Detection in a Live Tissue by Two-Photon Microscopy ...Br B-NH 2 (a) (b) 1 2 O O N O CH 2 OH C C (c)...

32
S1 Supporting Information Two-Photon Probes for the Endoplasmic Reticulum: Its Detection in a Live Tissue by Two-Photon Microscopy Ji-Woo Choi a,‡ , Seung-Hye Choi a,‡ , Seung Taek Hong a , Mun Seok Kim b , Seong Shick Ryu a , Yeo Uk Yoon b , Kyu Cheol Paik b , Man So Han b , Taebo Sim a,c , and Bong Rae Cho a,b,d, * a KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk- gu, Seoul 02841, Republic of Korea b Department of Chemistry, Daejin University, 1007 Hoguk-ro, Pocheon-si, Gyeonggi-do 11159, Republic of Korea c Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea d Department of Chemistry, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea * Corresponding author E-mail: [email protected] TABLE OF CONTENTS Page Synthesis………………………..…………………………………………………... S5 Spectroscopic Properties……..……………………………………………………. S13 Solubility………………………..………………………………………………….. S13 Two-Photon Microscopy…..………………………………………………………. S13 Measurements of TP Action Cross-Section (Фδ max ) and Effective TP Action Cross-Section (Фδ eff )……………………………………………………………….. S14 Cell Preparation..…………………………………………………………………... S14 Tissue Preparation…………………..……………………………………………... S14 Detection Windows…………………..…………………………………………….. S15 Cell Imaging by High-resolution S16 Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Transcript of Detection in a Live Tissue by Two-Photon Microscopy ...Br B-NH 2 (a) (b) 1 2 O O N O CH 2 OH C C (c)...

  • S1

    Supporting Information

    Two-Photon Probes for the Endoplasmic Reticulum: Its

    Detection in a Live Tissue by Two-Photon Microscopy

    Ji-Woo Choia,‡, Seung-Hye Choia,‡, Seung Taek Honga, Mun Seok Kimb, Seong Shick Ryua, Yeo Uk Yoonb, Kyu Cheol Paikb, Man So Hanb, Taebo Sima,c, and Bong Rae Choa,b,d,*

    a KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Koreab Department of Chemistry, Daejin University, 1007 Hoguk-ro, Pocheon-si, Gyeonggi-do 11159, Republic of Koreac Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Koread Department of Chemistry, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea* Corresponding author E-mail: [email protected]

    TABLE OF CONTENTS Page

    Synthesis………………………..…………………………………………………... S5

    Spectroscopic Properties……..……………………………………………………. S13

    Solubility………………………..………………………………………………….. S13

    Two-Photon Microscopy…..………………………………………………………. S13

    Measurements of TP Action Cross-Section (Фδmax) and Effective TP Action Cross-Section (Фδeff)……………………………………………………………….. S14

    Cell Preparation..…………………………………………………………………... S14

    Tissue Preparation…………………..……………………………………………... S14

    Detection Windows…………………..…………………………………………….. S15

    Cell Imaging by High-resolution S16

    Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2020

  • S2

    OPM……………………………………………

    Cell Imaging by OPM and TPM………………………………………………….. S16

    Tissue Imaging by TPM…………………………………………………………… S16

    Cytotoxicity………………………………………………………………………… S16

    Photostability………………………………………………………………………. S16

    A Western Blot Assay……………………………………………………………… S17

    Statistical Analysis…………………………………………………………………. S17

    Figure S1. Synthesis of BER-blue and FER-green. (a) i) Benzoxazole, Pd(OAc)2, CuI, PPh3, Cs2CO3, dimethylformamide (DMF), 145C. (b) Benzothiazole, Pd(OAc)2, CuI, PPh3, Cs2CO3, DMF, 145C. (c) (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl [TEMPO], NaOCl, CH2Cl2. (d) I, NaBH4, DMF, room temperature (rt). (e) Toluene, 140C. (f) Ac-CFFKDEL, P(CH2CH2CO2H)3, Et3N, dimethyl sulfoxide (DMSO), rt…………………………………………………………………………... S5

    Figure S2. (a,b) Partial 1H NMR spectra of B-Mal (a) and BER-blue (b) in DMSO in the region 8.66.3. The protons in the B-Mal and Ac-CFFKDEL moieties are designated as ak, *, F2, and F3, respectively. (c) 2D 1H-1H TOCSY spectrum of BER-blue in the NH-Ha fingerprint region. Each line indicates amide-to-side chain connectivity. (d) Overlay of TOCSY (blue) and NOESY (red) spectra. The lines trace the sequential backbone assignment via intramolecular NH–Hα NOE connections. (e) An overlay of 1H-1H NOESY (black) and TOCSY (red) spectra showing NOE peaks between protons on succinimide and Cys moieties………………...……….... S10

    Table S1. Chemical shifts of each proton in the fingerprint region of the TOCSY spectrum of BER-blue in DMSO-d6……………………………………………..…... S10

    Figure S3. (a,b) Partial 1H NMR spectra of F-Mal (a) and FER-green (b) in DMSO in the region 8.46.5. The protons in the F-Mal and Ac-CFFKDEL moieties are designated as ak, *, F2, and F3, respectively. (c) 2D 1H-1H TOCSY spectrum of FER-green in the NH-Ha fingerprint region. Each line indicates amide-to-side chain connectivity. (d) Overlay of TOCSY (red) and NOESY (green) spectra. The lines trace the sequential backbone assignment via intramolecular NH–Hα NOE connections………………………………………………………………………….. S12

    Table S2. Chemical shifts of each proton in the fingerprint region of the TOCSY spectrum of FER-green in DMSO-d6……………………………………………...... S12

    Table S3. Spectroscopic properties…………………………………………………. S13

  • S3

    Table S4. Detection windows for the OPM and TPM imaging…………………….. S15

    Figure S4. Normalized absorption (a) and emission (b) spectra of BER-blue and FER-green in phosphate-buffered saline (PBS) and EtOH…………………………... S18

    Figure S5. (a,c) Fluorescence spectra of BER-blue (a) and FER-green (c), and plots (b,d) of the fluorescence intensity against probe concentration for BER-blue (b) and FER-green (d) in PBS. The excitation wavelengths for BER-blue and FER-green were 354 and 373 nm, respectively………………………………………………….. S18

    Figure S6. (a) Normalized TPEF spectra of BER-blue (blue), FER-green (green), PLT-yellow (orange), and ABI-Nu (purple) and a normalized fluorescence spectrum of ETR (red) in HeLa cells. The wavelengths for the one- and two-photon excitation were 405 and 750 nm, respectively. (b) TP excitation spectra of BER-blue and FER-green in EtOH and PBS, respectively………………………………………………... S19

    Figure S7. Viability of HeLa cells in the presence of BER-blue (a,b) or FER-green (c,d), as measured by a 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were incubated with the probes (010 M) for 024 h……………………………………………………………………………………... S19

    Figure S8. (a,c) Two-photon microscopy images of HeLa cells labeled with BER-blue (a) or FER-green (c). (b,d) Relative TPEF intensity as a function of time. The digitized intensity was recorded with 2 s intervals during 1 h in xyt mode. The TPEF intensities at positions AF were recorded at 380–660 nm upon excitation at 750 nm. Scale bar: 30 µm………………………………………………………………… S20

    Figure S9. Effects of pH on the one-photon fluorescence intensity of BER-blue and FER-green (2 μM each in universal buffer: 0.1 M citric acid, 0.1 M KH2PO4, 0.1 M Na2B4O7, 0.1 M Tris, and 0.1 M KCl)……………………………………………….. S20

    Figure S10. Sectional TPM images of a rat hippocampal slice colabeled with BER-blue (10 μM) and FER-green (6 μM). The images were captured in channel 3 (Ch3: BER-blue, 385–450 nm) and Ch6 (FER-green, 535–655 nm) at a depth of 90–165 μm and 10× magnification after excitation at 750 nm…………………….................. S21

    Figure S11. 1H NMR spectrum (300 MHz) of compound I in DMSO-d6…………. S22

    Figure S12. 13C NMR spectrum (75 MHz) of compound I in DMSO-d6.................. S22

    Figure S13. 1H NMR spectrum (300 MHz) of compound B-NH2 in CDCl3…...….. S23

    Figure S14. 13C NMR spectrum (75 MHz) of compound B-NH2 in CDCl3…...…... S23

  • S4

    Figure S15. 1H NMR spectrum (300 MHz) of compound 3 in CDCl3.…………….. S24

    Figure S16. 13C NMR spectrum (75 MHz) of compound 3 in CDCl3..…………….. S24

    Figure S17. 1H NMR spectrum (800 MHz) of B-Mal in DMSO-d6……...………... S25

    Figure S18. 13C NMR spectrum (75 MHz) of B-Mal in CDCl3/CD3OD (10/1)…… S25

    Figure S19. 1H NMR spectrum (300 MHz) of compound F-NH2 in CDCl3..……… S26

    Figure S20. 13C NMR spectrum (75 MHz) of compound F-NH2 in CDCl3……….. S26

    Figure S21. 1H NMR spectrum (300 MHz) of compound 4 in CDCl3.…………….. S27

    Figure S22. 13C NMR spectrum (75 MHz) of compound 4 in CDCl3..…………….. S27

    Figure S23. 1H NMR spectrum (800 MHz) of F-Mal in DMSO-d6….……………. S28

    Figure S24. 13C NMR spectrum (75 MHz) of F-Mal in CDCl3……………………. S28

    Figure S25. 1H NMR spectrum (800 MHz) of BER-blue in DMSO-d6......……….. S29

    Figure S26. 1H NMR spectrum (800 MHz) of FER-green in DMSO-d6…...……... S29

    Figure S27. HRMS of BER-blue. TOF MS: time-of-flight mass spectrometry….... S30

    Figure S28. HRMS of FER-green. TOF MS: time-of-flight mass spectrometry...... S30

    References………………………………………………………………………….. S31

  • S5

    Synthesis

    Compounds 1 and 2 were available from earlier works,1,2 and compound C was prepared by

    a method from the literature.3 The synthesis of BER-blue and FER-green is shown below.

    Figure S1. Synthesis of BER-blue and FER-green. (a) i) Benzoxazole, Pd(OAc)2, CuI, PPh3, Cs2CO3, dimethylformamide (DMF), 145C. (b) Benzothiazole, Pd(OAc)2, CuI, PPh3, Cs2CO3, DMF, 145C. (c) (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl [TEMPO], NaOCl, CH2Cl2. (d) I, NaBH4, DMF, room temperature (rt). (e) Toluene, 140C. (f) Ac-CFFKDEL, P(CH2CH2CO2H)3, Et3N, dimethyl sulfoxide (DMSO), rt.

    Compound I

    N

    O

    O

    O

    O

    A solution of NaOCl (aq) (4%, 20 mL) was added dropwise to a mixture of compound C (1.12 g, 5 mmol), NaHCO3 (0.84 g, 10 mmol), KBr (0.71 g, 6 mmol), and TEMPO (0.02 g, 0.13 mmol) in CH2Cl2 (10 mL), and the resultant solution was stirred for 2 h at 0°C. The product was extracted with CH2Cl2 (3 × 20 mL), washed with 10% Na2S2O3 (aq) (3 × 10 mL) and brine (10 mL) and dried over MgSO4, and the solvent was evaporated. The crude product was purified by silica gel chromatography with a 010% gradient of MeOH/CH2Cl2 as the eluent. Yield: 1.01 g (96%); 1H NMR (300 MHz, DMSO-d6): δ 9.57 (1 H, t, J = 1.5 Hz), 6.53 (2 H, s),

    Ar O

    O

    N

    NH

    Ar NH2Ar = B (B-NH2)

    F (F-NH2)

    Ar O

    O

    N

    NHS

    Ac-CFFKDELAr = B (B-Mal)

    F (F-Mal)Ar = B (BER-blue)

    F (FER-green)

    (f)

    Ar O

    O

    N

    NH

    Ar = B (3)F (4)

    (e)O(d)

    N

    O

    B FN

    S

    I NH2F-NH2

    NH2S

    N

    N

    O

    NH2

    NH2

    Br B-NH2

    (a)

    (b)1

    2

    O

    NO

    OCH2OH

    C

    C(c)

    O

    NO

    OCHO

    I

  • S6

    5.10 (2 H, s), 3.61 (2 H, t, J = 6.9 Hz), 2.90 (2 H, s), 2.61 (1 H, td, J = 7.0, 1.5 Hz) ppm; 13C NMR (75 MHz, DMSO-d6): δ 201.8, 177.0, 137.2(2C), 81.0(2C), 47.9(2C), 41.6, 32.6 ppm.

    Compound B-NH2

    NH2O

    N

    A flame-dried round-bottom flask with a magnetic stirring bar was loaded with CuI (0.09 g, 0.47 mmol), Pd(OAc)2 (0.03 g, 0.11 mmol), PPh3 (0.31 g, 0.12 mmol), Cs2CO3 (1.7 g, 4.7 mmol), benzoxazole (0.56 g, 4.7 mmol), and 1 (0.52 g, 2.3 mmol). Anhydrous DMF (1.0 mL) was then added to the mixture using a syringe in an atmosphere of Ar. The reaction mixture was heated to 145°C for 20 min, cooled to rt, and filtered through a small pad of Celite. The solid residue was washed with CH2Cl2 (10 mL), and the combined organic layers were evaporated. The product was purified by silica gel column chromatography with 50% EtOAc in n-hexane. Yield: 0.45 g (74%); 1H NMR (300 MHz, CDCl3): δ 8.62 (1 H, d, J = 1.7 Hz), 8.19 (1 H, dd, J = 8.5, 1.7 Hz), 7.80−7.77 (2 H, m), 7.69 (1 H, d, J = 8.5 Hz), 7.61−7.58 (1 H, m), 7.38–7.32 (2 H, m), 6.98−7.00 (2 H, m), 4.06 (2 H, br, s) ppm; 13C NMR (75 MHz, CDCl3): δ 163.7, 150.7, 146.1, 142.3, 136.6, 130.5, 128.2, 127.1, 126.4, 124.7, 124.5, 124.4, 120.7, 119.6, 118.9, 110.4, 108.1 ppm.

    Compound 3

    O

    O

    O

    N

    N

    O

    NH

    A solution containing B-NH2 (0.72 g, 2.8 mmol) and I (0.61 g, 2.8 mmol) in anhydrous DMF was purged with argon several times with stirring. NaBH4 (0.58 g, 4.2 mmol) was added to this solution, and the reaction mixture was stirred vigorously for 2 h under argon at rt. The organic layer was separated, washed with saturated brine, dried over MgSO4, and filtered. The solvent was evaporated, and the crude product was purified by silica gel column chromatography with 30–50% ethyl acetate in n-hexane. Yield: 0.98 g (76%); 1H NMR (300 MHz, CDCl3): δ 8.58 (1 H, d, J = 1.7 Hz), 8.17 (1 H, dd, J = 8.5, 1.7 Hz), 7.787.68 (3 H, m), 7.60−7.57 (1 H, m), 7.35−7.32 (2 H, m), 6.95 (1 H, dd, J = 8.8, 2.2 Hz), 6.79 (1 H, d, J = 2.2 Hz), 6.52 (2 H, s), 5.29 (2 H, s), 4.52 (1 H, brs), 3.64 (2 H, t, J = 6.5 Hz), 3.25 (2 H, t, J = 6.3 Hz), 2.86 (2 H, s), 1.95 (2 H, quin, J = 6.3 Hz) ppm; 13C NMR (75 MHz, CDCl3): δ 176.6(2C), 163.9, 150.7,

  • S7

    147.2, 142.4, 137.0, 136.5(2C), 130.2, 128.1, 126.5, 126.4, 124.5(2C), 124.4, 120.0, 119.6, 118.8, 110.3, 103.7, 81.0(2C), 47.4(2C), 40.0, 36.3, 26.4 ppm.

    Compound B-Mal

    NHO

    N

    N

    O

    O

    A solution of 3 (0.33 g, 0.71 mmol) in toluene (50 mL) was refluxed overnight. The solvent was evaporated, and the crude product was purified by silica gel column chromatography with 30–50% ethyl acetate in n-hexane. Yield: 0.25 g (88%); 1H NMR (800 MHz, DMSO-d6): δ 8.54 (1 H, d, J = 1.4 Hz), 8.05 (1 H, dd, J = 8.4, 1.4 Hz), 7.84 (1 H, d, J = 8.8 Hz), 7.797.77 (2 H, m), 7.73 (1 H, d, J = 8.4 Hz), 7.417.40 (2 H, m), 7.07 (1 H, dd, J = 8.8, 1.9 Hz), 7.04 (2 H, s), 6.76 (1 H, d, J = 1.9 Hz), 6.39 (1 H, t, J = 5.6 Hz), 3.57 (2 H, t, J = 6.9 Hz), 3.16 (2 H, td, J = 6.9, 5.6 Hz), 1.88 (2 H, quin, J = 6.9 Hz); 13C NMR (75 MHz, CDCl3): δ 171.1(2C), 164.0, 150.4, 147.3, 141.8, 137.0, 134.1(2C), 130.1, 128.1, 126.4(2C), 124.6, 124.4, 124.3, 119.6, 119.2, 118.7, 110.3, 103.5, 40.1, 35.2, 27.4 ppm.

    Compound F-NH2

    NH2N

    S

    A flame-dried round-bottom flask with a magnetic stirring bar was loaded with CuI (0.05 g, 0.02 mmol), Pd(OAc)2 (0.01 g, 0.006 mmol), PPh3 (0.16 g, 0.06 mmol), Cs2CO3 (0.5 g, 1.4 mmol), benzothiazole (0.13 g, 1.2 mmol), and 2 (0.4 g, 1.2 mmol). Next, anhydrous DMF (1.0 mL) was added to the mixture via a syringe under Ar. The reaction mixture was heated to 145°C for 30 min, cooled to rt, and filtered through a small pad of Celite. The solid residue was washed with CH2Cl2 (10 mL), and the combined organic layers were evaporated. The product was purified by silica gel column chromatography with 10−25% EtOAc in n-hexane. Yield: 0.18 g (44%); 1H NMR (300 MHz, CDCl3): δ 8.26 (1 H, d, J = 1.7 Hz), 8.18 (1 H, d, J = 8.0 Hz), 7.99 (1 H, dd, J = 8.0, 1.7 Hz), 7.88 (1 H, dd, J = 8.0, 1.1 Hz), 7.62 (1 H, d, J = 8.0 Hz), 7.52 (1 H, d, J = 8.2 Hz), 7.52 (1 H, td, J = 7.5, 1.1 Hz), 7.37 (1 H, td, J = 7.5, 1.1 Hz), 6.73 (1 H, d, J = 2.1 Hz), 6.65 (1 H, dd, J = 8.2, 2.1 Hz), 3.97 (2 H, br. s.), 1.53 (6 H, s) ppm ; 13C NMR (75 MHz, CDCl3): δ 168.7, 156.2, 153.9, 153.2, 147.1, 142.7, 134.6, 130.3, 128.5, 127.1, 126.0, 124.6, 122.5, 121.4, 121.3, 120.9, 118.7, 113.9, 108.9, 46.5, 26.9(2C) ppm.

  • S8

    Compound 4

    S

    NO

    O

    O

    NNH

    Compound 4 was prepared from F-NH2 (0.38 g, 1.11 mmol) and I (0.25 g, 1.11 mmol) as described for 3. Yield: 0.31 g (51%); 1H NMR (300 MHz, CDCl3): δ 8.14 (1 H, d, J = 1.7 Hz), 8.07 (1 H, d, J = 8.0 Hz), 7.94 (1 H, dd, J = 8.0, 1.7 Hz), 7.86 (1 H, dd, J = 8.0 Hz), 7.59 (1 H, d, J = 8.0 Hz), 7.53 (1 H, d, J = 8.2 Hz), 7.47 (1 H, td, J = 7.6, 1.1 Hz), 7.34 (1 H, td, J = 7.6, 1.1 Hz), 6.68 (1 H, d, J = 2.1 Hz), 6.59 (1 H, dd, J = 8.2, 2.1 Hz), 6.45 (2 H, s), 5.25 (2 H, s), 3.62 (2 H, t, J = 6.6 Hz), 3.18 (2 H, t, J = 6.5 Hz), 2.80 (2 H, s), 1.89 (2 H, quin, J = 6.4 Hz), 1.52 (6 H, s) ppm; 13C NMR (75 MHz, CDCl3): δ 176.4(2C), 168.8, 156.3, 154.0, 153.2, 148.3, 143.0, 136.3(2C), 134.7, 130.1, 127.7, 127.1, 126.0, 124.6, 122.6, 121.6, 121.4, 121.0, 118.6, 111.8, 106.7, 80.8(2C), 47.3(2C), 46.6, 40.4, 36.2, 27.1(2C), 26.5 ppm.

    Compound F-Mal

    S

    N

    O

    O

    NNH

    F-Mal was synthesized from compound 4 (0.31 g, 0.57 mmol) as described for B-Mal. Yield: 0.22 g (81%); 1H NMR (800 MHz, CDCl3): δ 8.31 (1 H, s), 8.13 (1 H, d, J = 1.4 Hz), 8.10 (1 H, d, J = 7.8 Hz), 8.04 (1 H, d, J = 7.8 Hz), 7.94 (1 H, dd, J = 7.8, 1.4 Hz), 7.70 (1 H, d, J = 7.8 Hz), 7.59 (1 H, d, J = 8.3 Hz), 7.52 (1 H, t, J = 7.8 Hz), 7.43 (1 H, t, J = 7.8 Hz), 7.02 (2 H, s), 6.72 (1 H, d, J = 1. Hz), 6.58 (1 H, dd, J = 8.3, 1.2 Hz), 3.54 (2 H, t, J = 7.0 Hz), 3.10 (2 H, t, J = 7.0 Hz), 1.82 (2 H, quin, J = 7.0 Hz), 1.43 (6 H, s) ppm; 13C NMR (75 MHz, CDCl3): δ 170.6(2C), 168.7, 156.2, 153.9, 153.1, 148.3, 142.8, 134.5, 133.7(2C), 130.0, 127.6, 127.1, 125.9, 124.5, 122.5, 121.5, 121.3, 120.9, 118.5, 111.7, 106.5, 46.5, 40.5, 35.0, 27.5, 27.0(2C) ppm.

  • S9

    BER-blue

    A mixture of B-Mal (0.05 g, 0.13 mmol), Et3N (0.02 g, 0.17 mmol), (HO2CCH2CH2)P (0.0003 g, 0.001 mmol), and an endoplasmic-reticulum–targeting peptide (Ac-CFFKDEL, InterPharm, Gyeonggi-do, Korea) (0.12 g, 0.13 mmol) in DMSO was stirred at rt for 2 h. The crude product was purified by semipreparative reverse-phase high-performance liquid chromatography (RP-HPLC, SunFire Preparative Column C18 OBD, 5 µm, 19 50 mm) on a Waters HPLC system (Waters Corporation, Milford, MA) using step gradient elution with 30–90% MeOH/H2O at flow rate 25 mL/min during 10 min. Yield: 0.09 g (51%); 1H NMR (800 MHz, DMSO-d6): δ 8.54 (1 H, s), 8.26−8.18 (4 H, m), 8.05 (1 H, d, J = 8.8 Hz), 8.00 (2 H, br. s.), 7.86−7.83 (2 H, m), 7.78−7.77 (2 H, m), 7.73 (1 H, d, J = 8.3 Hz), 7.41−7.40 (2 H, m), 7.25 (4 H, s.), 7.20−7.16 (6 H, m), 7.08 (1 H, d, J = 8.8 Hz), 6.77 (1 H, s), 6.39 (1 H, s), 4.57−4.55 (2 H, m), 4.49−4.45 (2 H, m), 4.27 (2 H, m), 4.16−4.15 (2 H, m), 4.03−4.02 (1 H, m), 3.96−3.95 (1 H, m), 3.60−3.54 (4 H, m), 7.86−7.83 (2 H, m), 3.40 (1 H, m), 3.19−3.13 (5 H, m), 3.07−3.04 (3 H, m), 2.99−2.97 (2 H, m), 2.94−2.87 (2 H, m), 2.84 (2 H, br. s.), 2.75−2.67 (6 H, m), 2.55−2.47 (4 H, m), 2.27−2.21 (2 H, m), 1.95 (1 H, m), 1.86−1.82 (4 H, m), 1.76 (1 H, m), 1.69 (1 H, m), 1.64−1.63 (1 H, m), 1.54−1.50 (5 H, m), 1.36−1.33 (2 H, m), 0.88 (3 H, d, J = 6.4 Hz), 0.83 (3 H, d, J = 6.4 Hz) ppm; high-resolution mass spectrometry (HRMS) (electrospray ionization): m/z calcd. for [C68H81N11O16S+H+]: 1339.5583, found: 1340.5662.

    The partial 1H NMR spectrum of BER-blue in DMSO in the region 8.66.3 revealed all the proton peaks of B-Mal [except for the vinylic protons at 7.03 (h)] and new peaks due to the aromatic protons of the phenylalanine moiety at 7.37.1 (10 H) and N-H protons (*) of the CFFKDEL moiety at 8.288.13 (4 H), 8.037.97 (2 H), and 7.887.87 (1 H; Figure S2a,b). In addition, the 2D 1H-1H TOCSY spectrum and an overlay of TOCSY and NOESY spectra are consistent with the amide-to-side chain and amino acid residue connectivity in BER-blue (Figure S2c,d and Table S1). The chemical shifts of each proton in the fingerprint region of the TOCSY spectrum are summarized in Table S1. Furthermore, high-resolution mass spectrometry (HRMS) result on BER-blue molecular-weight ion peak at m/e = 1340.5662 (calcd. 1339.5583) (Figures S27). These results confirm that the fluorophores are linked to HS-Ac-CFFKDEL via a sulfide bond and that BER-blue represents a 1:1 mixture of two diastereomers produced after the addition of a thiol group to the maleimide moiety of B-Mal.

  • S10

    Figure S2. (a,b) Partial 1H NMR spectra of B-Mal (a) and BER-blue (b) in DMSO in the region 8.66.3. The protons in the B-Mal and Ac-CFFKDEL moieties are designated as ak, *, F2, and F3, respectively. (c) 2D 1H-1H TOCSY spectrum of BER-blue in the NH-Ha fingerprint region. Each line indicates amide-to-side chain connectivity. (d) Overlay of TOCSY (blue) and NOESY (red) spectra. The lines trace the sequential backbone assignment via intramolecular NH–Hα NOE connections. (e) An overlay of 1H-1H NOESY (black) and TOCSY (red) spectra showing NOE peaks between protons on succinimide and Cys moieties.

    Table S1. Chemical shifts of each proton in the fingerprint region of the TOCSY spectrum of BER-blue in DMSO-d6.

    BER-blueResidue NH Hα Hβ, Hβ’ Hγ, Hγ’ Hδ, Hδ’ Hε, Hε’ Hζ

    Cys1 8.18 4.47 3.07, 2.84Cys1a 8.18 4.45 3.05, 2.90Phe2 7.99 4.47 2.98, 2.76 7.25 7.16 7.17

    Phe2a 8.01 4.48 2.98, 2.76Phe3 8.20 4.55 2.90, 2.70 7.25 7.15 7.17

    Phe3a 8.15 4.56 2.90, 2.70Lys4 8.22 4.27 1.68, 1.54 1.33 1.53 2.75Asp5 8.25 4.55 2.66,2.54 6.30Glu6 7.85 4.27 1.94, 1.76 2.24 2.82Leu7 7.99 4.15 1.51 1.62 0.87, 0.82

    [2] (BER-1D).esp

    8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1Chemical Shift (ppm)

    ab

    f, gj

    e, hc,*i

    d *(4H)*(2H)

    (b) BER-blue F2,F3 (10H)

    k

    [1] (BMAL-1D).esp

    8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1Chemical Shift (ppm)

    a

    h

    bf, gje, hcid

    (a) B-Mal

    k

    [1] (BMAL-1D).esp

    8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1Chemical Shift (ppm)[2] (BER-1D).esp

    8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1Chemical Shift (ppm)

    //

    //

    HNO

    N N

    O

    O

    O

    NH ONH

    OHN

    ONH

    NH2

    OHN

    O

    OH ONH

    O OH

    OHN

    OH

    O

    S

    N

    O

    O

    NH(CH2)3B-Mal

    BER-blue

    B

    *

    **

    **

    **

    a

    bcde

    h ij k

    Ac-C1F2

    F3

    K4

    D5

    E6

    L7

    13

    h

    4,4’

    5β αf

    g

    (5a)

    4’ 4’a

    C1Hβ:5

    C1aHβ:5a

    4 4a

    C1Hα:5

    C1aHα:5a

    55a

    δ 1H (ppm)

    δ1 H

    (ppm

    )

    4.0

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

    2.9

    3.0

    3.1

    3.2

    3.3

    3.4

    3.5

    3.6

    3.7

    3.8

    3.9

    4.0

    4.1

    4.2

    4.3

    4.4

    4.5

    4.6

    (e)

    2

    αα

    β

    β

    (c)

    δ 1H (ppm)

    F3

    D5

    F2

    C1Hα:F2NHK4

    E6

    L7

    δ1 H

    (ppm

    )

    δ 1H (ppm)

    F2Hα:F3NHF3Hα:K4NHK4Hα:D5NHD5Hα:E6NHE6Hα:L7NH

    C1

    L7

    C1 F2

    K4

    D5

    E6

    F3

    [2] (BER-TOCSY).esp

    8.3 8.2 8.1 8.0 7.9 7.8 7.7F2 Chemical Shift (ppm)

    4.1

    4.2

    4.3

    4.4

    4.5

    4.6

    F1 C

    hem

    ical S

    hift

    (ppm

    )

    δ1 H

    (ppm

    )

    (d)

  • S11

    FER-green

    Compound FER-green was synthesized from F-Mal and the endoplasmic-reticulum peptide as described above. Yield: 0.07 g (64%); 1H NMR (800 MHz, DMSO-d6): δ 8.35−8.33 (2 H, m), 8.27−8.11 (6 H, m), 8.05 (1 H, d, J = 7.8 Hz ), 7.99−7.96 (2 H, m), 7.81 (1 H, d, J = 7.8 Hz), 7.73 (1 H, d, J = 7.8 Hz), 7.61 (1 H, d, J = 8.8 Hz), 7.54 (1 H, t, J = 7.8 Hz), 7.45 (1 H, t, J = 7.8 Hz), 7.26 (4 H, m), 7.20−7.17 (6 H, m), 6.73 (1 H, d, J = 1.0 Hz), 6.58 (1 H, dd, J = 8.3, 1.2 Hz), 4.57−4.55 (2 H, m), 4.49−4.45 (2 H, m), 4.27 (2 H, m), 4.16−4.15 (1 H, m), 4.03 (1 H, m), 3.95 (1 H, m), 3.53−3.51 (3 H, m), 3.20−3.04 (7 H, m), 2.99−2.97 (1 H, m), 2.92−2.90 (1 H, m), 2.83 (1 H, m), 2.75−2.70 (3 H, m), 2.56−2.46 (6 H, m), 2.56−2.46 (2 H, m), 2.26−2.25 (3 H, m), 1.98−1.92 (2 H, m), 1.83−1.80 (8 H, m), 1.65−1.62 (3 H, m), 1.56−1.54 (3 H, m), 1.52−1.43 (9 H, m), 1.27 (1 H, m), 0.89 (3 H, d, J = 6.8 Hz), 0.83 (3 H, d, J = 6.8 Hz) ppm; HRMS (electrospray ionization): m/z calcd. for [C73H87N11O16S2+H+]: 1421.5825, found: 1422.5903.

    A partial 1H NMR spectrum of FER-blue in DMSO in the region 8.46.5 manifested all the proton peaks of F-Mal [except for the vinylic protons at 7.03 (h)] and new peaks due to the aromatic protons of the phenylalanine moiety at 7.287.13 (10 H) and N-H protons (*) of the CFFKDEL moiety at 8.308.07 (4 H), 8.037.93 (2 H), and 7.847.78 (1 H; Figure S3a,b). In addition, a 2D 1H-1H TOCSY spectrum and an overlay of TOCSY and NOESY spectra are consistent with the amide-to-side chain and amino acid residue connectivity in FER-green (Figure S3c,d and Table S2). The chemical shifts of each proton in the fingerprint region of the TOCSY spectrum are summarized in Table S2. Furthermore, high-resolution mass spectrometry (HRMS) result on FER-green revealed molecular-weight ion peak at m/e = 1422.5903 (calcd. 1421.5825) (Figure S28). These results confirm that the fluorophore is linked to HS-Ac-CFFKDEL via a sulfide bond and that FER-green represent a 1:1 mixture of two diastereomers produced after the addition of a thiol group to the maleimide moiety of F-Mal.

  • S12

    Figure S3. (a,b) Partial 1H NMR spectra of F-Mal (a) and FER-green (b) in DMSO in the region 8.46.5. The protons in the F-Mal and Ac-CFFKDEL moieties are designated as ak, *, F2, and F3, respectively. (c) 2D 1H-1H TOCSY spectrum of FER-green in the NH-Ha fingerprint region. Each line indicates amide-to-side chain connectivity. (d) Overlay of TOCSY (red) and NOESY (green) spectra. The lines trace the sequential backbone assignment via intramolecular NH–Hα NOE connections.

    Table S2. Chemical shifts of each proton in the fingerprint region of the TOCSY spectrum of FER-green in DMSO-d6.

    FER-greenResidue NH Hα Hβ, Hβ’ Hγ, Hγ’ Hδ, Hδ’ Hε, Hε’ Hζ

    Cys1 8.20 4.44 3.06, 2.68Cys1a 8.18 4.44 3.06, 2.90Phe2 7.98 4.47 2.96, 2.74 7.25 7.16 7.17Phe2a 8.01 4.48 2.98, 2.76Phe3 8.18 4.58 3.08, 2.83 7.25 7.15 7.17Phe3a 8.15 4.58 3.05, 2.83Lys4 8.26 4.26 1.76, 1.68 1.53, 1.46 1.61, 1.60Asp5 8.36 4.55 2.72, 2.55Glu6 7.81 4.28 1.76, 1.93 2.26Leu7 8.10 4.17 1.63, 1.55 1.50 0.89, 0.83

    CJW_080819.002.esp

    8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5Chemical Shift (ppm)

    ke

    a f dg h b c

    hj i

    CJW_072519.002.esp

    8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5Chemical Shift (ppm)

    f g h b c

    j

    i

    (a) F-Mal

    (b) FER-green e, a,* (4H)

    d,**

    K,*

    F2, F3 (10H)

    (c)

    NH

    S

    N

    N

    O

    O

    O

    HNS

    ONH

    OHN

    ONH

    NH2

    OHN

    O

    OH ONH

    O OH

    OHN

    OH

    O

    FER-green

    N

    O

    O

    TFHN(H2C)3F-Mal

    *

    **

    **

    **

    Ac-C1F2

    F3

    K4

    D5

    E6

    L7

    β α

    dc

    ba

    f g h i

    ej

    6

    k

    31

    2 4,4’

    5

    h

    (d)[4] (FER-TOCSY).esp

    8.25 8.00 7.75F2 Chemical Shift (ppm)

    4.1

    4.2

    4.3

    4.4

    4.5

    4.6

    F1 C

    hem

    ical

    Shi

    ft (p

    pm)

    [4] (FER-TOCSY).esp

    3.00 2.75 2.50F2 Chemical Shift (ppm)

    4.1

    4.2

    4.3

    4.4

    4.5

    4.6

    F1 C

    hem

    ical

    Shi

    ft (p

    pm)

    [4] (FER-TOCSY).esp

    2.0 1.5 1.0F2 Chemical Shift (ppm)

    4.1

    4.2

    4.3

    4.4

    4.5

    4.6

    F1 C

    hem

    ical

    Shi

    ft (p

    pm)

    [4] (FER-TOCSY).esp

    3.00 2.75 2.50F2 Chemical Shift (ppm)

    4.1

    4.2

    4.3

    4.4

    4.5

    4.6

    F1 C

    hem

    ical

    Shi

    ft (p

    pm)L7

    C1F2

    K4

    D5

    E6

    F3

    [4] (FER-TOCSY).esp

    4.6 4.5 4.4 4.3 4.2 4.1F2 Chemical Shift (ppm)

    7.7

    7.8

    7.9

    8.0

    8.1

    8.2

    8.3

    8.4

    8.5

    F1 C

    hem

    ical

    Shi

    ft (p

    pm)

    F3

    D5

    F2

    K4

    E6

    L7

    δ1 H

    (ppm

    )

    δ 1H (ppm)

    C1F2Hα:F3NHF3Hα:K4NHK4Hα:D5NHD5Hα:E6NHE6Hα:L7NH

    C1Hα:F2NHδ

    1 H (p

    pm)

    δ 1H (ppm)

  • S13

    Spectroscopic Properties

    The spectral data were obtained as reported elsewhere, and the fluorescence quantum yield (Ф) was determined by a method from the literature.4,5 The spectral data obtained under various conditions are summarized in Table S3.

    Table S3. Spectroscopic properties.

    Cpd Solvent (ETN)a λmax/λflb c δd

    BER-blueEtOH (0.654)

    PBS (1.00)HeLa cell

    358/445 354e/465

    /460f (460)g

    1.01.0

    7161

    1580h

    FER-greenEtOH (0.654)

    PBS (1.00)HeLa cell

    385/513 373i/553

    /480f (497)g

    0.930.24

    20270

    3030h

    aThe numbers in parentheses are normalized empirical parameters of solvent polarity.6 bOne-photon absorption and emission maxima unless stated otherwise. cFluorescence quantum yield. dTP action cross-section in GM 15%. eMolar extinction coefficients () = 25,560 cm1M1. fλfl of emission spectra. gλfl of TPEF spectra. hEffective TP action cross-section (eff) values measured in HeLa cells. i = 32,440 cm1M1

    Solubility

    The solubility of BER-blue and FER-green in phosphate-buffered saline (PBS) was determined by a fluorescence method, as reported before.4

    Two-Photon Microscopy

    TPM images of probe-labeled cells and tissues were obtained by spectral confocal and multiphoton microscopes (Leica TCS SP2; Leica Camera, Solms, Germany), using the 100× oil objective with a numerical aperture (NA) of 1.30, and a 10× dry objective with a numerical aperture (NA) of 0.30. The excitation was provided using a mode-locked titanium-sapphire laser (Chameleon, 90 MHz, 200 fs; Coherent Inc., Santa Clara, CA, USA) set at 750 nm and output power of 1305 mW, which corresponded to a power of 4 × 109 mW/cm2 (100×) at the focal plane. Images were obtained by collecting the emissions at the indicated channels (see Table S4) with PMTs in an 8-bit unsigned 512 512 pixel format at a scan speed of 400 Hz.

  • S14

    Measurements of TP Action Cross-Section (Фδmax) and Effective TP Action Cross-Section (Фδeff)

    Фδmax and Фδeff of BER-blue and FER-green were determined via a comparison of TP excited fluorescence (TPEF) intensities of the probes with that of Rhodamine 6G in methanol in a cuvette or through a comparison of TPEF intensities from the regions of interest in probe-labeled cells with TPEF intensity of 5.0 µM Rhodamine 6G in methanol in the TPM setup, respectively.4

    Cell Preparation

    Human cervical carcinoma HeLa cells were acquired from the Korean Cell Line Bank (Seoul, Korea). The cells were cultured as described before and seeded 24 h prior to imaging at a density of 5.0 104 cells/mL on glass coverslips coated with 0.1 mg/mL poly-L-lysine for high-resolution OPM with Airyscan (LSM 800, Carl Zeiss) or in glass-bottomed dishes (SPL Life Sciences, Gyeonggi-do, Korea) for OPM and TPM live imaging.4

    Tissue Preparation

    All animal procedures were approved by the Korea Institute of Science and Technology Laboratory Animal Facilities and Use Committee and carried out at Association for Assessment and Accreditation of Laboratory Animal Care–accredited facilities. Ex vivo brain slices were obtained from the hippocampus of Sprague–Dawley rats aged 2 weeks (Orient Bio Inc., Gyeonggi-do, Korea). Hippocampal coronal slices were cut into 400-µm-thick slices on a vibrating-blade microtome in artificial cerebrospinal fluid and were used for TPM imaging as described before.7

  • S15

    Detection Windows

    The detection windows of the probes were determined ensuring good separation of the emission bands and similar emission intensities from the two probes under comparison. For the co-localization experiments with the probe-labeled cells, the detection windows were selected via a comparison of TPEF spectra of BER-blue, FER-green, ABI-Nu, and PLT-yellow (a TP probe for lysosomes), and a one-photon fluorescence spectrum of ETR in HeLa cells (Figure S6a and Table S4).4,8 The detection windows determined for the colocalization experiments in the HeLa cells colabeled with a pair of probes are summarized in Table S4. In each channel, the fluorescence of one probe contributed to that of another by 0–35% (Table S4).

    Table S4. Detection windows for the OPM and TPM imaging.

    OPM TPM

    BERa

    /ETRcFERb

    /ETRcBERa

    /FERbBERa

    /FERbBERa

    /PLTdBERa

    /ABIe

    Ch1 (0)f(400–550)g

    Ch1 (0)f

    (400-550)gCh2 (30)f (410‒460)g

    Ch3 (20)f (385‒450)g

    Ch4 (1)f (385‒500)g

    Ch5 (35)f

    (385‒435)g

    Ch8 (1)f

    (580–700)gCh8 (15)f

    (580–700)gCh6 (20)f

    (535‒655)gCh6 (17)f (535‒655)g

    Ch7 (0)f (600‒660)g

    Ch6 (35)f

    (535‒655)g

    aBER-blue. bFER-green. cER-tracker Red. dPLT-yellow. eABI-Nu. fThe degree (%) to which the emission intensity of one probe contributes to that of the other probe in a given channel. gWavelength ranges for each channel.

  • S16

    Cell Imaging by High-resolution OPM

    High-resolution OPM images of HeLa cells colabeled with BER-blue (5 μM) and ER-tracker Red (ETR; 1 μM) as well as with FER-green (3 μM) and ETR (1 μM) were captured by detection of the emission at 400550 nm (channel 1 [Ch1], BER-blue and FER-green) and 580–700 nm (Ch7, ETR) upon excitation at 405 nm for BER-blue and FER-green and at 561 nm for ETR during the OPM in Airyscan mode (LSM 800, Carl Zeiss) with an alpha Plan-Apochromat 63×/ 1.40 oil immersion objective lens. The obtained raw images were processed using the Zen software (Carl Zeiss). Pearson’s coefficient was calculated in the ImageJ software (NIH).

    Cell Imaging by OPM and TPM

    OPM images of HeLa cells colabeled with BER-blue (3 μM) and FER-green (1.5 μM) were captured by the emission acquired at 410–460 nm (Ch2, BER-blue) and 535–655 (Ch6, FER-green) after excitation at 405 nm under a confocal fluorescence microscope (LSM 700, Carl Zeiss) with a 63× oil objective lens. TPM images of HeLa cells colabeled with BER-blue (3 μM) and FER-green (1.5 μM) were obtained via recording of the emission at 385–450 nm (Ch3, BER-blue) and 535–655 nm (Ch6, FER-green) upon excitation at 750 nm under a multiphoton microscopy with a 100× oil objective lens as described elsewhere.4

    Tissue Imaging by TPM

    TPM images of ex vivo brain slices colabeled with BER-blue (10 μM) and ABI-Nu (a TP probe for nucleus, 3 μM) and those colabeled with BER-blue (10 μM) and FER-green (6 μM) were obtained across wavelength ranges 380–435 nm (Ch5, BER-blue) and 535–655 nm (Ch6, ABI-Nu) as well as 385–450 nm (Ch3, BER-blue) and 535–655 nm (Ch6, FER-green), respectively, after excitation at 750 nm. In all cases, 50–100 sectional TPM images were captured as reported before.9 Enlarged cellular TPM images of the brain slices were captured by means of a 100× oil objective lens.

    Cytotoxicity

    This property of BER-blue and FER-green was determined by the CellTiter-Glo Luminescent Cell Viability Assay (G7572, Promega, USA).

    Photostability

    This characteristic was determined as reported before.4

  • S17

    A Western Blot Assay

    HeLa cells were treated with 5 g/mL tunicamycin for 0−16 h and washed twice with ice-cold PBS. The cells were lysed in NP40 buffer (50 mM Tris-HCl pH 7.5, 1% of NP40, 1 mM EDTA, 150 mM NaCl, 5 mM Na3VO4, and 2.5 mM NaF) containing a 1× protease inhibitor cocktail (Roche). The mixture was centrifuged for 20 min at 15,871 g and 4°C, and the supernatants were collected. The protein concentrations were determined with the Bradford Protein Assay Kit (Bio-Rad, Inc., USA).Samples of the cell lysates containing equal amounts of total protein (25 μg) were separated

    by SDS-PAGE. The proteins were transferred to a nitrocellulose membrane (0.45 m pore size) in a Wet/Tank Blotting System. The membranes were blocked for 1 h in Tris-buffered saline containing 0.1% of Tween 20 (TBST) and 5% skim milk at room temperature. The membrane was hybridized at 4°C for 18 h with one of the following primary antibodies:

    anti-BIP (catalog No. 3183S, Cell Signaling Technology; dilution, 1:1000), anti-CHOP (catalog No. 5554S, Cell Signaling Technology; dilution, 1:1000), anti-cleaved caspase-3 (catalog No. 9661L; dilution, 1:1000), anti-PARP 1/2 (catalog No. 5625L; dilution, 1:3000), and anti-β-actin (catalog No. sc-47798, Santa Cruz Biotechnology; dilution, 1:10000). The membranes were washed three times with TBST (15 min each time) and then incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies (1:10000, an anti-mouse immunoglobulin G [IgG] antibody and anti-rabbit IgG antibody, GenDEPOT) in TBST with 1% skim milk at room temperature for 2 h. The protein bands were detected using the Enhanced Chemiluminescence Kit (PierceTM ECL Western Blotting Substrate and Super-SignalTM West Femto Maximum Sensitivity Substrate, Thermo Fisher Scientific, Inc.).

    Statistical Analysis

    Numerical data are presented as mean ± standard deviation. The significance of data after a comparison was evaluated by one-way ANOVA in GraphPad Prism 6.0 (GraphPad Software, Inc., San Diego, CA, USA). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

  • S18

    Figure S4. Normalized absorption (a) and emission (b) spectra of BER-blue and FER-green in phosphate-buffered saline (PBS) and EtOH.

    Figure S5. (a,c) Fluorescence spectra of BER-blue (a) and FER-green (c), and plots (b, d) of the fluorescence intensity against probe concentration for BER-blue (b) and FER-green (d) in PBS. The excitation wavelengths for BER-blue and FER-green were 354 and 373 nm,

    0 2 4 6 80

    10000

    20000

    30000

    Probe concentration, M

    Fluo

    resc

    ence

    Inte

    nsity

    (a.u

    .)

    ca. 0.4 M

    400 450 500 550 6000

    1000

    2000

    3000

    Wavelength, nm

    Fluo

    resc

    ence

    Inte

    nsity

    (a.u

    .)

    00.10.20.30.40.50.60.812357BER-blue

    0 2 4 6 80

    50000

    100000

    150000

    200000

    Probe concentration, M

    Fluo

    resc

    ence

    Inte

    nsity

    (a.u

    .)

    ca. 0.6 M

    400 500 600 7000

    70

    140

    210

    Wavelength, nm

    Fluo

    resc

    ence

    Inte

    nsity

    (a.u

    .)

    00.10.20.30.40.50.60.812357FER-green

    (a) (b)

    (c) (d)

    400 500 600 7000.0

    0.5

    1.0

    Wavelength, nm

    Nor

    mal

    ized

    Flu

    ores

    cenc

    e

    BER in PBSBER in EtOH

    FER in PBSFER in EtOH

    (a) (b)

    300 350 400 4500.0

    0.5

    1.0

    wavelength, nm

    Nor

    mal

    ized

    Abs

    orba

    nce

    FER in PBSFER in EtOH

    BER in PBSBER in EtOH

    400 500 600 7000.0

    0.5

    1.0

    Wavelength, nm

    Nor

    mal

    ized

    Flu

    ores

    cenc

    e

    BER in PBSBER in EtOH

    FER in PBSFER in EtOH

    (a) (b)

    300 350 400 4500.0

    0.5

    1.0

    wavelength, nm

    Nor

    mal

    ized

    Abs

    orba

    nce

    FER in PBSFER in EtOH

    BER in PBSBER in EtOH

    400 500 600 7000.0

    0.5

    1.0

    Wavelength, nm

    Nor

    mal

    ized

    Flu

    ores

    cenc

    e

    BER in PBSBER in EtOH

    FER in PBSFER in EtOH

    (a) (b)

    300 350 400 4500.0

    0.5

    1.0

    wavelength, nm

    Nor

    mal

    ized

    Abs

    orba

    nce

    FER in PBSFER in EtOH

    BER in PBSBER in EtOH

    400 500 600 7000.0

    0.5

    1.0

    Wavelength, nm

    Nor

    mal

    ized

    Flu

    ores

    cenc

    e

    BER in PBSBER in EtOH

    FER in PBSFER in EtOH

    400 500 600 7000.0

    0.5

    1.0

    Wavelength, nm

    Nor

    mal

    ized

    Flu

    ores

    cenc

    e

    BER in PBSBER in EtOH

    FER in PBSFER in EtOH

  • S19

    respectively.

    Figure S6. (a) Normalized TPEF spectra of BER-blue (blue), FER-green (green), PLT-yellow (orange), and ABI-Nu (purple) and a normalized fluorescence spectrum of ETR (red) in HeLa cells. The wavelengths for the one- and two-photon excitation were 405 and 750 nm, respectively. (b) TP excitation spectra of BER-blue and FER-green in EtOH and PBS, respectively.

    Figure S7. Viability of HeLa cells in the presence of BER-blue (a,b) or FER-green (c,d), as

    0.1 1 100

    20

    40

    60

    80

    100

    120

    Concentration, M

    Rel

    ativ

    e Si

    gnal

    Inte

    nsity

    (% o

    f con

    trol

    )

    (a) (b)

    0.1 1 100

    20

    40

    60

    80

    100

    120

    Concentration, M

    Rel

    ativ

    e Si

    gnal

    Inte

    nsity

    (% o

    f con

    trol

    )

    (c) (d)

    0.5 1 2 4 8 24 0

    20

    40

    60

    80

    100

    120

    BER-blue

    Time, h

    Rel

    ativ

    e Si

    gnal

    Inte

    nsity

    (% o

    f con

    trol

    )

    0.5 1 2 4 8 24 0

    20

    40

    60

    80

    100

    120

    FER-green

    Time, h

    Rel

    ativ

    e Si

    gnal

    Inte

    nsity

    (% o

    f con

    trol

    )

    400 450 500 550 600 6500.0

    0.5

    1.0

    Wavelength, nm

    Nor

    mal

    ized

    Flu

    ores

    cenc

    e

    BER

    ABI-Nu PLTFER

    ETR

    720 750 780 810 840 8700

    50

    100

    150

    200

    250

    Wavelength, nm

    (GM

    )

    BER-blue in EtOH

    FER-green in EtOHBER-blue in PBS

    FER-green in PBS

    (a) (b)

  • S20

    measured by a 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were incubated with the probes (010 M) for 024 h.

  • S21

    Figure S8. (a,c) Two-photon microscopy images of HeLa cells labeled with BER-blue (a) or FER-green (c). (b,d) Relative TPEF intensity as a function of time. The digitized intensity was recorded with 2 s intervals during 1 h in xyt mode. The TPEF intensities at positions AF were recorded at 380–660 nm upon excitation at 750 nm. Scale bar: 30 µm.

    Figure S9. Effects of pH on the one-photon fluorescence intensity of BER-blue and FER-green (2 μM each in universal buffer: 0.1 M citric acid, 0.1 M KH2PO4, 0.1 M Na2B4O7, 0.1 M Tris, and 0.1 M KCl).

    3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    FER-green

    pH

    Nor

    mal

    ized

    Flu

    ores

    cenc

    e

    3 4 5 6 7 8 9 100.0

    0.5

    1.0

    1.5

    BER-blue

    pH

    Nor

    mal

    ized

    Flu

    ores

    cenc

    e

    (a) (b)

    0 500 1000 1500 2000 2500 3000 35000

    20

    40

    60

    80

    100

    FER-green

    Time, s

    Fluo

    resc

    ence

    Inte

    nsity

    (a.u

    .) DEF

    0 400 800 1200 1600 2000 2400 2800 3200 36000

    50

    100

    150

    200

    Fluo

    resc

    ence

    Inte

    nsity

    (a.u

    .)

    Time, s

    A B C

    (a) (b)

    A

    C

    B

    0 400 800 1200 1600 2000 2400 2800 3200 36000

    50

    100

    Fluo

    resc

    ence

    Inte

    nsity

    (a.u

    .)

    Time, s

    D E F

    (c) (d)

    D

    E

    F

    (d)

    (b)

    0 500 1000 1500 2000 2500 3000 35000

    50

    100

    150

    200

    BER-blue

    Time, s

    Fluo

    resc

    ence

    Inte

    nsity

    (a.u

    .) ABC

  • S22

    Figure S10. Sectional TPM images of a rat hippocampal slice colabeled with BER-blue (10 μM) and FER-green (6 μM). The images were captured in channel 3 (Ch3: BER-blue, 385–450 nm) and Ch6 (FER-green, 535–655 nm) at a depth of 90–165 μm and 10× magnification after excitation at 750 nm.

    (a) (b) (c)

  • S23

    Mal-Furna-CHO-DMSOd6-H1.esp

    10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    Mal-Furna-CHO-DMSOd6-H1.esp

    3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3Chemical Shift (ppm)

    Mal-Furna-CHO-DMSOd6-H1.esp

    3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3Chemical Shift (ppm)

    Mal-Furna-CHO-DMSOd6-H1.esp

    3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3Chemical Shift (ppm)

    Mal-Furna-CHO-DMSOd6-H1.esp

    7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6Chemical Shift (ppm)

    Mal-Furna-CHO-DMSOd6-H1.esp

    7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6Chemical Shift (ppm)

    Mal-Furna-CHO-DMSOd6-H1.esp

    11.1 11.0 10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5Chemical Shift (ppm)

    //////////

    N O

    O

    O

    O

    Figure S11. 1H NMR spectrum (300 MHz) of compound I in DMSO-d6.

    Figure S12. 13C NMR spectrum (75 MHz) of compound I in DMSO-d6.

    ALDEHYDE-MAL-FURAN-DMSOD6-C13-1.ESP

    216 208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

    N

    O

    O

    OO

  • S24

    H1)H2N-NAPH-BZ-H-1-CDCL3-H1.ESP

    9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    H1)H2N-NAPH-BZ-H-1-CDCL3-H1.ESP

    9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3Chemical Shift (ppm)

    NH2

    O

    N

    Figure S13. 1H NMR spectrum (300 MHz) of compound B-NH2 in CDCl3.

    C1)B-CDCL3-C13.ESP

    168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

    C1)B-CDCL3-C13.ESP

    131.0 130.5 130.0 129.5 129.0 128.5 128.0 127.5 127.0 126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5Chemical Shift (ppm)

    NH2

    O

    N

    Figure S14. 13C NMR spectrum (75 MHz) of compound B-NH2 in CDCl3.

  • S25

    H2)B1-CDCL3-H1.ESP

    8.65 8.60 8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50Chemical Shift (ppm)

    H2)B1-CDCL3-H1.ESP

    8.65 8.60 8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50Chemical Shift (ppm)

    H2)B1-CDCL3-H1.ESP

    8.65 8.60 8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50Chemical Shift (ppm)

    H2)B1-CDCL3-H1.ESP

    7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 6.25Chemical Shift (ppm)

    H2)B1-CDCL3-H1.ESP

    7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 6.25Chemical Shift (ppm)

    // // // //

    N

    O

    NH

    N

    O

    O

    O

    H2-1)B1-CDCL3-H1.ESP

    9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    H2-1)B1-CDCL3-H1.ESP

    3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7Chemical Shift (ppm)

    H2-1)B1-CDCL3-H1.ESP

    3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7Chemical Shift (ppm)

    H2-1)B1-CDCL3-H1.ESP

    3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7Chemical Shift (ppm)

    ////

    Figure S15. 1H NMR spectrum (300 MHz) of compound 3 in CDCl3.

    N

    O

    NH

    N

    O

    O

    O

    C2)BZ-MAL-FURAN-CDCL3-C13.ESP

    138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117Chemical Shift (ppm)

    C2)BZ-MAL-FURAN-CDCL3-C13.ESP

    138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117Chemical Shift (ppm)

    //C2)B1-C13.ESP

    176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

    C2)B1-C13.ESP

    50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24Chemical Shift (ppm)

    C2)B1-C13.ESP

    50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24Chemical Shift (ppm)

    //

    C2)B1-C13.ESP

    50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24Chemical Shift (ppm)

    C2)B1-C13.ESP

    91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65Chemical Shift (ppm)

    ////

    Figure S16. 13C NMR spectrum (75 MHz) of compound 3 in CDCl3.

  • S26

    N

    O

    NH

    N

    O

    O

    NMR2D_1072519.027-BMal.esp

    8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    Water

    NMR2D_1072519.027-BMal.esp

    8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70Chemical Shift (ppm)

    NMR2D_1072519.027-BMal.esp

    8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70Chemical Shift (ppm)

    NMR2D_1072519.027-BMal.esp

    8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70Chemical Shift (ppm)

    NMR2D_1072519.027-BMal.esp

    7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65Chemical Shift (ppm)

    NMR2D_1072519.027-BMal.esp

    7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65Chemical Shift (ppm)

    NMR2D_1072519.027-BMal.esp

    6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 6.25 6.20 6.15 6.10 6.05 6.00 5.95 5.90Chemical Shift (ppm)

    NMR2D_1072519.027-BMal.esp

    6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 6.25 6.20 6.15 6.10 6.05 6.00 5.95 5.90Chemical Shift (ppm)

    // // // // // //

    NMR2D_1072519.027-BMal.esp

    3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85Chemical Shift (ppm)

    WaterNMR2D_1072519.027-BMal.esp

    3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85Chemical Shift (ppm)

    WaterNMR2D_1072519.027-BMal.esp

    2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35Chemical Shift (ppm)

    // //

    NMR2D_1072519.027-BMal.esp

    8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    DMSO-d6

    Water

    8.53

    47

    8.04

    838.

    0361

    7.83

    567.

    8246

    7.77

    82 7.77

    217.

    7672

    7.72

    447.

    7134 7.39

    947.

    3945

    7.38

    967.

    0731

    7.02

    91

    6.75

    16

    6.38

    386.

    3765

    3.57

    423.

    5657

    3.55

    71 3.34

    69 3.3

    029

    3.16

    363.

    1550

    3.14

    773.

    1392

    2.50

    00

    1.88

    28 1.87

    431.

    8657

    NMR2D_1072519.027-BMal.esp

    8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    DMSO-d6

    Water

    8.53

    47

    8.04

    838.

    0361

    7.83

    567.

    8246

    7.77

    82 7.77

    217.

    7672

    7.72

    447.

    7134 7.39

    947.

    3945

    7.38

    967.

    0731

    7.02

    91

    6.75

    16

    6.38

    386.

    3765

    3.57

    423.

    5657

    3.55

    71 3.34

    69 3.3

    029

    3.16

    363.

    1550

    3.14

    773.

    1392

    2.50

    00

    1.88

    28 1.87

    431.

    8657

    Figure S17. 1H NMR spectrum (800 MHz) of B-Mal in DMSO-d6.

    N

    O

    NH

    N

    O

    O

    C3-1)B-MAL-CDCL3_10-CD3OD_1-C13.ESP

    184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

    C3-1)B-MAL-CDCL3_10-CD3OD_1-C13.ESP

    43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24Chemical Shift (ppm)C3-1)B-MAL-CDCL3_10-CD3OD_1-C13.ESP

    174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136Chemical Shift (ppm)

    C3-1)B-MAL-CDCL3_10-CD3OD_1-C13.ESP

    174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136Chemical Shift (ppm)

    C3-1)B-MAL-CDCL3_10-CD3OD_1-C13.ESP

    174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136Chemical Shift (ppm)

    // //

    C3-1)B-MAL-CDCL3_10-CD3OD_1-C13.ESP

    130 128 126 124 122 120 118 116 114 112 110 108 106 104 102Chemical Shift (ppm)

    C3-1)B-MAL-CDCL3_10-CD3OD_1-C13.ESP

    130 128 126 124 122 120 118 116 114 112 110 108 106 104 102Chemical Shift (ppm)

    //

    C3-1)B-MAL-CDCL3_10-CD3OD_1-C13.ESP

    130 128 126 124 122 120 118 116 114 112 110 108 106 104 102Chemical Shift (ppm)

    //

    Figure S18. 13C NMR spectrum (75 MHz) of B-Mal in CDCl3/CD3OD (10/1).

  • S27

    NH2S

    N

    H6)F-CDCL3-H1.ESP

    9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    H6)F-CDCL3-H1.ESP

    8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6Chemical Shift (ppm)

    H6)F-CDCL3-H1.ESP

    8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6Chemical Shift (ppm)

    //

    Figure S19. 1H NMR spectrum (300 MHz) of F-NH2 in CDCl3.

    NH2S

    N

    C6)F-CDCL3-C13.ESP

    136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117Chemical Shift (ppm)

    C6-1)F-CDCL3-C13.ESP

    176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

    Figure S20. 13C NMR spectrum (75 MHz) of F-NH2 in CDCl3.

  • S28

    NH

    N

    O

    O

    S

    N

    O

    H7)F1-CDCL3-H1.ESP

    8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3Chemical Shift (ppm)

    H7)F1-CDCL3-H1.ESP

    8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3Chemical Shift (ppm)

    //

    H7-2)F1-CDCL3-H1.ESP

    8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    Figure S21. 1H NMR spectrum (300 MHz) of compound 4 in CDCl3.

    NH

    N

    O

    O

    S

    N

    OC7)F1-CDCL3-C13.ESP

    138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118Chemical Shift (ppm)

    C7)F1-CDCL3-C13.ESP

    138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118Chemical Shift (ppm)

    //C7-1)F1-CDCL3-C13.ESP

    176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

    C7-1)F1-CDCL3-C13.ESP

    50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23Chemical Shift (ppm)

    C7-1)F1-CDCL3-C13.ESP

    50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23Chemical Shift (ppm)

    C7-1)F1-CDCL3-C13.ESP

    50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23Chemical Shift (ppm)

    // //

    Figure S22. 13C NMR spectrum (75 MHz) of compound 4 in CDCl3.

  • S29

    CJW_080819.003.esp

    8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    CJW_080819.003.esp

    2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.05 1.00 0.95 0.90 0.85Chemical Shift (ppm)

    CJW_080819.003.esp

    2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.05 1.00 0.95 0.90 0.85Chemical Shift (ppm)

    CJW_080819.003.esp

    3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0Chemical Shift (ppm)

    // //

    CJW_080819.003.esp

    8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20Chemical Shift (ppm)

    CJW_080819.003.esp

    8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20Chemical Shift (ppm)

    CJW_080819.003.esp

    8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20Chemical Shift (ppm)

    CJW_080819.003.esp

    8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20Chemical Shift (ppm)

    CJW_080819.003.esp

    7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 6.25 6.20 6.15Chemical Shift (ppm)

    CJW_080819.003.esp

    7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 6.30 6.25 6.20 6.15Chemical Shift (ppm)

    // ////////

    NH

    N

    O

    O

    S

    N

    CJW_080819.003.esp

    6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5Chemical Shift (ppm)

    DMSO-d6

    Water

    3.55

    22 3.54

    373.

    5339

    3.11

    103.

    1013

    3.09

    27

    1.84

    251.

    8340

    1.82

    421.

    8156

    1.80

    59

    1.45

    76

    Figure S23. 1H NMR spectrum (800 MHz) of F-Mal in DMSO-d6.

    NH

    N

    O

    O

    S

    NC8)F-MAL-CDCL3-C13.ESP

    136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117Chemical Shift (ppm)

    C8)F-MAL-CDCL3-C13.ESP

    176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0Chemical Shift (ppm)

    C8-1)F-MAL-CDCL3-C13.ESP

    48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25Chemical Shift (ppm)

    C8-1)F-MAL-CDCL3-C13.ESP

    48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25Chemical Shift (ppm)

    //

    Figure S24. 13C NMR spectrum (75 MHz) of F-Mal in CDCl3.

  • S30

    NMR2D_1072519.201-BER1D1.ESP

    8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    NHO

    N

    N

    O

    O

    O

    NHS

    ONH

    OHN

    ONH

    NH2

    OHN

    O

    OH ONH

    O OH

    OHN

    OH

    OBER-blue

    Figure S25. 1H NMR spectrum (800 MHz) of BER-blue in DMSO-d6.NMR2D_1072519.002.esp

    8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0Chemical Shift (ppm)

    NH

    N

    O

    O

    S

    NO

    NHS OHN

    O

    NH

    OHN

    H2N

    O

    NH

    O

    OH OHN

    OHO

    O

    NH

    OH

    O

    FER-green

    Figure S26. 1H NMR spectrum (800 MHz) of FER-green in DMSO-d6.

  • S31

    Figure S27. HRMS of BER-blue. TOF MS: time-of-flight mass spectrometry.

    Figure S28. HRMS of FER-green. TOF MS: time-of-flight mass spectrometry.

    m/z result

    Molecular formula: C68H81N11O16SExact mass: 1339.5583335.8974 (4+)447.5273 (3+)670.7870 (2+)1340.5662 (1+)

    [M+H]+Isotope modeling

    [M+H]+

    [M+2H]2+

    m/z result

    Molecular formula: C73H87N11O15S2Exact mass: 1421.5825356.4034 (4+)474.8686 (3+)711.7991 (2+)1422.5903 (1+)

    [M+H]+Isotope modeling

    [M+H]+

    [M+2H]2+

  • S32

    Reference

    1. L. Zeng, T. Xia, T, W. Hu, S. Chen, S. Chi, Y. Lei and Z. Liu, Anal. Chem. 2018, 90, 1317.

    2. A. Ganguly, J. Zhu and T.L. Kelly, J. Phys. Chem. C., 2017, 121, 9110.

    3. B.J. Neubert and B.B. Snider, Org. Lett. 2003, 5, 765.

    4. C.S. Lim, S.T. Hong, S.S. Ryu, D.E. Kang and B.R. Cho, Chem. Asian J., 2015, 10, 2240.

    5. K. Rurack and M. Spieles, Anal. Chem., 2011, 83, 1232.

    6. C. Reichardt, Chem Rev, 1994, 94, 2319.

    7. P.S. Mohan, C.S. Lim, Y.S. Tian, W.Y. Roh, J.H. Lee and B.R. Cho, Chem. Commun., 2009 5365.

    8. C.S. Lim, E.S. Kim, J.Y. Kim, S.T. Hong, H.J. Chun, D.E. Kang and B.R. Cho, Sci Rep., 2015, 5, 18521.

    9. J.-W. Choi, S.T. Hong, M.S. Kim, K.C. Paik, M.S. Han and B.R. Cho, Anal Chem, 2019, 91, 6669.