Determination of dynamic soil characteristics and … · 2 Laboratoria de Geotecnia, CEDEX, Spain 3...

27
RIVAS Final Conference "Vibrations – Ways out of the annoyance" Royal Flemish Academy of Belgium, Brussels, 21 November 2013 RIVAS Final Conference, 21 November 2013 1 Determination of dynamic soil characteristics and transfer functions to support the evaluation of the efficiency of vibration mitigation measures H. Verbraken 1 , V. Cuellar 2 , B. Stallaert 3 , G. Lombaert 1 and G. Degrande 1 1 Department of Civil Engineering, KU Leuven, Belgium 2 Laboratoria de Geotecnia, CEDEX, Spain 3 D2S International, Belgium

Transcript of Determination of dynamic soil characteristics and … · 2 Laboratoria de Geotecnia, CEDEX, Spain 3...

RIVAS Final Conference "Vibrations – Ways out of the annoyance"

Royal Flemish Academy of Belgium, Brussels, 21 November 2013

RIVAS Final Conference, 21 November 2013 1

Determination of dynamic soil characteristics and

transfer functions to support the evaluation of the

efficiency of vibration mitigation measures

H. Verbraken1, V. Cuellar2, B. Stallaert3, G. Lombaert1 and G. Degrande1

1 Department of Civil Engineering, KU Leuven, Belgium2 Laboratoria de Geotecnia, CEDEX, Spain3 D2S International, Belgium

Transfer functions

RIVAS Final Conference, 21 November 2013 2

Numerical prediction [Many authors]

z

x

y

x

x′

gk(t)

v(x, t) =

na∑

k=1

∫t

−∞

HTv

(xk(τ), x, t − τ)gk(τ)dτ (1)

Transfer functions

RIVAS Final Conference, 21 November 2013 3

Empirical prediction (e.g. FRA and FTA [Hanson et al., 2005, 2006])

• Prediction of the ground vibration velocity level in one-third octave bands:

Lv = LF + TML (2)

Measurement lineRail alignment

Impact locations

xy

z

TML = 10 log10

(

h

n∑

k=1

10TMPk

10

)

(3)

Transfer functions

RIVAS Final Conference, 21 November 2013 4

Insertion loss for vibration mitigation measures [Stiebel al., 2012]

Before

After

Test site Reference site

TMtbP

TMtaP

TMrbP

TMraP

E1

E2

C1

C2

• Vibration isolation efficiency:

E = TMtaP − TMtb

P︸ ︷︷ ︸

E2

+ TMrbP − TMra

P︸ ︷︷ ︸

C2

(4)

E = TMtaP − TMra

P︸ ︷︷ ︸

E1

+ TMrbP − TMtb

P︸ ︷︷ ︸

C1

(5)

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 5

• (a) Dilatational and (b) shear wave in an elastic medium.

(a) (b)

• Dilatational and shear wave velocity:

Cp =

λ + 2µ

ρ=

M

ρ(6)

Cs =

õ

ρ(7)

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 6

• (a) τ − γ curve under cyclic excitation and (b) shear modulus degradation curve and (b) material

damping ratio for Toyoura sand (Kokusho, 1980):

(a)

• Material damping ratio

(correspondence principle):

(λ + 2µ)⋆ = (λ + 2µ)(1 + 2βpi) (8)

(µ)⋆ = µ(1 + 2βsi) (9)

(b)

(c)

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 7

1. Archive records and test information.• Geological maps, results of previous geotechnical investigation.

• Estimation of the soil layering and the dynamic characteristics of each layer.

• Use of empirical relations cannot replace in situ or laboratory testing !

2. Classical soil mechanics tests on (undisturbed) soil samples.• At least one sample per soil layer; lateral sampling.

• Mass density, void ratio, degree of saturation, plasticity index,. . . .

3. Non-intrusive geophysical tests at small strain levels.• Combined surface wave - seismic refraction test.

• Measure input force.

4. Intrusive geophysical tests at small strain levels.• Seismic cone penetration test (SCPT).

• Down hole or cross hole test.

5. Dynamic laboratory experiments on (undisturbed) soil samples.• Resonant column test.

• Cyclic triaxial test.

• Bender element test.

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 8

Spectral Analysis of Surface Waves

Signal Analyzer

Impulse LoadNear Receiver Far Receiver

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 9

Shear wave velocity: frequency-wavenumber analysis

[Rix et al., JGGE, 2000; Lai et al., SDEE, 2002]

• Phase velocity CER(ω) from peaks of the transfer function HE

zz(kr, ω)::

HEzz(kr, ω) =

∫∞

0

HEzz(r, ω)J0(krr)r dr (10)

• (a) Transfer function HEzz(kr, ω), (b) phase velocity CE

R(ω), and (c) shear wave velocity profile::

(a) (b)0 20 40 60 80

0

100

200

300

Frequency [Hz]

Ph

ase

ve

loci

ty [

m/s

]

(c)0 100 200 300 400 500

0

1

2

3

4

5

Shear wave velocity [m/s]

De

pth

[m

]

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 10

Material damping ratio: Arias intensity [Badsar, 2012]

• Arias intensity IEzz(r):

IEzz(r) =

π

2g

∫∞

0

a2z(r, t)dt (11)

• (a) Displacement uz(r, t), (b) Arias intensity IEzz(r) and (c) material damping ratio profile:

(a) (b)0 20 40 60 80 100

10−5

100

105

Distance [m]

Normalized Arias intensity [−]

(c)0 0.05 0.1

0

1

2

3

4

5

Material damping ratio [−]

De

pth

[m

]

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 11

Seismic refraction test

t1

t2

t3

t4 t5 t6 t7 t8 t9 t10

t11

t12

xc

θcθc

Cp1

Cp2 > Cp1

impactdirect wave first refracted wave first

0 20 40 60 800

0.02

0.04

0.06

0.08

0.1

Distance [m]

Arr

ival

tim

e [s

]

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 12

Soil profile at the site in Lincent (Belgium)

• (a) Soil stratification, (b) shear wave velocity (SASW and SCPT), (c) dilatational wave velocity

(seismic refraction) and (d) material damping ratio (SASW and SCPT) profile.

(a)

0.00 m

Fine Sand

Quaternary

Deposits

FormationofHannut

(TertiaryDeposit)

Mean

Groundwater

10.40 m

Simplified Stratification

of Drilling B1108

1.20

3.20

7.50

8.50

10.00

15.00

Silt

Sequence of

Arenite / Clay

Clay

Fine Sand

Sequence of

Fine Sand / Clay

13.00

FormationofHeers

(TertiaryDeposit)

1.00

(Clayey Sand)

(Sandy Clay

to Silty Clay)

(Silty Clay)

(Silty Clay)

(b)0 100 200 300 400 500

0

1

2

3

4

5

6

7

8

Shear wave velocity [m/s]

Dep

th [m

]

SCPT1SCPT2SASW1SASW2

(c)0 500 1000 1500 2000

0

1

2

3

4

5

6

7

8

Longitudinal wave velocity [m/s]D

epth

[m]

SR1SR2

(d)0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

Material damping ratio [%]

Dep

th [m

]

SCPT2(MH)SCPT2(SH)SASW1SASW2

El Realengo test site

RIVAS Final Conference, 21 November 2013 13

Test and reference site

• Conventional railway line (ADIF) between Murcia and Alicante.

• Low Segura river flood plain.

• S592 commuter train, S599 medium distance train and Talgo VI train.

• Construction of a new HST line between Madrid and Levante.

• Installation of a jet grouting wall next to track as a vibration mitigation measure.

El Realengo test site

RIVAS Final Conference, 21 November 2013 14

Test and reference site

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 15

Shear wave velocity

• Spectral Analysis of Surface Waves (falling weight deflectometer, CEDEX).

• Seismic Cone Penetration Test (down-hole test, CEDEX).

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 16

Longitudinal wave velocity

• Seismic refraction test (CEDEX).

Identified soil profile

Layer h Cs Cp βs βp ρ[m] [m/s] [m/s] [−] [−] [kg/m3]

1 0.30 270 560 0.025 0.025 1800

2 1.20 150 470 0.025 0.025 1750

3 8.50 150 1560 0.025 0.025 1750

4 10.00 475 1560 0.025 0.025 1900

5 ∞ 550 2030 0.025 0.025 1900

Dynamic soil characteristics

RIVAS Final Conference, 21 November 2013 17

Material damping ratio

• Measured Arias intensity at the test (red line) and reference (green line) section and predicted

Arias intensity (a) before and (b) after updating of the material damping ratio [Badsar, 2012].

(a)

0 10 20 30 40 50 60 7010

−17

10−16

10−15

10−14

10−13

10−12

10−11

Distance [m]

Aria

s in

tens

ity [m

/s]

(b)

0 10 20 30 40 50 60 7010

−17

10−16

10−15

10−14

10−13

10−12

10−11

Distance [m]

Aria

s in

tens

ity [m

/s]

Identified soil profile (update)

Layer h Cs Cp βs βp ρ[m] [m/s] [m/s] [−] [−] [kg/m3]

1 0.30 270 560 0.123 0.123 1800

2 1.20 150 470 0.112 0.112 1750

3 8.50 150 1560 0.014 0.014 1750

4 10.00 475 1560 0.010 0.010 1900

5 ∞ 550 2030 0.010 0.010 1900

Free field transfer functions

RIVAS Final Conference, 21 November 2013 18

Measurement setup

• (a) Measurement setup, (b) falling weight deflectometer, (c) force during a single impact, and (d)

velocity stacked for 5 impacts.

(a)

(b) (c)0 1 2 3 4 5

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4x 10

5

Time [s]

For

ce [N

]

(d)

23468

1216

24

32

48

64

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Dis

tanc

e [m

]

Time [s]

Free field transfer functions

RIVAS Final Conference, 21 November 2013 19

Numerical model for benchmarking

• 3D coupled finite element – boundary element method.

• Rigid foundation: finite element method.

• Layered elastic soil: boundary element formulation.

• Model and parameter uncertainty.

Free field transfer functions

RIVAS Final Conference, 21 November 2013 20

Free field transfer functions

• Measured and predicted transfer function (narrow band)

at (a) 8 m, (b) 16 m, (c) 32 m, and (d) 64 m.

Measured results are shown for the test (red line) and reference (green

line) section. Predicted results are shown for initial (grey line) and up-

dated (black line) soil parameters.

(a)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 8m8m

(b)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 16m16m

(c)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 32m32m

(d)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 64m64m

6 m

FF64C

FF48C

32 m

16 m

8 m

2 m

3 m

C

4 m

12 m

24 m

Track – free field transfer functions

RIVAS Final Conference, 21 November 2013 21

Track characteristics

• RN 45 rails:

EIr = 3.00 × 106 Nm2 and ρAr = 44.8 kg/m.

• Bi-block reinforced concrete sleepers:

msl = 200 kg and spacing d = 0.6 m.

• Rubber rail pads with a thickness of 4.5 mm and stiffness of

300 kN/mm.

• Ballast layer (d = 0.50 m, Cs = 250 m/s, ν = 0.2 and ρ =1600 kg/m3).

• Embankment (d = 0.50 m, Cs = 200 m/s, ν = 0.35 and ρ =1700 kg/m3).

Track – free field transfer functions

RIVAS Final Conference, 21 November 2013 22

Measurement setup

• (a) Measurement setup, (b) force during a single impact, and (c) velocity along line C stacked for

98 impacts.

(a)

(b)0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

2.5

3x 10

4

Time [s]

For

ce [N

]

(c)

10

16

24

32

48

64

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Dis

tanc

e [m

]

Time [s]

Track – free field transfer functions

RIVAS Final Conference, 21 November 2013 23

Variation along the track at the test section

• Comparison of the free field response for all impact locations and corresponding measurement

lines at (a) 10 m, (b) 16 m, (c) 24 m, and (d) 32 m from the track.

(a)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 10m

(b)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 16m

(c)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 24m

(d)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 32m

Track – free field transfer functions

RIVAS Final Conference, 21 November 2013 24

Numerical model

• 2.5D coupled finite element – boundary element method [François et al., CMAME, 2010].

• Track: finite element method.– rail and rail pad: Euler-Bernoulli beam and continuous spring-damper connection;

– sleeper: beam, rigid in plane of cross section;

– ballast: elastic continuum.

• Layered elastic soil: boundary element formulation.

• Model and parameter uncertainty.

Track – free field transfer functions

RIVAS Final Conference, 21 November 2013 25

Transfer functions

• Measured and predicted transfer function (narrow band)

at (a) 10 m, (b) 16 m, (c) 32 m, and (d) 64 m along line C.

Measured results are shown for the test (red line) and reference (green

line) section. Predicted results are shown for initial (grey line) and up-

dated (black line) track parameters.

(a)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 10C

(b)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 16C

(c)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 32C

(d)0 50 100 150 200

−50

−25

0

25

50

Frequency [Hz]

Mob

ility

[dB

ref

10−

8 m/s

/N] 64C

10 m

64 m

48 m

32 m

24 m

16 m

C

El Realengo test site

RIVAS Final Conference, 21 November 2013 26

Installation of the jet grouting wall (November 2013)

Conclusion

RIVAS Final Conference, 21 November 2013 27

• Determination of dynamic soil characteristics.– In situ geophysical techniques to determine the shear and dilatational wave velocity and

material damping ratio profile.

– Deliverable D1.1 "Test procedures for the determination of the dynamic soil characteristics"

(December 2011).

– Quantification of uncertainty on identified dynamic soil characteristics.

• Benchmark problems as a validation tool.– Free field and track – free field transfer functions.

– Deliberable D1.11 "Benchmark tests for soil properties, including recommendations for

standards and guidelines" (December 2013).

– Quantification of uncertainty on model predictions.

• Assessment of vibration isolation efficiency of mitigation measures:– Sheet pile wall at Furet (Sweden).

– Jet grouting wall at El Realengo (Spain).

Visit our website www.rivas-project.eu