Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von...

62
Detection of Neutrons: Part II Ralf Nolte

Transcript of Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von...

Page 1: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Detection of Neutrons: Part II Ralf Nolte

Page 2: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 2 von 58

• Introduction

– Neutrons in Science and Technology

– Interaction of Neutrons with Matter

• Neutron Detection

– General Properties of Detectors

– Detectors for Thermal and Slow Neutrons

– Detectors for Fast Neutrons

• Recoil Detectors: Prop. Counters, Scintillation Detectors, Recoil Telescopes

• (Fission) Ionization Chambers

• Techniques for Neutron Measurements

– Time-of-flight

– Spectrometry

– Spatial Neutron Distribution

• Absolute Methods, Quality Assurance

– Associated particle methods

– Key comparison

Table of Contents

Page 3: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 3 von 58

Recoil Detectors: Proton Telescopes

Page 4: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 4 von 58

Recoil Telescopes as Reference Instruments

• Scintillation detector used as primary reference instrument?

– Properties of the scintillators show variations: Light output, H/C ratio

– Full angular distribution for n-p scattering required

– Interference from 12C(n,x) interactions

– Detection efficiency difficult to calculate ‘accurately’ (1-2% uncertainty)

Calibration required!

• Way-out: Recoil Proton Telescopes (RPTs)

– Only n-p scattering contributes

– Restricted range of scattering angels

– ‘Localized’ response function

– Efficiency determined by geometry, radiator mass

and diff. cross section

– Detection efficiency small: e = 10-4 - 10-5

– Energy range depends of radiator thickness

p2

np cos EE

Page 5: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 5 von 58

The Classical Low-Energy Telescope: T1 of PTB

Los Alamos in-beam design:

• Two CO2 prop. counters: DE

• Surface barrier detector: E

• Radiator – source distance:

20-35 cm

• 1 mm Ta aperture: (20.980.01) mm

• Energy range : 1.2 MeV – 15 MeV using

three radiators

up to 20 MeV with degrader

foils

• Single rates: < 104 s-1

• Coincidence rate: 0.5 – 2 s-1

P1 P2 SB

• Coincidence resolution: 2 µs

• Multi-parameter DAQ

Prop. Counters P1 and P2

Radiator Si SB Diode Aperture

n

Page 6: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 6 von 58

T1: Recoil Proton Spectra

• D(d,n)3He, D2 gas target, Ed,0 = 7.11 MeV, <En> = 10.02 MeV

P2 - P1

P1 + P2 - SB

recoil protons

SB

Page 7: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 7 von 58

T1: Analysis

• Calculation of the efficiency: – (Semi)analytical integration

– Monte Carlo simulation

– Relativistic kinematics for CM → LAB!

– Anisotropic source: D(d,n)

YnN

AAdd

A

EEA

A A

npHgeop

2122

2

21

1geo

nnp

np

p

np

ddcoscos

,d

d

1 2

e

e

En = 8.4 MeV

• Main contributions to uncertainty – Counting statistics: uN/N = 1% - 2%

– Efficiency: ue/e = 1%

– Diff. n-p cross section: uA/A = 0.2% - 1%

Page 8: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 8 von 58

Cu coll. + DE-E

RPT Design Exercise: 75 MeV

Test of a proton recoil telescopes for TLABS neutron beam facility:

• Neutron Source: natLi (8 mm) + p (75 MeV):

quasi-monoenergetic spectrum,

<En,0+1 > = 71.6 MeV (FWHM 3.2 MeV)

• Collimated beam (50 50 mm)2

DE1-DE2-E

… which one made the race?

Page 9: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 9 von 58

RPT Design Exercise: Results

• Good particle discrimination with 500 µm Si-PIPS as DE detectors

• Less neutron induced coupling with DE1-DE2-E scheme

E

DE

TOF

E

Double stage RPT: Cu-coll. + DE-E

DE

2

E

TOF

E

Triple stage RPT: DE1-DE2-E

Page 10: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 10 von 58

Fast Neutrons: Ionization Chambers

Page 11: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 11 von 58

• Electrical field:

• Charge per unit track segment:

• Voltage change induced by drift along dx:

• Integration along frag. track:

Fission Ionization Chambers

Drift velocities: v = µ·E/p, vel >> vion

Ion-induced signal suppressed by time constant of the pre-amp.

Electron-induced signal depends on the location of the ionizing event fissile layer

+HV

electrons

fission frag.

d

ions

x

r

U0

dUE 0

r

E

W

eq

d

d ff0

xEqUCU dd0

rd

r

r

E

WC

eU

R

d)cos1(d

d1

0

0

Page 12: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 12 von 58

FF energy loss in the fissile deposit

Simulated Pulse-Height Spectra

Monte Carlo calculations:

• (A, Z) of the fissioning system: multiple-chance fission!

• Range data for U3O8 and Ar/CH4

• Model for the surface roughness: <ra>

• FF distributions: Y(En, Aff, Zff)

• FF anisotropy: W(CM) = (1+B·cos cm)/2

• Incomplete momentum transfer

Page 13: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 13 von 58

Analytical Calculation of the Detection Efficiency

Absorption of fragments in the fissile layer:

Higher order contributions:

• Anisotropic fragment emission

• Momentum transfer

99.094.0...2

1ff

f R

te

t R

• Uncertainty: ue /ef ≈ 1% - 2%

depends very much on sample quality

Ref.: G.W. Carlson, NIM 119 (1974) 97-100

W() = (1+B cos())/2

Page 14: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 14 von 58

Electro-sprayed 238U3O8 layers

238U-PPFC

Fission Fragment Detection Efficiency

• Background at small pulse heights

– a decay of fissile nuclei

– recoil nuclei from backing materials

• Extrapolation of fission events

into this region

– thickness and ‘roughness’ of deposits

– biasing scheme 0 20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

80

90

100

natPb-PPFC

En = 145 MeV

light charged particles

(normalized)

fission fragments

co

un

ts

pulse height / arb. units

0 100 200 300 400 5000

50

100

150

200

250

300

counts

per

bin

pulse height / arb. units

fission fragments

a particles

238U-PPFC

Painted 238U3O8 layers

Page 15: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 15 von 58

242Pu Fission Chambers for Cross Section Measurements

• 242Pu layers produced by

molecular plating (U. Mainz)

– mPu = 42 mg, 242Pu: 99.9668 %

– eight layers: 116 mg/cm2

– Aa= 6.17 MBq

– Rsf = 34 s-1

• Number of fissile atoms NPu:

– Spontaneous fission rate

t1/2 = (6.77 ± 0.07)1010 a

– Narrow-geometry alpha counting

• Fast pre-amp.’s: a pile-up!

• Continuous P10 flow (nanofilters)

Page 16: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 16 von 58

The Measurement of Neutron Energy Distributions:

TOF Methods

Page 17: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 17 von 58

TOF Spectrometry: Principles

• Neutron energy determined from a velocity measurement:

• Energy resolution:

Time and distance resolution contribute in same way:

express flight time dt by an equivalent distance ddeq

n g

Dt

d

2

2

1

1,)1(

cvmcE

t

dv

gg

22

,)1(

d

d

t

t

v

v

v

v

E

E ddddgg

d

Page 18: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 18 von 58

Measurement of TOF Distributions

• Start signal: neutron detector

• Stop signal: beam pick-up

• Inverted time scale: TOF = tstop – tstart

• Measured neutron flight time: tm = TOFg + d/c – TOFn

NB: Measured flight time tm includes time spent in

target and detector!

Quasi-monoenergetic source ‘White’ source

Page 19: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 19 von 58

Width of TOF Peaks

• Contributions to the width of TOF peaks :

– Beam: time spread of the beam pulse dtbeam

– Source: beam transit time dtsrc = dsrc/v

energy-loss broadening dEsrc = fkin(Ebeam,En)·(dE/dx)·dsrc

kinematical broadening fkin(En,)·d

slowing-down time dtslow ≈ A/Ssv

– Sample: kinematical spread dEspl = fkin(En,)·d

– Detector: transit time dtdet = ddet/v

multiple scattering spread dtms

• Total TOF spread:

• Relative importance of time and energy broadening

depends on the details of the setup:

– Masses of projectiles and target nuclei: source and sample

– Flight paths: source and sample

j

j

j

jjj

i

i EE

lEttt 2

n,

2

n,

n,22

2

),(ddd

Page 20: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 20 von 58

Time Response of Organic Scintillation Detectors

• Multiple scattering affects time response:

– Width of the main peak: flight time through det.

– Exponential tails for pancake-like detectors (d >> l)

– Non-Gaussian time response: R(E,t)

– Modeled with Monte Carlo codes 12C(n,n)12C

1H(n,n)1H

time / 0.1 ns

Calc. (NRESP7)

Exp.

Page 21: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 21 von 58

Example: PTB TOF Spectrometer

En,0 = 10 MeV

– d tbeam = 1.6 ns

– dEn,src = 106 keV

– dsrc = 17 cm, ddet = 12 m

dEn/En = 1.4 % for En,det = 2 MeV

1.8 % for En,det = 10 MeV

D(d,n)

Page 22: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 22 von 58

Example: PTB TOF Spectrometer

Kinematical broadening

– Polyethylene (PE) sample

– Incident energy: En,0 = 10.21 MeV

– Scattering angle: = 29.3°

Separation of TOF peaks

Vanadium sample

En,0 = 10.21 MeV

= 36.8°

12C(n,n')12C*

12C(n,n)12C

1H(n,n)1H

CH2 51V

Page 23: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 23 von 58

Self-TOF Spectrometers

• Source of the TOF Start/Stop signal:

– Pulsed beam (pick-up, RF)

– Time-correlated associated particle (TCAP)

– Recoil particle double-scattering experiment

self-TOF spectrometry

• Example: TOFOR spectrometer at JET

– Designed for DD plasmas: <En> = 2.5 MeV

– Energy resolution: DE/E ≈ 7%

– Dynamic range: 105

5 start det.‘s

BC-418

32 stop det.‘s

BC-420

neutron beam

2

n2

nn' 2)(cos

t

RmEEE a

Ref. : M. Gatu-Johanson et al., NIMA 591 (2008) 417-430

g n

mult. scat.

Page 24: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 24 von 58

TOF Spectrometry of Incompletely Pulsed Beams

Pulsed beams with rep. frequency f and flight path d

Frame-overlap threshold: ‘only one pulse at a time’

2c

2cc

2

1)1( mvmcEfdvc g

Possible workarounds:

• Spectrometry using recoil detectors

• Bonner Sphere spectrometry

Spectral fluence FE for E > Ec from TOF measurement

• Combination of measurements at different flight paths d

and Monte Carlo calculations for very low energies

n g d

c/f

Page 25: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 25 von 58

Lead Slowing-Down Spectrometer (LSDS)

• Semi-empirical relation between

energy and slowing-down time t:

• K and t0 :

– MC simulations

– resonance analysis

• Very high neutron flux

• Energy range 0.1 – 100 eV

• Application:

– Reactions with rare isotopes

– Fission of very radioactive isotopes

– Fission of isomers

E

20 )(

)(tt

KtE

Detectors inserted in the moderator:

– Compensated fission chambers

– Solar cells with fissile layers

– …

Page 26: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 26 von 58

Neutron Detectors for TOF Measurements

• 6LiGlas Detectors:

– Suitable for neutron range En < 1 MeV

– Strong photon sensitivity, stong energy dependence around 250 keV res.

– Complicated time response due to 250 keV resonance: dt ≈ 3 - 4 ns

– Sensitive to (epi)thermal background neutrons: 1/v

• Fission Chambers

– Secondary standard cross sections: 235,238U(n,f)

– Low but calculable detection efficiency: reference instrument

– Slow time response requires long flight paths: dt ≈ 3 - 6 ns

• Organic scintillation detectors: working horses for TOF meas.

– Fast response: dt ≈ 1 - 2 ns, often limited by PMT‘s

– High detection efficiency: e ≈ 10 – 20%

– Many sizes and shapes possible: 1 cm - 1 m

– Diff. n-p cross section is primary standard

– Discrimination of photon background by PSD

– Quenching requires low pulse-height thresholds for En < 1-2 MeV

Page 27: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 27 von 58

The Measurement of Neutron Energy Distributions: Unfolding Methods

Page 28: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 28 von 58

Need for ‘Non-TOF’ Spectrometry

• There are situations where TOF cannot be used:

– Accelerators based sources with high rep. rates: f > 0.1 - 1 MHz

– Neutron diagnostics at nuclear fusion experiments

– Sources without well-defined flight paths:

Transmission through shields, fusion benchmarks

– Neutrons in the environment

– …

• But there is a way-out:

The spectral neutron distribution (dF/dE) is related to the

distribution of ‘events’ (dN/dL) in the detector:

(Fredholm integral equation of the first kind)

The attempt to solve this equation is called ‘spectrometry’

FFj

jjiiEL RNEELRN ,d),(

Page 29: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 29 von 58

Spectrometric Methods

• High-resolution spectrometry

– Spectrometry of recoil nuclei:

organic scintillation detectors

recoil telescopes

– Spectrometry using reaction products: 3He counters and ionization chambers

sandwich spectrometers

diamond detectors

– Capture-Gated spectrometry

Make response matrix R as diagonal as possible!

• Low-resolution spectrometry

– Multi-sphere spectrometry

– Spectrometry using threshold activation foils

Page 30: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 30 von 58

Unfolding Problem

• Unfolding problem:

How to get from Nj (data space) to Fj (space of possible solutions)

• Problem of unfolding:

– There is a multitude of solutions Fj

which produce the same Nj

– The response Rj,i is not exactly known

– The Nj have uncertainties ui

Nota bene:

• There is no exact solution!

• What is needed is a consistent approximate solution

• Usually prior information is available and must be included

Fj

jjiii RuN ,

Page 31: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 31 von 58

Technical Approaches to Unfolding

• Direct matrix inversion:

but: (RT·R)-1 is usually ill-conditioned if it exists at all:

‘noise’ is amplified, Fj < 0 possible!

More suitable methods are required:

Iterative procedures: usually black-magic recipes!

Stochastic methods: Monte Carlo, genetic algorithms, …

Regularisation: add constraints to enforce smoothness

Least-squares adjustment: usually linearization required

Bayesian parameter estimation: requires an analytical model

Maximum entropy principle: justifiable from information theory

consistent treatment of prior information and uncertainties

Ref: M. Reginatto: Radiat. Meas. 45 (2010) 1323-1329

NRRRRN FF T1T )(

0...),(diag,orth.,with)( 2111T SS ggg i

T VUUVRR

Page 32: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 32 von 58

The PTB scintillation spectrometer : Response Matrix

Ref.: A. Zimbal et al., PoS(FNDA2006) 035 www.pos.sissa.it

2” x 2”

BC501A

cell

Page 33: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 33 von 58

Measurements at JET

Page 34: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 34 von 58

Ohmic and NBI Heated JET Discharges (DD)

Ohmic + NBI heating Ohmic heating

FWHM = 126 keV

Ti = 2.3 keV

• Passsive (offline) gain stabilization: fLED ≈ 1 kHz • Unfolding with MAXED using a flat (uninformative) prior

Ref.: A. Zimbal et al., PoS(FNDA2006) 035 www.pos.sissa.it

Page 35: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 35 von 58

The Dark Side of Unfolding: Artefacts

Artefacts result from imperfect response function:

• Calc. response matrix: cross sections, e.g. 12C(n,n'3a ),

light yield L(En), resolution DL/L

• Exp. response matrix: imperfect CFD timing (walk effect),

imperfect satellite subtraction

T(d,n), Ed = 643 keV, = 0°: 2"2" BC501A detector with A = 7.2%, B = 10.5%

Page 36: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 36 von 58

Few-Channel Unfolding: Multi-Sphere Spectrometry

BS spectrometer NEMUS

• 3He detector inside moderators

• bare counter: (epi)thermal

• 12 PE spheres (3"-18"): En < 20 MeV

• 4 PE/(Pb,Cu) spheres: En < 1 GeV

• Response matrix: MCNPX

• Precise dimensions

• Measured PE densities

• Calibrated 3He pressures

• Regular stability checks

• Background studied in UDO

underground laboratory

Page 37: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 37 von 58

Analysis: Bayesian Parameter Estimation

• Response functions are very similar

• Components of neutron spectra known – Thermal peak : ≈ 25 meV

– Slowing-down cont.: ≈ flat

– Evaporation peak: ≈ 2-3 MeV

– ‘Spallation’ peak: ≈ 100 MeV

Analytical model and Bayesian

parameter estimation

priors

Model, Data, Bayes theorem

posteriors

The ‘spallation’ peak (100 MeV) cannot determined only from the data!

Page 38: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 38 von 58

20 µs

2"2"

Capture-Gated Spectrometry

• Full-energy events in doped organic scintillators

‘tagged’ by capture signal response ‘more diagonal’

• Triggers: 10B(n,a)7Li Q = 2.79 MeV

6Li(n,t)4He Q = 4.78 MeV (preferred!)

• PH signal only from fast recoils: tint << tlife

Total pulse height L(En) not prop. to En!

Ref.: B.M. Fisher, NIMA 646 (2011) 126 – 134 T. Aoyama, NIMA 333 (1993) 492- 501

Page 39: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 39 von 58

Example: 5""3 boron-loaded detector (BC454 )

12C(n,n) + 1H(n,n)

Ref.: T. Aoyama, NIMA 333 (1993) 492- 501

Page 40: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 40 von 58

LED (2x)

Photodiodes (2x)

EJ254XL Scintillator “Orb”

PMT

NASA Mars Mission

Gd shield

Radiation detectors on NASA Mars Rover:

• Charged Particle Detector (CPD)

• Capture-Gated Fast Neutron Detector (FND):

EJ254XL 10B-loaded scintillator

Calibration: LED + Diode

PMT readout

En = 0.5 – 8 MeV Courtesy: C. Zeitlin, Southwest Research Institute, Boulder (Colorado)

Page 41: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 41 von 58

Modern Spectrometry with RTPs: Proton Tracking

Recoil telescope with track reconstruction:

• E detectors: Ep

• DE detector: track reconstruction, p

En = Ep / cos2p

• Example: TPR-CMOS (IRSN Cadarache) Neutrons

Convertisseur CMOS Diode Si(Li) 1 2 3

Z X

Y

Ref.: J. Taforeau: Un spectromètre à pixels actifs pour la métrologie des champs neutroniques, Thèse, Université de Strasbourg 2013

Deteriorated Ti(T) target

AmBe source

Page 42: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 42 von 58

Spectrometry using Exothermic Reactions

• 6Li(n,t)4He, Q = 4.78 MeV, 3He(n,p)T, Q = 0.76 MeV

• High thermal cross section: = 0(v0/v) for En < 100 keV

Qcc

ccE

0th

thfn

Spectrometry by detection of both reaction products:

• (epi)thermal peak: cth

• fast peak: cf

• zero bias: c0

NB: constant W-value assumed !

• Proportional counters

• Ionization chambers with Frisch grid

Page 43: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 43 von 58

3He and 6Li Sandwich Spectrometers

6Li spectrometer:

• High recoil energies

• Good g suppression

• Resolution depends on

radiator thickness

• En,min = 100 - 500 keV

SB-det.

3He Spectrometer

Ref.: H. Bluhm et al., NIM115 (1974) 325-337

3He Prop. Counter

3He spectrometer

• Small recoil energies

• n/g interference

• High efficiency

• Small energy loss

Page 44: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 44 von 58

Spectrometry using scCVD Diamond Detectors

Single-crystal chemical vapor deposition diamond detectors (scCVD):

• Neutron detection via 12C(n,a)9Be: full-energy peak

• Large displacement energy (42 eV/atom) high radiation hardness

• High thermal conductivity operation at elevated temperature

• But: large band gap (5.5 eV) resolution not as good as silicon (1.11 eV)

Very attractive material for neutron spectrometers

Ref.: H. Kagan, NIMA 546 (2005) 222-227

Page 45: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 45 von 58

The Measurement of Spatial Neutron Distributions

Page 46: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 46 von 58

The Micromegas Beam Imager for n_TOF

• Neutron detection: – 6Li, 10B converter

– Counting gas: p, He recoil

• Energy-resolved images: 10 eV – 20 MeV

• Several 1-dim. and 2-dim. (strips or pixels) read-out schemes

• Spatial resolution: ≈ 0.5 mm

6Li(n,t)

1H(n,n)

4He(n,n)

Ref: J. Pancin et al. NIMA 524 (2004) 102-114

Page 47: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 47 von 58

Micromegas Results

Ref. : F. Belloni et al., Mod. Phys. Letters A 28 (2013) 1340023

• Profile of the n_TOF neutron beam:

– Converter: LiF, 10B4C

– Readout anode: 6 cm 6 cm with 106 x and y strips, Gassiplex readout chip

• Determination of beam coverage factors for large sample

Page 48: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 48 von 58

Absolute Methods, Key Comparisons

Page 49: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 49 von 58

Stability and Consistency of Neutron Measurements

• Ref. detectors depend on ref. materials

– Purity of gases (H2, CH4, C3H8): RPPC

– Tristearin (C57H110O6) radiators: RPT

– 235,238U deposits: FC

Test of stability and consistency

Comparison with ‘absolute methods’

2 4 6 8 10 12 14 160.90

0.95

1.00

1.05

1.10

Feb. 83

Aug. 83

Oct. 85

Nov. 07

(FD

1/F

RP

T)

En / MeV

(FD1

/FRPT

) = 0.995

s.dev. = 0.019

RP

T1 D

D

H19

H21

FP

3/2

00m

FC

16 U

F4

FC

16 U

3O

8

RP

T1

DD

H19

H21

FP

3/2

00m

0.90

0.95

1.00

1.05

1.10

En = 8.4 MeV

Y = (5.45 +/- 0.04) 104 sr

-1

Y /

Y

En = 15 MeV

Y = (2.217 +/- 0.020) 104 sr

-1

Stability Consistency

Page 50: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 50 von 58

Standards: Absolute Methods

Traceability of detector calibrations to the SI requires

‘Absolute’ methods for neutron production:

• Manganese bath: 56Mn(n,g) in a saturated MnSO4 solution

only for radionuclide sources

50% correction for capture and leakage

0.5 % uncertainty of the emission rate

• Time-correlated associated particles (‘tagged neutrons’):

- 252Cf(s.f.): standard technique, relies on <n>

- D(d,n)3He: standard technique, difficult

- T(d,n)4He: standard technique

- H(n,n)p: low count rates

- D(g,n)p: requires a tagged bremsstrahlung beam

- D(p,n)2p: very difficult

• Uncertainty of (TC)AP method: 1% - 1.6%

for T(d,n)4He, En ≈ 14.2 MeV

Page 51: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 51 von 58

252Cf(s.f.) Ionization Chamber

• Low-mass parallel-plate IC with 252Cf source:

Aa = 4.5 MBq Rsf = 1.4105 s-1

time resolution: 1 ns

• Neutron ‘tagged’ by fission fragments

• Prerequisites:

- Evaluated 252Cf neutron spectrum and

- Corrections:

- deadtime and uncorrelated stops

- fragment detection efficiency

- neutron emission anisotropy

- neutron transport, air scattering

n

Page 52: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 52 von 58

TCAP: T(d,n)4He, D(d,n)3He

‘Tagging’ of neutrons by the associated charged particle

• T(d,n)4He, Ed = 150 keV

- n = 26.5°, a = -150°

- En = 14.48 MeV, Ea = 2.46 MeV

- no (d,d) background

- 3He(d,p)4He can be a problem

- ‘routine’ 14 MeV standard

• D(d,n)3He, Ed = 4 MeV

- n = 40°, 3He = -59.8°,

- En = 6.13 MeV, E3He = 1.14 MeV

- strong (d,d) and (d,p) background

requires DE-E separation of 3He

• Problem of all TCAP experiments:

Loss of correlation due to angular straggling!

Page 53: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 53 von 58

TCAP with T(d,n) at Ed,0 = 150 keV

n

a d

• Shape of the associated neutron cone:

– Tritium depth profile in Ti(T) target

– Position of the beam spot

• Modeling of the transport of

150 keV d in Ti(T) is a challenge!

Page 54: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 54 von 58

Metrological Cooperation: Key Comparisons

• Organized within the CCRI(III) of the BIPM

• Regular Key Comparisons (every 10 years)

• Results go into the KCDB: www.bipm.org

• the ‘usual suspects’:

- CIAE (PR China)

- LNE / IRSN (France)

- IRMM (EU)

- NPL (UK)

- NMIJ (Japan)

- NIST (USA)

- PTB (Germany)

- VNIIM (Russia)

• Typical uncertainties:

KCRV: 1 – 1.5 %

Standard deviation: 2 – 4 %

CCRI(III)-K11 (2010-2011)

Page 55: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 55 von 58

Summary:

Neutron detection means conversion to charged particles:

• Products of two-particle reactions with high Q value

• Recoil particles

• Fission fragments

Measurements techniques:

• Time-of-flight spectrometry

• Unfolding of signal distributions

Normalization:

• relative to cross sections standards

• ‘absolute’ neutron counting

Page 56: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 56 von 58

Tributes

Horst Klein

Page 57: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Physikalisch-Technische Bundesanstalt

Braunschweig und Berlin

Bundesallee 100

38116 Braunschweig

Dr. Ralf Nolte

AG 6.42 Neutron Metrology

Telefon: 0531 592-6420

E-Mail: [email protected]

www.ptb.de

Thank you for your attention!

Page 58: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 58 von 58

Additional Material

Page 59: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 59 von 58

High-Energy Telescopes

Neutron energies above 20 MeV pose special challenges:

• Large proton ranges: degraders, thick stopping detectors

• Charged particles from n+12C: high-resolution DE-E particle discrimination

• Neutron induced coincidences: more coincidence conditions

• ‘Grey’ apertures: active collimation by veto detectors (En > 100 MeV)

Proton recoil telescope T2: En = 20 – 60 MeV

Page 60: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 60 von 58

TOF Variants : Slowing-Down Spectrometry

Heavy (A = 208) non-absorbing moderator with constant

isotropic scattering cross section:

• Small mean log. energy loss per collision:

• Rel. std. deviation of

slowing-down time: , mean energy:

Time dependence of the velocity v:

3105.932

2

A

2

2

2

107.53

2 AtE

tE

11.03

82

2

AE

E

)(2

)( 0

s

vvt

tv S

Pb cross section

Page 61: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 61 von 58

Lead Slowing-Down Spectrometer (LSDS)

• Semi-empirical relation between

energy and slowing-down time t:

• K and t0 :

– MC simulations

– resonance analysis

• Very high neutron flux

• Energy range 0.1 – 100 eV

• Application:

– Reactions with rare isotopes

– Fission of very radioactive isotopes

– Fission of isomers

E

20 )(

)(tt

KtE

Detectors inserted in the moderator:

– Compensated fission chambers

– Solar cells with fissile layers

– …

Page 62: Detection of Neutrons: Part IIindico.ictp.it/event/a14288/session/80/contribution/328/...Seite 5 von 58 The Classical Low-Energy Telescope: T1 of PTB Los Alamos in-beam design: •

Seite 62 von 58

The LANSCE Slowing-Down Spectrometer

• High-purity lead cube: V = (1.2 m)3

• WNR beam (800 MeV p), tungsten target

• Resolution: DE/E ≈ 0.29

Ref.: D. Rochman et al., NIMA 550 (2005) 397-413

Resolution broadening