Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf ·...

17
Are Small Cells the Only Answer? Designing Wireless Broadband Access for Energy Efficiency Emil Björnson 1 , Luca Sanguinetti 2,3 , Marios Kountouris 3,4 1 Linköping University, Linköping, Sweden 2 University of Pisa, Pisa, Italy 3 CentraleSupélec, GifsurYvette, France 4 Huawei Technologies, Paris, France

Transcript of Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf ·...

Page 1: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Are  Small  Cells  the  Only  Answer?

Designing  Wireless  Broadband  Access  for  Energy  Efficiency

Emil  Björnson1,  Luca  Sanguinetti2,3,  Marios Kountouris3,4

1 Linköping  University,  Linköping,  Sweden2 University  of  Pisa,  Pisa,  Italy3 CentraleSupélec,  Gif-­sur-­Yvette,  France  4 Huawei  Technologies,  Paris,  France

Page 2: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

INTRODUCTION

2

Page 3: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Energy  Efficiency

• Benefit-­Cost  Analysis  of  Networks

• Definition:  Energy  Efficiency  (EE):

EE  [bit/Joule] =  Average  Sum  Rate   bit/s/km9

Power  Consumption   Joule/s/km9

• Future  networks:  1000x  more  data  à 1000x  higher  EE

• How  to  Improve  Energy  Efficiency?• One  approach:  Reduce  radiated  power

Achieved  by  smaller  cells

3

NetworkBenefit:Sum  Rate  [bit/s]

Cost:Power  Consumption[Watt  =  Joule/s]

Is  Smaller  Cells  the  Only  Answer?1. Formulate  EE  maximization  mathematically2. Optimize  cell  density  and  other  parameters  – what  do  we  get?

Page 4: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

PROBLEM  FORMULATION

4

Page 5: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

System  Model  and  Average  Rate

5

Random  Network  Deployment

Access  points  (AP)  positions  asPoisson  point  process  (PPP)  Ψ@

𝑀 antennas  per  AP,  𝐾 users  per  cell

Pathloss:  𝜔DE(distance  [km])DJ

Scenario:  Downlink  Broadband  AccessPerfect  channel  knowledge   Zero-­‐forcing  precodingTransmit  power  per  user:  𝜌 Hardware  distortion  at  users:  𝜖9

Proposition  1:  Lower  Bound  on  Average  Rate

𝑅 = 𝐵 O log9 1 +(1 − 𝜖9)(𝑀 − 𝐾)

2𝐾𝛼 − 2 + 𝜖

9 𝑀− 𝐾 + 𝑀𝜋𝜆 J/9

𝜔𝜎9𝜌

Bandwidth

Page 6: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

AEC = 𝜆𝐾𝜌η + 𝐶Z + 𝐷Z𝑀+ 𝐶E𝐾+ 𝐷E𝑀𝐾

Generic  Power  Consumption  Model

• Many  Components  Consume  Power• Radiated  transmit  power

• Baseband  signal  processing  (e.g.,  precoding)• Active  circuits  (e.g.,  converters,  mixers,  filters)

• Area  Energy  Consumption  [Joule/s/km9]:

6

Fixed  power(backhaul,   load-­‐ind. processing)

Power  amplifier(η is  efficiency)

Circuit  power  pertransceiver  chain

Cost  of  digital  signal  processing(e.g.,  precoding)Nonlinear  increasing  

function  of  M and  𝐾Many  coefficients:    η,𝐶],𝐷^ for  𝑖 = 0,1

Page 7: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Problem  Formulation

7

Energy  Efficiency  Optimizationmaximize𝜌, 𝜆,𝑀, 𝐾        

𝜆𝐾𝑅

𝜆 𝐾𝜌η + 𝐶Z +𝐷Z𝑀 +𝐶E𝐾+ 𝐷E𝑀𝐾

subject  to        𝑅/𝐵 = 𝛾

Optimization  variables:  𝜌 =  transmit  power,   𝜆 =  AP  density,𝑀 = antennas  per  AP,   𝐾 = users  per  AP

Spectral  efficiency  (SE)  constraint  𝛾 needed  to  not  get  overly  low  rates

Page 8: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

ANALYTICAL  AND  NUMERICAL  RESULTS

8

Page 9: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Optimality  of  Small  Cells

9

Theorem  1:  Optimal  AP  Density

The  EE  increases  with  𝜆.EE  maximized  as  𝜆 → ∞ or  at  some  upper  value  𝜆ghi

Saturation  Property

Higher density 𝜆 à Less  transmit powerà Eventually negligible

Simulations  show  saturation  at  𝜆 ≥ 10950  meters  between  APs:  Saturation  appears  in  practice!

Page 10: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Optimization  of  Remaining  Variables

10

Theorem  2:  Optimal  Transmit  Power

Constraint  satisfied  if  𝜌∗ =lmnoonlmpl  

qrls(t/luo)vw t/l

xDyD lmnoonlmpl  

lztnl

Theorem  3:  Optimal  Number  of  Antennas  (fixed  𝐾)

EE  maximized  by  𝑀∗ = 𝐾 + 9y(9mDE)(JD9)(ED9m{l) +

9mDEED9m{l  

y|}l~(J/9�E)� �@ t/l(����oy)

Theorem  4:  Optimal  Number  of  Users  (fixed  𝑀/𝐾 = 𝛽)

EE  maximized  by  𝐾∗ =lmnoonlmpl  

qrls(t/luo)� vw t/l

��o(�DEDlmnoonlmpl  

ltnl)

+ ����o

Removes  𝜌 from  EE  optimization  problem(Only  𝑀 and  𝐾 remain)

Iterate  betweenthese  till  convergence:

Find  real-­‐valued  global  solution

Tradeoffs  and  connections  established  formulas!

Page 11: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Simulation  Parameters

11

Simulation  Parameter Symbol Value

Pathloss exponent 𝛼 3.76

Pathloss over  noise  at  1  km 𝜔/𝜎9 33 dBmAmplifier   efficiency 𝜂 0.39

Level  of  hardware  impairments   𝜖 0.05

Bandwidth 𝐵 20 MHz

Static  power 𝐶Z 10  W  

Circuit  power  per  active  user 𝐶E 0.1  W

Circuit  power  per  AP  antenna 𝐷Z 1  W

Signal  processing  coefficient   𝐷E 3.12  mW

Page 12: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Impact  of  Number  of  Antennas  and  Users

12

Simulation

AP  density  𝜆 = 10�

SE  constraint:  𝛾 = 3

Observations

Optimal:  𝑀∗ = 193,  𝐾∗ = 21

𝑀∗ ≫ 𝐾∗:  Called  “Massive  MIMO”

Alternating  optimization

finds  real-­‐valued  solution

Page 13: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Is  it  Ridiculous  with  200  Antennas?

• Dimensionality:  Half-­wavelength  Antenna  Spacing• Example:   3.7  GHzSpacing:   4  cm

• Array  =  Flat-­screen  TV

13

160 dual-polarized antennas, LuMaMi testbed, Lund University

Why  Massive  MIMO,  Not  Only  Small  Cells?

Small  cells  improve  SNR,  but  not  SINR

Massive  MIMO  improves  SINRs  by  precoding

Circuit  power  costs  are  shared  between  users

Page 14: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Impact  of  User  Density

• text

14

Simulation

Fixed  user  density  𝜇 users/km2

EE  maximization  with:  𝐾𝜆 = 𝜇

Range:  𝜇 = 109 (rural)  to  𝜇 = 10� (mall)

Low  User  Density

Add  more  cells  with  𝐾 ≈ 1

Most  important  to  reduce  pathloss

High  User  Density

Small  cells  with  Massive  MIMO

Saturation  for  𝜇 ≥ 100

Covers  most  practical  scenarios:EE  independent  of  user  load!

Energy  Efficiency:

AP  Density:

Page 15: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

SUMMARY

15

Page 16: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

Summary

• Designing  Networks  for  Energy  Efficiency• Optimize:  AP  density,  transmit  power,  and  antennas/users  per  cell• Analytical  optimization:  EE  maximizing  network  deployment  was  found!

• Solution:  Small  cells  with  Massive  MIMO  capability• Intuition:   Small  cells  à Negligible  transmit  power

Massive  MIMO  à Less  interference,  share  costs  over  users

• Further  Results:• Take  channel  estimation  and  imperfect  channel  knowledge  into  account1. E.  Björnson,  L.  Sanguinetti,  M.  Kountouris,  “Deploying  Dense  Networks  for  

Maximal  Energy  Efficiency:  Small  Cells  Meet  Massive  MIMO,”   Submitted  to  IEEE  JSAC.  (http://arxiv.org/pdf/1505.01181)

2. E.  Björnson,  L.  Sanguinetti,  M.  Kountouris,  “Energy-­Efficient Future  Wireless  Networks:  A  Marriage between Massive  MIMO   and  Small  Cells,”  Proceedings of  IEEE  SPAWC,  July 2015.  (http://arxiv.org/pdf/1506.01051)

16

Page 17: Designing$WirelessBroadband$ Accessfor$Energy Efficiencyebjornson/presentation_icc2015.pdf · Pathloss exponent T 3.76 Pathloss over2noise2at212km C/W9 33dBm Amplifier2efficiency

QUESTIONS?

Visit  Emil  Björnson  online:http://www.commsys.isy.liu.se/en/staff/emibj29