Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing...

26
1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su [email protected] Atheros Communications Santa Clara, California Santa Clara SSCS (c) D. Su Santa Clara SSCS September 2009 p.2 Outline Introduction CMOS Transceiver Building Blocks LNA and PA System-on-a-chip Integration issues Digital Assistance and Interference Conclusion

Transcript of Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing...

Page 1: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

1

(c) D. Su Santa Clara SSCS September 2009 p.1

Designing CMOS Wireless

System-on-a-chip

David Su

[email protected]

Atheros Communications

Santa Clara, California

Santa Clara SSCS

(c) D. Su Santa Clara SSCS September 2009 p.2

Outline

• Introduction

• CMOS Transceiver Building Blocks

– LNA and PA

• System-on-a-chip Integration issues

– Digital Assistance and Interference

• Conclusion

Page 2: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

2

(c) D. Su Santa Clara SSCS September 2009 p.3

SoC Trends: GSM (1995)

Stetzler et al, ISSCC 95 (AT&T)

Integrated Transceiver with

external components (e.g. filters)

(c) D. Su Santa Clara SSCS September 2009 p.4

SoC with integrated

transceiver and CPU.

SoC Trends: GSM (2006)

Bonnaud et al, ISSCC 06 (Infineon)

Page 3: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

3

(c) D. Su Santa Clara SSCS September 2009 p.5

SoC Trends: WLAN (1996)

Prism WLAN chipset (Harris Semi) AMD App Note (www.amd.com)

Multi-Chip 802.11b Transceiver

(c) D. Su Santa Clara SSCS September 2009 p.6

SwitchDigital

Signal

Processor

Synthesizer

LOI

LOQ

LOI

LOQ

LO

LNA

RFVGAPA

ADC

ADC

DAC

DAC

Su et al ISSCC 2002 (Atheros)Mehta et al ISSCC 2005 (Atheros)Chang et al ISSCC 2007 (Atheros)

WLAN Integration Story

Page 4: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

4

(c) D. Su Santa Clara SSCS September 2009 p.7

11a/b/g/n (2x2 MIMO) Radio SoC

SoC Trends: WLAN (2008)

Nathawad et al, ISSCC 08 (Atheros)

(c) D. Su Santa Clara SSCS September 2009 p.8

Advantages of SoC Integration

• Increased functionality

• Smaller Size / Form Factor

• Lower Power

– On-chip interface

• Lower Cost

– Single package

– Ease of manufacture• Minimum RF board tuning

• Reduced component count ���� Improved reliability

Page 5: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

5

(c) D. Su Santa Clara SSCS September 2009 p.9

Cost of WLAN Throughput

Zargari, 2007 VLSI Symposium Short Course

(c) D. Su Santa Clara SSCS September 2009 p.10

1

10

100

1000

1996 1998 2000 2002 2004 2006 2008

Year of Product Introduction

Max PHY Data Rate (Mb/s)

802.11 (2.4GHz)

802.11b (2.4GHz)

802.11a (5GHz)

802.11g (2.4GHz)

802.11n (2.4 and 5GHz)

Evolution of 802.11 WLAN PHY Rates

Page 6: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

6

(c) D. Su Santa Clara SSCS September 2009 p.11

Single-chip Radio Block Diagram

Transceiver Digital

Baseband

PHY

Digital

MAC

Digital

Interface

(c) D. Su Santa Clara SSCS September 2009 p.12

Transceiver Block Diagram

SwitchDigital

Signal

Processor

Synthesizer

Receiver LOI

LOQ

LOI

LOQ

LO

LNA

RFVGAPA

Transmitter

ADC

ADC

DAC

DAC

Page 7: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

7

(c) D. Su Santa Clara SSCS September 2009 p.13

CMOS Transceiver Building Blocks

• Signal Amplification

• Frequency Translation

• Frequency Selectivity

(c) D. Su Santa Clara SSCS September 2009 p.14

CMOS RF Design

Advantages• Low-cost, high-yield

• Multi-layer interconnect makes decent

inductors

• High-level of integration supports

sophisticated digital signal processing

Challenges:• Multi-GHz: narrowband design with inductors

• No high-Q BPF: architecture + dynamic range

• Process/Temp Variation: DSP algorithms

• Reduced supply headroom: IO devices

• Noise coupling: careful design & layout

Page 8: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

8

(c) D. Su Santa Clara SSCS September 2009 p.15

Tuned CMOS RF Gain stage

VIN

Use of Inductor

���� Narrowband tuned circuit with higher gain

gmVIN RL C L

Equivalent Model

Gain

Frequency

(c) D. Su Santa Clara SSCS September 2009 p.16

LNA Design Goal

• Low Noise Figure– Sufficient gain

• Able to accommodate large blockers– Large Dynamic Range

– Large Common-mode Rejection

– High Linearity

Page 9: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

9

(c) D. Su Santa Clara SSCS September 2009 p.17

LNA with Cascoded Diff Pair

• Input match

• Noise Figure

BIAS

IN IN

(c) D. Su Santa Clara SSCS September 2009 p.18

Zargari et al, JSSC Dec 2004 (Atheros)

LNA with Switchable Gain

• CMRR at RF

• Switchable gain for high DR

BIAS

IN IN

gain

M1 M4

gain

gain

M2 M3

Page 10: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

10

(c) D. Su Santa Clara SSCS September 2009 p.19

Linear PA for High Data Rate

Modern digital modulation attempts to transmit at

highest data rate within a given signal bandwidth.

� Nonlinear PA:

Information in phase only. Transmit with constant

envelope for power efficiency – GSMK, FSK

� Modestly Linear PA:

Information in phase only. Reduce signal bandwidth

with non-constant envelope signal – ππππ/4 QPSK,

OQPSK

� Linear PA:

May encode information in both amplitude and

phase. Non-constant envelope; high SNR – 64 QAM

(c) D. Su Santa Clara SSCS September 2009 p.20

PA Peak to Average Ratio

• Improved spectral efficiency (higher bits per Hz)

���� Large peak to average ratio

���� reduces power efficiency of the PA

• Example: 802.11a/g OFDM has PAR of 17dB– Class A efficiency of ~ 1%

– Infrequent signal peaks

• 16-QAM OFDM, PAR of 6dB degrades SNR by

only 0.25dB*

���� Class A Efficiency ~ 12%

• 64-QAM OFDM, PAR of 12dB is needed

���� Class A Efficiency ~ 3%

* Van Nee & Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000

Page 11: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

11

(c) D. Su Santa Clara SSCS September 2009 p.21

Linear Design

• Design for PSAT = PAVE + PAR + …

- Low R output match

• Stability

- Cascoding

• Linearity

- Avoid VGS overdrive

- Inter-stage capacitive level-shift

(c) D. Su Santa Clara SSCS September 2009 p.22

Cascoded Power Amplifier

� Cascoding advantages

�3.3V supply voltage

�Stability

� Capacitive Level-shift

� Differential

�Off-chip balun

RFIN

RFOUT

Bias

M2

Single-ended

equivalent

M1

L1 L2

VDD

Page 12: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

12

(c) D. Su Santa Clara SSCS September 2009 p.23

Zargari et al, JSSC Dec 2002 (Atheros)

RFINRFIN

Bias1Bias1

RFOUT

Bias2

RFOUT

Bias2

PMAX = 22 dBm POFDM = 17.8 dBm (BPSK)

Cascoded Power Amplifier

(c) D. Su Santa Clara SSCS September 2009 p.24

Measured Power vs Data Rate

6 9 12 18 24 36 48 54

12

14

16

18

OFDM Output Power (dBm)

Data Rate (Mbps)

10

Spectral mask limited EVM limited

IEEE 802.11a

4-6dB Power Backoff

10-12 dB Power Backoff

Page 13: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

13

(c) D. Su Santa Clara SSCS September 2009 p.25

Leveraging Integration for RF PA

Transistors are cheap.

– LARGE Output Power: Nonlinear PA

– HIGH Efficiency: Nonlinear PA

– GOOD Linearity: Use linearization circuits so that the output stage does not need to be linear.

SOLUTION: Switched-mode (non-linear) output stage

+ linearization.

(c) D. Su Santa Clara SSCS September 2009 p.26

PA Linearization

� Concept:

�Use efficient nonlinear PAs for amplification

�Techniques to improve linearity

� An active research area for over half a century!

Some examples:

�Feedforward

�Predistortion

�Cartesian feedback: Rectangular I-Q

�Outphasing / Chirex / LINC: Phase-Phase

�Polar: Phase-magnitude, EER

… (many many more)

Page 14: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

14

(c) D. Su Santa Clara SSCS September 2009 p.27

LF

RF

RF Power Amplifier

RF Output

Magnitude

Phase

Polar

� Input = PHASE and MAGNITUDE

� Amplified separately and then combined

� Ref: L. Kahn, Proc. IRE, July 1952.

(c) D. Su Santa Clara SSCS September 2009 p.28

RF

Parallel RF Power Amplifier

RF Output

Digital Magnitude

Phase

Digital Polar

n

Page 15: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

15

(c) D. Su Santa Clara SSCS September 2009 p.29

I/Q to

Polar

I

Q

Decoder

Phase

Magnitude

6

OUT

PA1

PA2

PA64

Kavousian et al, ISSC 2007 (Stanford)

Digitally Modulated Polar Power Amplifier

(c) D. Su Santa Clara SSCS September 2009 p.30

Kavousian et al, ISSC 2007 (Stanford)

RFOUT

M1

L2

Phase

Ctrl1

Matching

Network

• Bandwidth: 20MHz

• Frequency: 1.6GHz

• EVM: -26.8dB

• Power: 13.6dBm

M2

Ctrl2

M64

Ctrl64

Digitally Modulated Polar Power Amplifier

Page 16: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

16

(c) D. Su Santa Clara SSCS September 2009 p.31

RF PA with Envelope Feedback

Terrovitis et al, ESSCIRC Sept 2009 (Atheros)

IN OUT

PA

• Linearizes Gain

• Fixes gain variation over process and temperature

1/αααα

Gain

Control

(c) D. Su Santa Clara SSCS September 2009 p.32

Integrating RF Tx/Rx Switch in CMOS

• MOS pass transistors

as switches has too

much loss and may

not be able to support

required voltage

breakdown

Tx/Rx Switch

LNA

PA

Tx

Rx

Page 17: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

17

(c) D. Su Santa Clara SSCS September 2009 p.33

M1 b1

M2

LNAOUT

b2

PAOUT

PAINM4

M3 b3

Tx/Rx Switch

LNAIN

Integrated RF Tx/Rx Switch

Receive chain noise figure = 5.8dB

Chang et al, ISSCC 2007 (Atheros)

ππππ matching network

Rx Mode

PA off

(c) D. Su Santa Clara SSCS September 2009 p.34

PAINM4

M3

PAOUT

b3

Tx/Rx Switch

Chang et al, ISSCC 2007 (Atheros)

Tx ModeM1

M2

b1

b2

LNAOUT

LNAIN

Transmit output power = 20dBm (< 1dB loss)

Integrated RF Tx/Rx Switch

Page 18: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

18

(c) D. Su Santa Clara SSCS September 2009 p.35

System-on-a-Chip Integration

� Digital Assistance: Calibration Techniques

• Digital Interference: Noise Coupling

Analog/RF

DIGITAL

(c) D. Su Santa Clara SSCS September 2009 p.36

Analog Design

Digital Assisted Analog Design

Digital Designer

Page 19: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

19

(c) D. Su Santa Clara SSCS September 2009 p.37

Digital Assistance: Calibration Issues

• Digital logic to compensate/correct for imperfections

of analog and RF circuits can enable:

– Lower power, smaller area, improved reliability of

analog/RF

• Desired properties of calibration:

– Independent of temperature, aging, frequency

– Inexpensive (in area and power) to implement

– Do not interfere with system performance

• Wireless SoC advantage:

– Calibration building blocks already exist on-chip:

transmitter and receiver, data converters, and CPU

– No package pin limitation

(c) D. Su Santa Clara SSCS September 2009 p.38

Calibration Techniques

� Test Signal

– Dedicated test signals from DAC: Tx carrier leak

– RF loop back: Receive filter bandwidth

– Thermal noise: Rx Gain

– Live Rx (signal) traffic: Rx I/Q mismatch

� Observation Signal

– Dedicated ADC

– Implicit ADC: Comparator

� Tuning Mechanism

– Dedicated DAC

– Implicit DAC: Selectable capacitors, resistors, transistors

Page 20: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

20

(c) D. Su Santa Clara SSCS September 2009 p.39

RF loop back: Tx Carrier Leak

• Test signal: Tx DAC

• Observation signal: RF loop back to Rx ADC

• Tuning: Carrier Leak Correction at Tx DAC input

LO

PA

DAC

Digital

Baseband

TX

LNA

ADC

LO

RX+

+

Carrier Leak

Correction

(c) D. Su Santa Clara SSCS September 2009 p.40

Calibrating Low-pass gm-C Filter

Zargari et al, JSSC Dec 2004

Low-Q

Biquad

High-Q

BiquadTransresistance

Amplifier

Capacitor setting

IN OUT

Iin

gm1

-gm2

gm3gm4

Iout

Replica

Biquad

Phase

Detector

State

MachineRef Clock

Page 21: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

21

(c) D. Su Santa Clara SSCS September 2009 p.41

System-on-a-Chip Integration

• Digital Assistance: Calibration Techniques

� Digital Interference: Noise Coupling

Analog/RF

DIGITAL

(c) D. Su Santa Clara SSCS September 2009 p.42

Digital Interference

Analog

Digital

Page 22: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

22

(c) D. Su Santa Clara SSCS September 2009 p.43

Digital Interference: Noise Coupling

Aggressor

Victim

Accomplice

(c) D. Su Santa Clara SSCS September 2009 p.44

Noise Source

Pacify the aggressor

• Reduce noise by turning off unused digital– Clock gating

– Avoid oversized digital buffers

• Stagger digital switching– Avoid large number of digital pads switching simultaneously

– Avoid switching digital logic at the same sampling instance of sensitive analog

Page 23: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

23

(c) D. Su Santa Clara SSCS September 2009 p.45

Noise Destination

Strengthen the victim

• Increase immunity of sensitive analog and RF circuits– Common-mode noise rejection:���� Fully differential topology

– Power Supply noise rejection:���� Good PSRR���� Dedicated on-chip voltage regulators

• Avoid package coupling by keeping sensitive nodes on chip (Example: VCO control voltage)

(c) D. Su Santa Clara SSCS September 2009 p.46

Coupling Mechanism

Deter the accomplice

• Supply noise coupling– Separate or star-connected power supplies

• Capacitive or inductive coupling to sensitive signals and bias voltages– Careful routing of signal traces to reduce parasitic capacitive/inductive coupling

– Use ground return-path shields

Page 24: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

24

(c) D. Su Santa Clara SSCS September 2009 p.47

Coupling Mechanism (Cont’d)

• Epi vs non-epi substrate

• Substrate coupling induced VTH modulation– Low-impedance substrate connection

– Guard rings

– Physical separation

– Deep Nwell

(c) D. Su Santa Clara SSCS September 2009 p.48

Frequency Synthesizer

Terrovitis et al, ISSCC 2004 (Atheros)

DFFRef

Div

P & S

CounterDFF

8/8.5

Div

16/17 Divider

PFD CP

On-chip

Loop Filter

fvco/4I Q

LO Buffers

Xtal Osc

40MHz

/ 2

Reg1 Reg2

Retiming FFs

VCO

Page 25: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

25

(c) D. Su Santa Clara SSCS September 2009 p.49

Conclusions

• CMOS has become the technology of choice for integrated radio systems

• Integrating a radio in mixed-Signal System-on-a-Chip is no longer a dream but a reality

• Wireless SoC can provide significant advantages in size, power, and cost

(c) D. Su Santa Clara SSCS September 2009 p.50

Continuing Challenges

• Multi-mode radios to support several wireless standards

• RF design in scaled CMOS– Reduced supply voltage: voltage, current, time

– nanometer transistors: leaky, low gm.ro

– How to reduce analog/RF area and power: less analog and more digital

• Challenge of radio designers will still be:– Power consumption / Battery life

– Range

– Data rate

– Cost

Page 26: Designing CMOS Wireless System-on-a-chip1 (c) D. Su Santa Clara SSCS September 2009 p.1 Designing CMOS Wireless System-on-a-chip David Su david.su@atheros.com Atheros Communications

26

(c) D. Su Santa Clara SSCS September 2009 p.51

Acknowledgments

• Many of the slides are based on previous presentations from Atheros Communications and Stanford University, especially those by:

Manolis Terrovitis, Srenik Mehta, William Si, William McFarland, Lalitkumar Nathawad Richard ChangAmirpouya Kavousian