sandgrain size

Weakly qz-pyric/porphyric Clastic, siltgrain size

Strongly qz-phyric/porphyric Andesite

Weakly qz/fsp-pyric/porphyric Mafic rock

Peperite Compact pumice clasts

Page 86: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

78

Figure A1. Logs for drill core number 673.

Page 87: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

79

Page 88: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

80

Page 89: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

81

Page 90: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

82

Page 91: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

83

Figure A2. Logs for core 674.

Page 92: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

84

Page 93: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

85

Page 94: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

86

Page 95: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

87

Figure A3. Logs for core number 675.

Page 96: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

88

Page 97: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

89

Page 98: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

90

Page 99: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

91

Page 100: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

92

Page 101: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

93

Page 102: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden
Page 103: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden
Page 104: Determining Host Rock Protolith in an Altered VMS …uu.diva-portal.org/smash/get/diva2:1037130/FULLTEXT01.pdfDetermining Host Rock Protolith in an Altered VMS Deposit in the Rävliden

Examensarbete vid Institutionen för geovetenskaper ISSN 1650-6553