Destabilizing Effects of Market Size in the Dynamics of ...kmatsu...Destabilizing Effects of Market...

29
Destabilizing Effects of Market Size in the Dynamics of Innovation Page 1 of 29 Destabilizing Effects of Market Size in the Dynamics of Innovation Kiminori Matsuyama Northwestern University Philip Ushchev HSE University, St. Petersburg 2020-09-28; 7:01:04 PM

Transcript of Destabilizing Effects of Market Size in the Dynamics of ...kmatsu...Destabilizing Effects of Market...

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 1 of 29

    Destabilizing Effects of Market Size in the Dynamics of Innovation

    Kiminori Matsuyama

    Northwestern University

    Philip Ushchev

    HSE University, St. Petersburg

    2020-09-28; 7:01:04 PM

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 2 of 29

    Introduction

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 3 of 29

    Market Size Effect on the Dynamics of Innovation β€’ Many existing studies on the market size effect on innovation & long-run growth. β€’ Little is known about the market size effect on patterns of fluctuations in innovation. β€’ In existing models of endogenous innovation cycles, market size merely alters the

    amplitude of fluctuations without affecting the nature of fluctuations. o Due to CES homothetic demand system for innovated products, monopolistically

    competitive firms sell their products at an exogenous markup rate o Procompetitive effect of market size is missing

    β€’ We extend a model of endogenous innovation cycles with a more general homothetic demand system, which allows for the procompetitive effect. o Judd (1985; section 4) o H.S.A. demand system

    β€’ We find that a larger market size/innovation cost ratio, which forces the innovators to

    face more elastic demand and to sell their products at lower markup rates through the procompetitive effect, has destabilizing effects in the dynamics of innovation

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 4 of 29

    Judd (1985) Dynamic Dixit-Stiglitz model, with symmetric CRS CES technology, where the masses of competitively and monopolistically supplied input varieties change over time through innovation, diffusion, and obsolescence o Innovators pay a one-time innovation cost to introduce a new variety. o Innovators keep monopoly power for a limited time. Then, their innovations become

    supplied competitively. That’s when innovations reach their full potential. o This creates the force for temporary clustering of innovations. o All existing varieties, subject to idiosyncratic obsolescence shocks.

    Judd (1985; Sec.3); Continuous time and monopoly lasting for 0 < 𝑇𝑇 < ∞ o Delayed differential equation (with an infinite dimensional state space) o For 𝑇𝑇 > 𝑇𝑇𝑐𝑐 > 0, the economy alternates between the phases of active innovation

    and of no innovation along any equilibrium path for almost all initial conditions.

    Judd (1985; Sec.4); a simple yet rich set of dynamics, incl. endogen. fluctuations o Discrete time and one period monopoly for analytical tractability o 1D state space (the mass of competitive varieties inherited from past innovation

    determines how saturated the market is) o Dynamics governed by a 1D PWL (skewed V-) map, fully characterized o Properties depend on the β€œdelayed impact of innovations”, a constant number,

    determined solely by (exogenously) constant price elasticity, hence invariant of the market size and innovation cost.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 5 of 29

    H.S.A. (Homothetic with a Single Aggregator) Demand System The market share of each input depends solely on its single relative price, defined as its own price divided by the common input price aggregator

    𝑝𝑝𝑑𝑑(πœ”πœ”)𝑃𝑃(𝐩𝐩𝒕𝒕)

    πœ•πœ•π‘ƒπ‘ƒ(𝐩𝐩𝒕𝒕)πœ•πœ•π‘π‘π‘‘π‘‘(πœ”πœ”)

    = 𝑠𝑠 �𝑝𝑝𝑑𝑑(πœ”πœ”)𝐴𝐴(𝐩𝐩𝒕𝒕)

    οΏ½

    β€’ 𝑠𝑠:ℝ++ β†’ ℝ+: the market share function, decreasing in the relative price, β€œgross

    substitutes” with 𝑠𝑠(0) = ∞ & 𝑠𝑠(∞) = 0. β€’ 𝐴𝐴(𝐩𝐩): the common price aggregator against which the relative price of each input is

    measured. Linear homogenous in 𝐩𝐩, defined by

    οΏ½ 𝑠𝑠 �𝑝𝑝𝑑𝑑(πœ”πœ”)𝐴𝐴(𝐩𝐩𝒕𝒕)

    οΏ½π‘‘π‘‘πœ”πœ”Ξ©π‘‘π‘‘

    ≑ 1

    β€’ 𝑃𝑃(𝐩𝐩): the unit cost function (the price index), related to 𝐴𝐴(𝐩𝐩𝒕𝒕) as:

    ln𝑃𝑃(𝐩𝐩) = ln𝐴𝐴(𝐩𝐩) βˆ’οΏ½ ��𝑠𝑠(πœ‰πœ‰)πœ‰πœ‰ dπœ‰πœ‰

    ∞

    𝑝𝑝(πœ”πœ”)𝐴𝐴(𝐩𝐩)

    οΏ½ π‘‘π‘‘πœ”πœ”Ξ©

    + 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐

    Notes: β€’ CES and translog are special cases. β€’ 𝐴𝐴(𝐩𝐩) β‰  𝑐𝑐𝑃𝑃(𝐩𝐩) (with the sole exception of CES), 𝐴𝐴(𝐩𝐩) captures the cross-effects in the demand system 𝑃𝑃(𝐩𝐩) captures the productivity consequences of price changes

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 6 of 29

    Monopolistic Competition under H.S.A. Price elasticity of demand for an input depends only on its relative price, 𝜁𝜁 �𝑝𝑝𝑑𝑑(πœ”πœ”)

    𝐴𝐴(𝐩𝐩𝒕𝒕)οΏ½, where

    𝜁𝜁(𝑧𝑧) ≑ 1 βˆ’π‘ π‘ β€²(𝑧𝑧)𝑧𝑧𝑠𝑠(𝑧𝑧)

    > 1

    β€’ 𝜁𝜁(βˆ™) is constant under CES β€’ Under increasing 𝜁𝜁(βˆ™), Marshall’s 2nd law of demand, consistent with the

    Procompetitive effect of market size and entry

    Main Results: Dynamics of the Judd model under H.S.A.: β€’ still governed by a 1D-PWL (skewed V-) map, hence remain equally tractable. β€’ Delayed impact of innovations, still a constant number (with the same range of the

    value if 𝜁𝜁(βˆ™) is increasing), but now depends on the market size/innovation cost ratio. β€’ A larger market size/innovation cost ratio, by reducing the markup rate through the

    procompetitive effect, increases the delayed impact, with destabilizing effects in the dynamics of innovation, o Under the log-concavity of 𝜁𝜁(βˆ™) βˆ’ 1, i.e., if 𝜁𝜁(βˆ™) is β€œnot too convex.” o in two parametric families with choke prices, β€œGeneralized Translog” and

    β€œConstant Pass-Through,” even though the log-concavity does not hold.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 7 of 29

    Innovation Cycle under CES: Revisiting Judd (1985)

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 8 of 29

    Time: 𝑐𝑐 ∈ {0, 1,2, … } Representative Household: supply L units of labor (numeraire), consume the single perishable consumption good, 𝐢𝐢𝑑𝑑, with 𝑃𝑃𝑑𝑑𝐢𝐢𝑑𝑑 = 𝐿𝐿. No need to specify intertemporal preferences. With no means to save in the model, the interest rate adjusts endogenously to force the household to spend its income each period. Competitive Final Goods Producers: assemble differentiated inputs using symmetric CES with gross substitutes

    𝐢𝐢𝑑𝑑 = π‘Œπ‘Œπ‘‘π‘‘ = 𝐹𝐹(𝐱𝐱𝒕𝒕) = 𝑍𝑍 οΏ½οΏ½ [π‘₯π‘₯𝑑𝑑(πœ”πœ”)]1βˆ’1πœŽπœŽπ‘‘π‘‘πœ”πœ”

    Ω𝑑𝑑�

    πœŽπœŽπœŽπœŽβˆ’1

    (𝜎𝜎 > 1),

    Unit cost function: 𝑃𝑃𝑑𝑑 = 𝑃𝑃(𝐩𝐩𝒕𝒕) =1π‘π‘οΏ½βˆ« [𝑝𝑝𝑑𝑑(πœ”πœ”)]1βˆ’πœŽπœŽπ‘‘π‘‘πœ”πœ”Ξ©π‘‘π‘‘ οΏ½

    11βˆ’πœŽπœŽ

    Demand for a Differentiated Input: π‘₯π‘₯𝑑𝑑(πœ”πœ”) =

    [𝑝𝑝𝑑𝑑(πœ”πœ”)]βˆ’πœŽπœŽπΏπΏ

    ∫ [𝑝𝑝𝑑𝑑(πœ”πœ”β€²)]1βˆ’πœŽπœŽπ‘‘π‘‘πœ”πœ”β€²Ξ©π‘‘π‘‘

    Sets of differentiated inputs: change due to innovation, diffusion, obsolescence Ω𝑑𝑑 = Ω𝑑𝑑𝑐𝑐 + Ξ©π‘‘π‘‘π‘šπ‘š: Set of all differentiated inputs available in 𝑐𝑐, partitioned into: Ξ©π‘‘π‘‘π‘šπ‘š: Set of new inputs introduced & sold exclusively by the innovators for one period. Ω𝑑𝑑𝑐𝑐: Set of competitively supplied inputs, which were innovated before 𝑐𝑐.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 9 of 29

    Production & pricing of different. inputs: πœ“πœ“ units of labor per unit of each variety 𝑝𝑝𝑑𝑑(πœ”πœ”) = πœ“πœ“ = 𝑝𝑝𝑐𝑐 , π‘₯π‘₯𝑑𝑑𝑐𝑐(πœ”πœ”) ≑ π‘₯π‘₯𝑑𝑑𝑐𝑐 𝑓𝑓𝑐𝑐𝑓𝑓 πœ”πœ” ∈ Ω𝑑𝑑𝑐𝑐 βŠ‚ Ω𝑑𝑑

    𝑝𝑝𝑑𝑑(πœ”πœ”) =πœ“πœ“

    1 βˆ’ 1/πœŽπœŽβ‰‘ π‘π‘π‘šπ‘š, π‘₯π‘₯π‘‘π‘‘π‘šπ‘š(πœ”πœ”) ≑ π‘₯π‘₯π‘‘π‘‘π‘šπ‘š 𝑓𝑓𝑐𝑐𝑓𝑓 πœ”πœ” ∈ Ξ©π‘‘π‘‘π‘šπ‘š βŠ‚ Ω𝑑𝑑

    𝑝𝑝𝑐𝑐

    π‘π‘π‘šπ‘š = 1 βˆ’1𝜎𝜎

    < 1,π‘₯π‘₯𝑑𝑑𝑐𝑐

    π‘₯π‘₯π‘‘π‘‘π‘šπ‘š= οΏ½1 βˆ’

    1πœŽπœŽοΏ½βˆ’πœŽπœŽ

    > 1,𝑝𝑝𝑐𝑐π‘₯π‘₯𝑑𝑑𝑐𝑐

    π‘π‘π‘šπ‘šπ‘₯π‘₯π‘‘π‘‘π‘šπ‘š= οΏ½1 βˆ’

    1𝜎𝜎�1βˆ’πœŽπœŽ

    ≑ πœƒπœƒ ∈ (1, 𝑒𝑒)

    Note: in equilibrium, each variety faces the demand curve,

    π‘₯π‘₯𝑑𝑑(πœ”πœ”) =𝐿𝐿�𝑝𝑝𝑑𝑑(πœ”πœ”)οΏ½

    βˆ’πœŽπœŽ

    𝑉𝑉𝑑𝑑𝑐𝑐(𝑝𝑝𝑐𝑐)1βˆ’πœŽπœŽ + π‘‰π‘‰π‘‘π‘‘π‘šπ‘š(π‘π‘π‘šπ‘š)1βˆ’πœŽπœŽ=

    𝐿𝐿𝑉𝑉𝑑𝑑(πœ“πœ“)1βˆ’πœŽπœŽ

    �𝑝𝑝𝑑𝑑(πœ”πœ”)οΏ½βˆ’πœŽπœŽ

    and π‘Œπ‘Œπ‘‘π‘‘πΏπΏ =

    1𝑃𝑃𝑑𝑑

    = 𝑍𝑍[𝑉𝑉𝑑𝑑𝑐𝑐(𝑝𝑝𝑑𝑑𝑐𝑐)1βˆ’πœŽπœŽ + π‘‰π‘‰π‘‘π‘‘π‘šπ‘š(π‘π‘π‘‘π‘‘π‘šπ‘š)1βˆ’πœŽπœŽ]1

    πœŽπœŽβˆ’1 =π‘π‘πœ“πœ“

    (𝑉𝑉𝑑𝑑)1

    πœŽπœŽβˆ’1

    where 𝑉𝑉𝑑𝑑𝑐𝑐 (π‘‰π‘‰π‘‘π‘‘π‘šπ‘š) is the measure of Ω𝑑𝑑𝑐𝑐 (Ξ©π‘‘π‘‘π‘šπ‘š) and

    𝑉𝑉𝑑𝑑 ≑ 𝑉𝑉𝑑𝑑𝑐𝑐 + π‘‰π‘‰π‘‘π‘‘π‘šπ‘š πœƒπœƒβ„ β€’ One competitive variety has the same effect with πœƒπœƒ > 1 monopolistic varieties. β€’ Impact of an innovation reach its full potential after its innovator loses monopoly β€’ Past innovations discourage more than contemporaneous innovations, which would

    give an incentive for temporal clustering of innovations

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 10 of 29

    Introduction of New Varieties: Innovation cost per variety, F

    π‘‰π‘‰π‘‘π‘‘π‘šπ‘š β‰₯ 0; (π‘π‘π‘šπ‘š βˆ’ πœ“πœ“)π‘₯π‘₯π‘‘π‘‘π‘šπ‘š =π‘π‘π‘šπ‘šπ‘₯π‘₯π‘‘π‘‘π‘šπ‘š

    𝜎𝜎 =𝑝𝑝𝑐𝑐π‘₯π‘₯𝑑𝑑𝑐𝑐

    πœŽπœŽπœƒπœƒ ≀ 𝐹𝐹 Complementary Slackness: Either net profit or innovation is zero in equilibrium Resource Constraint:

    𝐿𝐿 = 𝑉𝑉𝑑𝑑𝑐𝑐(πœ“πœ“π‘₯π‘₯𝑑𝑑𝑐𝑐) + π‘‰π‘‰π‘‘π‘‘π‘šπ‘š(πœ“πœ“π‘₯π‘₯π‘‘π‘‘π‘šπ‘š + 𝐹𝐹) = 𝑉𝑉𝑑𝑑𝑐𝑐(𝑝𝑝𝑐𝑐π‘₯π‘₯𝑑𝑑𝑐𝑐) + π‘‰π‘‰π‘‘π‘‘π‘šπ‘š(π‘π‘π‘šπ‘šπ‘₯π‘₯π‘‘π‘‘π‘šπ‘š) = 𝑉𝑉𝑑𝑑(𝑝𝑝𝑐𝑐π‘₯π‘₯𝑑𝑑𝑐𝑐)

    ⟹ 𝑉𝑉𝑑𝑑 ≑ 𝑉𝑉𝑑𝑑𝑐𝑐 +π‘‰π‘‰π‘‘π‘‘π‘šπ‘š

    πœƒπœƒ = π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯ οΏ½πΏπΏπœŽπœŽπœƒπœƒπΉπΉ

    ,𝑉𝑉𝑑𝑑𝑐𝑐� ⟺ π‘‰π‘‰π‘‘π‘‘π‘šπ‘š = π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯ �𝐿𝐿𝜎𝜎𝐹𝐹

    βˆ’ πœƒπœƒπ‘‰π‘‰π‘‘π‘‘π‘π‘ , 0οΏ½

    β€’ When innovations are active (π‘‰π‘‰π‘‘π‘‘π‘šπ‘š > 0), o one competitive variety crowds out ΞΈ > 1 innovations. o π‘₯π‘₯𝑑𝑑𝑐𝑐 = πœŽπœŽπœƒπœƒ(𝐹𝐹 πœ“πœ“β„ ) and π‘₯π‘₯π‘‘π‘‘π‘šπ‘š = (𝜎𝜎 βˆ’ 1)(𝐹𝐹 πœ“πœ“β„ ); independent of 𝐿𝐿, which affect only how

    much innovation takes place. β€’ 𝐿𝐿 (πœŽπœŽπœƒπœƒπΉπΉ)⁄ : the saturation level of competitive varieties, which kills incentive to

    innovate. Idiosyncratic Obsolescence Shock: 𝛿𝛿 ∈ (0,1), the survival rate

    𝑉𝑉𝑑𝑑+1𝑐𝑐 = 𝛿𝛿(𝑉𝑉𝑑𝑑𝑐𝑐 + π‘‰π‘‰π‘‘π‘‘π‘šπ‘š) = π›Ώπ›Ώπ‘šπ‘šπ‘šπ‘šπ‘₯π‘₯ �𝐿𝐿𝜎𝜎𝐹𝐹 + (1 βˆ’ πœƒπœƒ)𝑉𝑉𝑑𝑑

    𝑐𝑐 ,𝑉𝑉𝑑𝑑𝑐𝑐�

    Define 𝑐𝑐𝑑𝑑 ≑ �𝜎𝜎𝜎𝜎𝜎𝜎𝐿𝐿� 𝑉𝑉𝑑𝑑𝑐𝑐: (the normalized measure of) competitive varieties (=the market

    share of the competitive varieties, 𝑐𝑐𝑑𝑑 < 1)

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 11 of 29

    Dynamical System

    𝑐𝑐𝑑𝑑+1 = 𝑓𝑓(𝑐𝑐𝑑𝑑) ≑ �𝑓𝑓𝐿𝐿(𝑐𝑐𝑑𝑑) ≑ 𝛿𝛿(πœƒπœƒ + (1 βˆ’ πœƒπœƒ)𝑐𝑐𝑑𝑑) 𝑓𝑓𝑐𝑐𝑓𝑓 𝑓𝑓𝐻𝐻(𝑐𝑐𝑑𝑑) ≑ 𝛿𝛿𝑐𝑐𝑑𝑑 𝑓𝑓𝑐𝑐𝑓𝑓

    𝑐𝑐𝑑𝑑 < 1𝑐𝑐𝑑𝑑 > 1

    𝛿𝛿 ∈ (0,1), Survival rate of each variety

    πœƒπœƒ ≑ οΏ½1 βˆ’ 1𝜎𝜎�1βˆ’πœŽπœŽ

    ∈ (1, 𝑒𝑒), increasing in 𝜎𝜎 Market share multiplier due to the loss of monopoly power by its innovator πœƒπœƒ βˆ’ 1 > 0: Delayed impact of innovations 𝑉𝑉𝑑𝑑𝑐𝑐 =

    𝐿𝐿𝜎𝜎𝜎𝜎𝜎𝜎

    𝑐𝑐𝑑𝑑; π‘‰π‘‰π‘‘π‘‘π‘šπ‘š =πΏπΏπœŽπœŽπœŽπœŽπ‘šπ‘šπ‘šπ‘šπ‘₯π‘₯{1 βˆ’ 𝑐𝑐𝑑𝑑 , 0};

    𝑉𝑉𝑑𝑑 ≑ 𝑉𝑉𝑑𝑑𝑐𝑐 +π‘‰π‘‰π‘‘π‘‘π‘šπ‘š

    𝜎𝜎= 𝐿𝐿

    πœŽπœŽπœŽπœŽπœŽπœŽπ‘šπ‘šπ‘šπ‘šπ‘₯π‘₯{1,𝑐𝑐𝑑𝑑};

    𝑃𝑃𝑑𝑑 =πœ“πœ“π‘π‘

    (𝑉𝑉𝑑𝑑)1

    1βˆ’πœŽπœŽ; π‘Œπ‘Œπ‘‘π‘‘πΏπΏ

    = 1𝑃𝑃𝑑𝑑

    = (𝑉𝑉𝑑𝑑)1

    πœŽπœŽβˆ’1π‘π‘πœ“πœ“

    Key Features of Dynamical System: β€’ 1D-PWL noninvertible (a skewed V-shaped) map β€’ πœƒπœƒ depends solely on 𝜎𝜎; independent of L, F and πœ“πœ“. β€’ 𝐿𝐿/𝐹𝐹 merely affects the amplitude of fluctuations.

    𝑓𝑓𝐿𝐿(𝑐𝑐𝑑𝑑) ≑ π›Ώπ›Ώπœƒπœƒ βˆ’ 𝛿𝛿(πœƒπœƒ βˆ’ 1)𝑐𝑐𝑑𝑑

    45ΒΊ

    𝑐𝑐𝑑𝑑+1 π›Ώπ›Ώπœƒπœƒ

    π‘π‘βˆ— 𝑓𝑓𝐻𝐻(𝑐𝑐𝑑𝑑) = 𝛿𝛿𝑐𝑐𝑑𝑑 𝛿𝛿

    𝑐𝑐𝑑𝑑

    𝑓𝑓𝐿𝐿(𝛿𝛿)

    O 1 Active Innovation

    No Innovation

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 12 of 29

    A Unique Attractor: β€’ Stable steady state for 𝛿𝛿(πœƒπœƒ βˆ’ 1) < 1, globally attracting For 𝛿𝛿(πœƒπœƒ βˆ’ 1) < 1, unstable steady state, but the trajectory trapped into the red box. β€’ Stable 2-cycle for 𝛿𝛿2(πœƒπœƒ βˆ’ 1) < 1 < 𝛿𝛿(πœƒπœƒ βˆ’ 1), to which almost always converging β€’ Robust chaotic attractor with 2m intervals (m = 0, 1,…) for 𝛿𝛿2(πœƒπœƒ βˆ’ 1) > 1 Effects of 𝜹𝜹 (for πœƒπœƒ = 2.5) (In courtesy of L.Gardi and I.Sushko) Notes: Most existing examples of chaos

    in econ are not attractors; β€œPeriod three does not imply chaotic attractors.” Most existing examples of chaotic

    attractors in econ are not robust, since most applications use smooth dynamical systems. Judd model has a robust chaotic attractor due to its regime-switching (nonsmooth) feature.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 13 of 29

    In the (𝜹𝜹,𝜽𝜽)-plane Endogenous fluctuations with β€’ a higher Οƒ ⟹ a higher πœƒπœƒ (past innovations are more discouraging than

    contemporaneous innovations, stronger incentive for temporal clustering) β€’ a higher Ξ΄ (more current innovation survives to discourage future innovation). (In courtesy of L.Gardi and I.Sushko) Note: In general, an attractor of a skewed V-shaped map could be a stable p-cycle or a robust chaotic attractor with p-intervals (where p can be any natural number.) But, this can be ruled out in the Judd model because of πœƒπœƒ < 𝑒𝑒. Even with a stable steady state, slower convergence with a higher Οƒ (πœƒπœƒ) and/or a higher Ξ΄.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 14 of 29

    Innovation Cycle under H.S.A.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 15 of 29

    Symmetric Homothetic Demand with A Single Aggregator (Symmetric H.S.A.):

    𝑝𝑝𝑑𝑑(πœ”πœ”)π‘₯π‘₯𝑑𝑑(πœ”πœ”)𝑃𝑃(𝐩𝐩𝒕𝒕)π‘Œπ‘Œπ‘‘π‘‘

    =𝑝𝑝𝑑𝑑(πœ”πœ”)𝑃𝑃(𝐩𝐩𝒕𝒕)

    πœ•πœ•π‘ƒπ‘ƒ(𝐩𝐩𝒕𝒕)πœ•πœ•π‘π‘π‘‘π‘‘(πœ”πœ”)

    = 𝑠𝑠 �𝑝𝑝𝑑𝑑(πœ”πœ”)𝐴𝐴(𝐩𝐩𝒕𝒕)

    οΏ½

    o 𝑠𝑠:ℝ++ β†’ ℝ+: the market share function, decreasing in the relative price, β€œgross substitutes” with 𝑠𝑠(0) = ∞ & 𝑠𝑠(∞) = 0.

    o 𝐴𝐴(𝐩𝐩): the common price aggregator against which the relative price of each input is measured. Linear homogenous in 𝐩𝐩 defined implicitly by

    οΏ½ 𝑠𝑠 �𝑝𝑝𝑑𝑑(πœ”πœ”)𝐴𝐴(𝐩𝐩𝒕𝒕)

    οΏ½π‘‘π‘‘πœ”πœ”Ξ©π‘‘π‘‘

    = 1

    By construction, the shares of all inputs are added up to one. Notes: o Integrability is ensured: cf. Matsuyama-Ushchev (2017; Proposition 1). o Special cases: CES for 𝑠𝑠(𝑧𝑧) = 𝑧𝑧1βˆ’πœŽπœŽ (𝜎𝜎 > 1), Translog for 𝑠𝑠(𝑧𝑧) = max{βˆ’ log(𝑧𝑧) , 0}

    o ln𝑃𝑃(𝐩𝐩) = ln𝐴𝐴(𝐩𝐩) βˆ’ ∫ �∫ 𝑠𝑠(πœ‰πœ‰)πœ‰πœ‰ dπœ‰πœ‰βˆžπ‘π‘(πœ”πœ”)𝐴𝐴(𝐩𝐩)

    οΏ½ π‘‘π‘‘πœ”πœ”Ξ© + 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐

    𝐴𝐴(𝐩𝐩) β‰  𝑐𝑐𝑃𝑃(𝐩𝐩) (with the sole exception of CES), 𝐴𝐴(𝐩𝐩) captures the cross-effects in the demand system 𝑃𝑃(𝐩𝐩) captures the productivity consequences of price changes

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 16 of 29

    Pricing of Competitive Inputs: 𝑝𝑝𝑑𝑑(πœ”πœ”) = πœ“πœ“ = 𝑝𝑝𝑐𝑐 for all πœ”πœ” ∈ Ω𝑑𝑑𝑐𝑐 Pricing of Monopolistic Inputs: π‘€π‘€π‘šπ‘šπ‘₯π‘₯ (𝑝𝑝𝑑𝑑(πœ”πœ”) βˆ’ πœ“πœ“)π‘₯π‘₯𝑑𝑑(πœ”πœ”) = οΏ½1 βˆ’

    πœ“πœ“π‘π‘π‘‘π‘‘(πœ”πœ”)

    οΏ½ 𝑠𝑠 �𝑝𝑝𝑑𝑑(πœ”πœ”)𝐴𝐴(𝐩𝐩𝒕𝒕)

    οΏ½ 𝐿𝐿 FOC: 𝑝𝑝𝑑𝑑(πœ”πœ”) οΏ½1 βˆ’

    1𝜁𝜁(𝑝𝑝𝑑𝑑(πœ”πœ”) 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄ )

    οΏ½ = πœ“πœ“, where 𝜁𝜁(𝑧𝑧) is the price elasticity, given by

    𝜁𝜁(𝑧𝑧) ≑ 1 βˆ’π‘§π‘§π‘ π‘ β€²(𝑧𝑧)𝑠𝑠(𝑧𝑧)

    > 1 ⟺ 𝑠𝑠(𝑧𝑧) = �𝜁𝜁(𝜏𝜏) βˆ’ 1

    πœπœπ‘‘π‘‘πœπœ

    ∞

    𝑧𝑧> 0

    (A1): π‘§π‘§πœπœ

    β€²(𝑧𝑧)𝜁𝜁(𝑧𝑧)

    > 1 βˆ’ 𝜁𝜁(𝑧𝑧) for all 𝑧𝑧 ⟺ 𝑧𝑧 οΏ½1 βˆ’ 1𝜁𝜁(𝑧𝑧 )

    οΏ½ is increasing ⟺ 𝑠𝑠(𝑧𝑧)𝜁𝜁( 𝑧𝑧)

    is decreasing (A1) guarantees the symmetric pricing: 𝑝𝑝𝑑𝑑(πœ”πœ”) = π‘π‘π‘‘π‘‘π‘šπ‘š for all πœ”πœ” ∈ Ξ©π‘‘π‘‘π‘šπ‘š Define π‘§π‘§π‘‘π‘‘π‘šπ‘š ≑ π‘π‘π‘‘π‘‘π‘šπ‘š 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄ ; 𝑧𝑧𝑑𝑑𝑐𝑐 ≑ 𝑝𝑝𝑑𝑑𝑐𝑐 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄ . Then, Profit Maximization: π‘§π‘§π‘‘π‘‘π‘šπ‘š οΏ½1 βˆ’

    1πœπœοΏ½π‘§π‘§π‘‘π‘‘

    π‘šπ‘šοΏ½οΏ½ = 𝑧𝑧𝑑𝑑𝑐𝑐 π‘§π‘§π‘‘π‘‘π‘šπ‘š& 𝑧𝑧𝑑𝑑𝑐𝑐 move together under (A1)

    Maximized Profit: οΏ½1 βˆ’ 𝑧𝑧𝑑𝑑

    𝑐𝑐

    π‘§π‘§π‘‘π‘‘π‘šπ‘šοΏ½ 𝑠𝑠(π‘§π‘§π‘‘π‘‘π‘šπ‘š)𝐿𝐿 =

    𝑠𝑠(π‘§π‘§π‘‘π‘‘π‘šπ‘š)πœπœοΏ½π‘§π‘§π‘‘π‘‘

    π‘šπ‘šοΏ½πΏπΏ decreasing in π‘§π‘§π‘‘π‘‘π‘šπ‘š under (A1)

    Adding Up Constraint: π‘‰π‘‰π‘‘π‘‘π‘šπ‘šπ‘ π‘ (π‘§π‘§π‘‘π‘‘π‘šπ‘š) + 𝑉𝑉𝑑𝑑𝑐𝑐𝑠𝑠(𝑧𝑧𝑑𝑑𝑐𝑐) = 1.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 17 of 29

    Innovation (Free Entry): Complementarity Slackness Condition

    π‘‰π‘‰π‘‘π‘‘π‘šπ‘š β‰₯ 0; 𝑠𝑠(π‘§π‘§π‘‘π‘‘π‘šπ‘š)𝜁𝜁(π‘§π‘§π‘‘π‘‘π‘šπ‘š)

    𝐿𝐿 ≀ 𝐹𝐹

    For π‘‰π‘‰π‘‘π‘‘π‘šπ‘š > 0,

    π‘§π‘§π‘‘π‘‘π‘šπ‘š = π‘§π‘§π‘šπ‘š; 𝑧𝑧𝑑𝑑𝑐𝑐 = 𝑧𝑧𝑐𝑐 ≑ π‘§π‘§π‘šπ‘š οΏ½1 βˆ’1

    πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½οΏ½

    where π‘§π‘§π‘šπ‘š is defined by πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    ≑𝐿𝐿𝐹𝐹

    π‘§π‘§π‘šπ‘š increasing in 𝐿𝐿/𝐹𝐹 under (A1). From π‘‰π‘‰π‘‘π‘‘π‘šπ‘šπ‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½ + 𝑉𝑉𝑑𝑑𝑐𝑐𝑠𝑠�𝑧𝑧𝑐𝑐� = 1,

    π‘‰π‘‰π‘‘π‘‘π‘šπ‘š = πœƒπœƒ οΏ½1

    π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½βˆ’ 𝑉𝑉𝑑𝑑𝑐𝑐� > 0,π‘€π‘€β„Žπ‘’π‘’π‘“π‘“π‘’π‘’ πœƒπœƒ ≑

    π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    > 1.

    For π‘‰π‘‰π‘‘π‘‘π‘šπ‘š = 0, π‘§π‘§π‘‘π‘‘π‘šπ‘š β‰₯ π‘§π‘§π‘šπ‘š & 𝑧𝑧𝑑𝑑𝑐𝑐 β‰₯ 𝑧𝑧𝑐𝑐 . Hence, 𝑉𝑉𝑑𝑑𝑐𝑐 =

    1𝑠𝑠�𝑧𝑧𝑑𝑑

    𝑐𝑐�β‰₯ 1

    𝑠𝑠�𝑧𝑧𝑐𝑐� and,

    π‘‰π‘‰π‘‘π‘‘π‘šπ‘š = π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯ οΏ½πœƒπœƒ οΏ½1

    π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½βˆ’ 𝑉𝑉𝑑𝑑𝑐𝑐� , 0οΏ½ = π‘šπ‘šπ‘šπ‘šπ‘₯π‘₯ οΏ½

    πΏπΏπœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½πΉπΉ

    βˆ’ πœƒπœƒπ‘‰π‘‰π‘‘π‘‘π‘π‘ , 0οΏ½

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 18 of 29

    Idiosyncratic Obsolescence Shock: 𝛿𝛿 ∈ (0,1), the survival rate

    𝑉𝑉𝑑𝑑+1𝑐𝑐 = 𝛿𝛿(𝑉𝑉𝑑𝑑𝑐𝑐 + π‘‰π‘‰π‘‘π‘‘π‘šπ‘š) = π›Ώπ›Ώπ‘šπ‘šπ‘šπ‘šπ‘₯π‘₯ οΏ½πœƒπœƒ

    𝑠𝑠�𝑧𝑧𝑐𝑐�+ (1 βˆ’ πœƒπœƒ)𝑉𝑉𝑑𝑑𝑐𝑐 ,𝑉𝑉𝑑𝑑𝑐𝑐�

    Define 𝑐𝑐𝑑𝑑 ≑ 𝑠𝑠�𝑧𝑧𝑐𝑐�𝑉𝑉𝑑𝑑𝑐𝑐 (the normalized measure of) competitive varieties (=market share of all competitive varieties, when 𝑐𝑐𝑑𝑑 < 1) Dynamical System

    𝑐𝑐𝑑𝑑+1 = 𝑓𝑓(𝑐𝑐𝑑𝑑) ≑ �𝑓𝑓𝐿𝐿(𝑐𝑐𝑑𝑑) ≑ 𝛿𝛿(πœƒπœƒ + (1 βˆ’ πœƒπœƒ)𝑐𝑐𝑑𝑑) 𝑓𝑓𝑐𝑐𝑓𝑓 𝑓𝑓𝐻𝐻(𝑐𝑐𝑑𝑑) ≑ 𝛿𝛿𝑐𝑐𝑑𝑑 𝑓𝑓𝑐𝑐𝑓𝑓

    𝑐𝑐𝑑𝑑 < 1𝑐𝑐𝑑𝑑 > 1

    where

    πœƒπœƒ β‰‘π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    =𝑠𝑠 οΏ½ π‘§π‘§π‘šπ‘š οΏ½1 βˆ’ 1

    𝜁𝜁� π‘§π‘§π‘šπ‘šοΏ½οΏ½οΏ½

    π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½> 1;

    πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    ≑𝐿𝐿𝐹𝐹

    Notes: β€’ Dynamics are still governed by the same 1D PWL (skewed V-shape) map, as before. β€’ Its slopes still depend only on Ξ΄ and πœƒπœƒ, but πœƒπœƒ now depend on 𝑠𝑠(βˆ™) and 𝐿𝐿/𝐹𝐹. Note: We know that π‘§π‘§π‘šπ‘š and 𝑧𝑧𝑐𝑐 are both increasing in 𝐿𝐿/𝐹𝐹 under (A1).

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 19 of 29

    (A2): 𝜁𝜁(𝑧𝑧) is non-decreasing. β€’ (A2) implies (A1). β€’ As its relative price goes up, the demand curve for an input may become more price-

    elastic, but never become less price-elastic. (Marshall’s 2nd Law of Demand) β€’ By imposing (A2), we depart from CES only to allow for the Procompetitive Effect,

    Strategic Complementarity in pricing, and (firm-level) Incomplete Pass-through, since A strictly increasing (decreasing) 𝜁𝜁(𝑧𝑧) implies i) A larger market size has a pro-competitive (anti-competitive) effect, since πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ is

    strictly increasing (decreasing) in 𝐿𝐿/𝐹𝐹. F.O.C. under heterogenous costs implies ii) Pricing of monopolistic varieties are strategic complements (strategic substitutes).

    0 <dlogπ‘π‘π‘‘π‘‘π‘šπ‘š(πœ”πœ”)dlog𝐴𝐴(p𝑑𝑑)

    =Ξ”

    1 + Ξ” >()1,

    where Ξ” ≑ 𝑧𝑧𝑑𝑑(πœ”πœ”)πœπœβ€²οΏ½π‘§π‘§π‘‘π‘‘(πœ”πœ”)οΏ½

    οΏ½πœπœοΏ½π‘§π‘§π‘‘π‘‘(πœ”πœ”)οΏ½βˆ’1οΏ½πœπœοΏ½π‘§π‘§π‘‘π‘‘(πœ”πœ”)οΏ½> ( 0.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 20 of 29

    The Main Propositions

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 21 of 29

    Question #1: What is the range of πœƒπœƒ? For CES, πœƒπœƒ ∈ (1, 𝑒𝑒), where 𝑒𝑒 = 2.718 … Proposition 1. Under (A2), πœƒπœƒ ∈ (1, 𝑒𝑒), where 𝑒𝑒 = 2.718 …

    Thus, the types of asymptotic behaviors observable are the same with CES. Sketch of Proof: Under (A2), 𝜁𝜁(β‹…) is non-decreasing. Hence,

    πœƒπœƒ β‰‘π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    = exp ��𝜁𝜁(𝜏𝜏) βˆ’ 1

    πœπœπ‘‘π‘‘πœπœ

    π‘§π‘§π‘šπ‘š

    𝑧𝑧𝑐𝑐� ≀ exp οΏ½οΏ½πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ βˆ’ 1οΏ½οΏ½

    π‘‘π‘‘πœπœπœπœ

    π‘§π‘§π‘šπ‘š

    𝑧𝑧𝑐𝑐� =

    exp οΏ½οΏ½πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ βˆ’ 1οΏ½ logοΏ½π‘§π‘§π‘šπ‘š

    𝑧𝑧𝑐𝑐�� = exp οΏ½logοΏ½

    𝑧𝑧𝑐𝑐

    π‘§π‘§π‘šπ‘šοΏ½1βˆ’πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½

    οΏ½ = οΏ½1 βˆ’1

    πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½οΏ½1βˆ’πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½

    < 𝑒𝑒

    Intuition: Under (A2), price elasticities can become only smaller at lower prices. Hence, when a monopolistic variety becomes competitively priced, an increase in its market share caused by a drop in the price could only be smaller compared to the case of CES. Hence, it has the same upper bound, πœƒπœƒ < 𝑒𝑒. Remark: Without (A2), πœƒπœƒ could be arbitrarily large (see Appendix B), which could generate stable cycles of any period, or robust chaotic attractors with any number of intervals. By imposing (A2), we abstain ourselves from showing more exotic dynamic behaviors.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 22 of 29

    Question #2: How does πœƒπœƒ depend on 𝐿𝐿/𝐹𝐹? For CES, it is independent of 𝐿𝐿/𝐹𝐹. Proposition 2: If 𝜁𝜁(β‹…) βˆ’ 1 is monotone and log-concave over an interval containing �𝑧𝑧𝑐𝑐 , π‘§π‘§π‘šπ‘šοΏ½, πœƒπœƒ is increasing in 𝐿𝐿/𝐹𝐹. If one of the monotonicity and the log-concavity conditions is strict, πœƒπœƒ is strictly increasing in 𝐿𝐿/𝐹𝐹. Corollary: Under (A2), the strict log-concavity of 𝜁𝜁(β‹…) βˆ’ 1 is sufficient for πœƒπœƒ being strictly increasing in 𝐿𝐿/𝐹𝐹.

    Remark: The log-concavity of 𝜁𝜁(β‹…) βˆ’ 1 is weaker than the concavity of 𝜁𝜁(β‹…) βˆ’ 1, and hence the concavity of 𝜁𝜁(β‹…). In fact, if 𝑠𝑠(β‹…) is thrice-continuously differentiable, 𝜁𝜁(β‹…) βˆ’ 1

    is strictly log-concave iff πœπœβ€²β€²(β‹…) <οΏ½πœπœβ€²(β‹…)οΏ½

    2

    𝜁𝜁(β‹…)βˆ’1, that is, when 𝜁𝜁(β‹…) is β€œnot too convex.”

    Intuition: Under (A1), a higher 𝐿𝐿/𝐹𝐹 leads to an increase in both π‘§π‘§π‘šπ‘š and 𝑧𝑧𝑐𝑐 . Under (A2), this leads to an increase in both πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ and πœπœοΏ½π‘§π‘§π‘π‘οΏ½. The former implies a lower markup rate, and hence the price drop due to the loss of monopoly is smaller, which contributes to a smaller πœƒπœƒ. The latter implies the market share responds more to the price drop, which contributes to a larger πœƒπœƒ. If 𝜁𝜁(β‹…) is β€œnot too convex,” the former effect could not dominate the latter, so that πœƒπœƒ is increasing in 𝐿𝐿/𝐹𝐹.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 23 of 29

    Some Parametric Families within H.S.A.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 24 of 29

    Ex.1: Multiplicatively Perturbed CES with Linear Elasticity Function

    𝑠𝑠(𝑧𝑧) = (𝑧𝑧 exp(πœ€πœ€π‘§π‘§))1βˆ’πœŽπœŽ; (𝜎𝜎 > 1; πœ€πœ€ > 0)

    ⟹ 𝜁𝜁(𝑧𝑧) βˆ’ 1 = (𝜎𝜎 βˆ’ 1)(1 + πœ€πœ€π‘§π‘§) is strictly increasing and strictly log-concave. Hence, β€’ From Proposition 1, πœƒπœƒ < 𝑒𝑒; β€’ From Proposition 2, πœƒπœƒ is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ .

    More explicitly,

    πœƒπœƒ β‰‘π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    = οΏ½1 βˆ’1

    πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½οΏ½1βˆ’πœŽπœŽ

    expοΏ½1 βˆ’πœŽπœŽ

    πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½οΏ½

    As 𝐿𝐿 𝐹𝐹⁄ β†’ 0, π‘§π‘§π‘šπ‘š β†’ 0, πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ β†’ 𝜎𝜎, and πœƒπœƒ β†’ οΏ½1 βˆ’ 1𝜎𝜎�1βˆ’πœŽπœŽ

    < 𝑒𝑒; As 𝐿𝐿 𝐹𝐹⁄ β†’ ∞, π‘§π‘§π‘šπ‘š β†’ ∞, πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ β†’ ∞, and πœƒπœƒ β†’ 𝑒𝑒.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 25 of 29

    Ex.2; Multiplicatively Perturbed CES with Linear Fractional Elasticity Function

    𝑠𝑠(𝑧𝑧) = 𝑧𝑧1βˆ’πœŽπœŽ οΏ½1 + 𝑧𝑧

    2οΏ½βˆ’πœ€πœ€

    (𝜎𝜎 > 1; πœ€πœ€ > 0)

    ⟹ 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 +πœ€πœ€π‘§π‘§

    1 + 𝑧𝑧

    is strictly increasing and strictly concave. Hence, β€’ From Proposition 1, πœƒπœƒ < 𝑒𝑒. β€’ From Proposition 2, πœƒπœƒ is strictly increasing in 𝐹𝐹/𝐿𝐿.

    More explicitly,

    πœƒπœƒ β‰‘π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    = οΏ½1 βˆ’1

    πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½οΏ½1βˆ’πœŽπœŽ

    οΏ½1 βˆ’1

    πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½π‘§π‘§π‘šπ‘š

    1 + π‘§π‘§π‘šπ‘šοΏ½βˆ’πœ€πœ€

    As 𝐿𝐿 𝐹𝐹⁄ β†’ 0, π‘§π‘§π‘šπ‘š ⟢ 0, πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ ⟢ 𝜎𝜎, and πœƒπœƒ ⟢ οΏ½1 βˆ’ 1𝜎𝜎�1βˆ’πœŽπœŽ

    < 𝑒𝑒;

    As 𝐿𝐿 𝐹𝐹⁄ β†’ ∞, π‘§π‘§π‘šπ‘š ⟢ ∞, πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ ⟢ 𝜎𝜎 + πœ€πœ€, and πœƒπœƒ ⟢ οΏ½1 βˆ’ 1𝜎𝜎+πœ€πœ€

    οΏ½1βˆ’πœŽπœŽβˆ’πœ€πœ€

    < 𝑒𝑒.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 26 of 29

    Ex.3: Generalized Translog:

    𝑠𝑠(𝑧𝑧) = 𝛾𝛾 οΏ½1 βˆ’πœŽπœŽ βˆ’ 1πœ‚πœ‚

    log �𝑧𝑧𝛽𝛽��

    πœ‚πœ‚

    = 𝛾𝛾 οΏ½1 βˆ’ πœŽπœŽπœ‚πœ‚

    log οΏ½π‘§π‘§π‘§π‘§Μ…οΏ½οΏ½πœ‚πœ‚

    for 𝑧𝑧 < 𝑧𝑧̅ ≑ π›½π›½π‘’π‘’πœ‚πœ‚

    πœŽπœŽβˆ’1,

    ( 𝛽𝛽 > 0, πœ‚πœ‚ > 0; 𝜎𝜎 > 1. )

    𝜁𝜁(𝑧𝑧) = 1 +𝜎𝜎 βˆ’ 1

    1 βˆ’ 𝜎𝜎 βˆ’ 1πœ‚πœ‚ log �𝑧𝑧𝛽𝛽�

    = 1 βˆ’πœ‚πœ‚

    log �𝑧𝑧𝑧𝑧̅�> 1, for 𝑧𝑧 < 𝑧𝑧̅ ≑ 𝛽𝛽𝑒𝑒

    πœ‚πœ‚πœŽπœŽβˆ’1

    is strictly increasing in 𝑧𝑧 ∈ (0, 𝑧𝑧̅) with the range (1,∞), and hence satisfying (A2).

    β€’ Translog is a special case, where πœ‚πœ‚ = 1. β€’ CES is the limit case, where πœ‚πœ‚ β†’ ∞, while holding 𝛽𝛽 > 0 and 𝜎𝜎 > 1 fixed, β€’ πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½ is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ ∈ (0,∞) with the range, (1,∞).

    πœƒπœƒ β‰‘π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    = οΏ½1 +1πœ‚πœ‚ log οΏ½1 βˆ’

    1πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½

    οΏ½1βˆ’πœπœοΏ½π‘§π‘§π‘šπ‘šοΏ½

    οΏ½

    πœ‚πœ‚

    < οΏ½1 +1πœ‚πœ‚οΏ½

    πœ‚πœ‚

    < 𝑒𝑒,

    strictly increasing in 𝐿𝐿 𝐹𝐹⁄ ∈ (0,∞) with the upper bound οΏ½1 + 1πœ‚πœ‚οΏ½πœ‚πœ‚β†’ 𝑒𝑒, as πœ‚πœ‚ β†’ ∞.

    Notes: β€’ 𝜁𝜁(𝑧𝑧) βˆ’ 1 is not log-concave. Yet, πœƒπœƒ is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ . The log-concavity is

    sufficient, but not necessary for πœƒπœƒ to be increasing in 𝐿𝐿 𝐹𝐹⁄ . β€’ With πœ‚πœ‚ > 1, πœƒπœƒ > 2 for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ and hence 𝛿𝛿(πœƒπœƒ βˆ’ 1) > 1 for a

    sufficiently large 𝛿𝛿, causing the instability of the steady state.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 27 of 29

    Ex.4: Constant Pass-Through: For a positive constant, Ξ”> 0,

    𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �𝜎𝜎 βˆ’ (𝜎𝜎 βˆ’ 1) �𝑧𝑧𝛽𝛽�Δ�1 Δ⁄

    = π›Ύπ›ΎπœŽπœŽ1 Δ⁄ οΏ½1 βˆ’ �𝑧𝑧𝑧𝑧̅�

    Ξ”οΏ½1 Δ⁄

    , with 𝑧𝑧̅ ≑ 𝛽𝛽 �𝜎𝜎

    𝜎𝜎 βˆ’ 1οΏ½1 Δ⁄

    ⟹ 𝜁𝜁(𝑧𝑧) =1

    1 βˆ’ οΏ½1 βˆ’ 1𝜎𝜎� �𝑧𝑧𝛽𝛽�

    Ξ” =1

    1 βˆ’ �𝑧𝑧𝑧𝑧̅�Δ > 1

    strictly increasing with lim𝑧𝑧→�̅�𝑧

    𝜁𝜁(𝑧𝑧) = ∞ and limπœ€πœ€β†’0

    𝜁𝜁(πœ€πœ€) = 1.

    β€’ The pass-through rate, πœ•πœ• lnπ‘π‘π‘šπ‘š

    πœ•πœ• lnπœ“πœ“= 1

    1+Ξ”< 1, is constant in this example.

    β€’ CES is the limit case, where Ξ” β†’ 0, while holding 𝛽𝛽 > 0 and 𝜎𝜎 > 1 fixed, β€’ π‘§π‘§π‘šπ‘š and 𝑧𝑧𝑐𝑐 both strictly increasing in 𝐿𝐿 𝐹𝐹⁄ , with π‘§π‘§π‘šπ‘š β†’ 𝑧𝑧̅ and 𝑧𝑧𝑐𝑐 β†’ 𝑧𝑧̅, as 𝐿𝐿 𝐹𝐹⁄ β†’ ∞.

    πœƒπœƒ β‰‘π‘ π‘ οΏ½π‘§π‘§π‘π‘οΏ½π‘ π‘ οΏ½π‘§π‘§π‘šπ‘šοΏ½

    =

    ⎣⎒⎒⎒⎑1 βˆ’ οΏ½

    𝑧𝑧𝑐𝑐𝑧𝑧̅ οΏ½

    Ξ”

    1 βˆ’ οΏ½π‘§π‘§π‘šπ‘šπ‘§π‘§Μ… οΏ½

    Ξ”

    ⎦βŽ₯βŽ₯βŽ₯⎀1 Δ⁄

    =

    ⎣⎒⎒⎒⎑1 βˆ’ οΏ½

    π‘§π‘§π‘šπ‘šπ‘§π‘§Μ… οΏ½

    Ξ”(1+Ξ”)

    1 βˆ’ οΏ½π‘§π‘§π‘šπ‘šπ‘§π‘§Μ… οΏ½

    Ξ”

    ⎦βŽ₯βŽ₯βŽ₯⎀1 Δ⁄

    < [1 + Ξ”]1 Δ⁄ < 𝑒𝑒

    strictly increasing in 𝐿𝐿 𝐹𝐹⁄ , with the upper bound, [1 + Ξ”]1 Δ⁄ β†’ 𝑒𝑒, as Ξ” β†’ 0. β€’ 𝜁𝜁(𝑧𝑧) βˆ’ 1 is not log-concave. Yet, πœƒπœƒ is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ . The log-concavity is

    sufficient, but not necessary for πœƒπœƒ to be increasing in 𝐿𝐿 𝐹𝐹⁄ . β€’ With 0 < Ξ” < 1, πœƒπœƒ > 2 for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ and hence 𝛿𝛿(πœƒπœƒ βˆ’ 1) > 1 for a

    sufficiently large 𝛿𝛿, causing the instability of the steady state.

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 28 of 29

    Concluding Remarks

  • Destabilizing Effects of Market Size in the Dynamics of Innovation

    Page 29 of 29

    β€’ In existing models of Endogenous Innovation Cycles, market size alters the amplitude of fluctuations without affecting the patterns of fluctuations.

    β€’ Due to the CES homothetic demand system, monopolistically competitive firms sell their products at an exogenous markup rate o Procompetitive effect of market size is missing

    β€’ We extended the Judd model of endogenous innovation cycles, using H.S.A., a more

    general homothetic demand system to allow for the procompetitive effect. o Under H.S.A., the price elasticity of demand for each product, 𝜁𝜁(βˆ™), depends solely

    on its β€œown relative price.” If increasing, the procompetitive effect. o Dynamics, still generated by the skewed-V shape map, but its parameter, the

    delayed impact of innovation, depends on the market size/innovation cost ratio, 𝐿𝐿/𝐹𝐹.

    β€’ A larger 𝑳𝑳 𝑭𝑭⁄ has destabilizing effects through the procompetitive effect. o Under the log-concavity of 𝜁𝜁(βˆ™) βˆ’ 1, i.e., 𝜁𝜁(βˆ™) is β€œnot too convex.” o In two parametric families with choke prices, β€œGeneralized Translog” and β€œConstant

    Pass-Through” β€’ Monopolistic competition under H.S.A. should be valuable extensions to CES o Tractable and flexible o Four parametric families we introduced should also be useful for many applications.

    ,𝑓-𝐿.,,𝑛-𝑑..β‰‘π›Ώπœƒβˆ’π›Ώ,πœƒβˆ’1.,𝑛-𝑑.45ΒΊ,𝑛-𝑑+1.

    π›Ώπœƒ,𝑛-βˆ—.,𝑓-𝐻.,,𝑛-𝑑..=𝛿,𝑛-𝑑.𝛿,𝑛-𝑑.

    ,𝑓-𝐿.,𝛿.,πœƒ+,1βˆ’πœƒ.,𝑛-𝑑..O1Active InnovationNo Innovation