Designing and Fabricating Mechanical Automata from Mocap ...

90
Designing and Fabricating Mechanical Automata from Mocap Sequences Duygu Ceylan Wilmot Li Niloy J. Mitra Maneesh Agrawala Mark Pauly

Transcript of Designing and Fabricating Mechanical Automata from Mocap ...

Designing and Fabricating Mechanical Automata from Mocap Sequences

Duygu Ceylan Wilmot Li Niloy J. Mitra

Maneesh Agrawala Mark Pauly

Mechanical Automata

Mechanical Automata

Time Piece - Switzerland

Mechanical Automata

Time Piece - Switzerland

The Writer (designed by Jaquet-Droz)

Mechanical Automata

Time Piece - Switzerland

The Writer (designed by Jaquet-Droz)

windup toys

Challenges

Conceptual Design

Challenges

Conceptual Design Configuration

Challenges

Conceptual Design Spatial LayoutConfiguration

Challenges

Conceptual Design Spatial LayoutConfiguration

Challenges

Conceptual Design Spatial LayoutConfiguration

How can we automate this process?

Related Work

Related WorkCommercial Solutions

Autodesk Inventor

Solidworks

Related WorkCommercial Solutions

Autodesk Inventor

Solidworks

Zu et al. 2008

Conceptual Design

Related WorkCommercial Solutions

Autodesk Inventor

Solidworks

Zu et al. 2008

Conceptual Design

Haller et al. 2009

Configuration

Related WorkCommercial Solutions

Autodesk Inventor

Solidworks

Zu et al. 2008

Conceptual Design

Zhu et al. Sig. Asia 2012

Automated Mechanism Design

Haller et al. 2009

Configuration

Related WorkCommercial Solutions

Autodesk Inventor

Solidworks

Zu et al. 2008

Conceptual Design

Zhu et al. Sig. Asia 2012

Automated Mechanism Design

Haller et al. 2009

Configuration

Related Work

Coros et al. Siggraph 2013

Commercial Solutions

Autodesk Inventor

Solidworks

Zu et al. 2008

Conceptual Design

Zhu et al. Sig. Asia 2012

Automated Mechanism Design

Haller et al. 2009

Configuration

Related Work

Coros et al. Siggraph 2013

Commercial Solutions

Autodesk Inventor

Solidworks

Zu et al. 2008

Conceptual Design

Zhu et al. Sig. Asia 2012

Automated Mechanism Design

Haller et al. 2009

Configuration

Related Work

Coros et al. Siggraph 2013

Commercial Solutions

Autodesk Inventor

Solidworks

Zu et al. 2008

Conceptual Design

Zhu et al. Sig. Asia 2012

Automated Mechanism Design

Haller et al. 2009

Configuration

Design Pipeline

Input Motion Generated Automaton

Design Pipeline

Input Motion Generated Automaton

Design Pipeline

Input Motion Generated Automaton

Design Pipeline

Input Motion Generated Automaton

Motion Approximation

Design Pipeline

Input Motion Generated Automaton

Motion Approximation Kinematic chains & layout

Design Pipeline

Input Motion Generated Automaton

Motion Approximation Kinematic chains & layout Fabrication

Automaton Design

Automaton Design

kinematicchains

Automaton Design

✓ single input crank

kinematicchains

Automaton Design

✓ single input crank

kinematicchains

Automaton Design

✓ single input crank

kinematicchains

Automaton Design

✓ single input crank

pulleys gears

kinematicchains

Automaton Design

✓ single input crank

pulleys gears four-bar linkage

✓ oscillation module: combination of simple mechanisms

kinematicchains

Automaton Design

✓ single input crank

✓ hierarchy of oscillations with varying phase/frequency

pulleys gears four-bar linkage

✓ oscillation module: combination of simple mechanisms

kinematicchains

Automaton Design

✓ single input crank

✓ hierarchy of oscillations with varying phase/frequency

pulleys gears four-bar linkage

✓ oscillation module: combination of simple mechanisms

kinematicchains

✓ free-standing

Design Pipeline

Input Motion Generated Automaton

Motion Approximation Kinematic chains & Layout Fabrication

Planar Approximation

Planar Approximation

Planar Approximation

bevel gearsoscillation modulepulleysfour-bar linkage

bevel gearsoscillation modulepulleysfour-bar linkage

four-bar linkage

pulleys

Planar Approximation

bevel gearsoscillation modulepulleysfour-bar linkage

bevel gearsoscillation modulepulleysfour-bar linkage

four-bar linkage

pulleys

bevel gearsoscillation modulepulleysfour-bar linkage bevel-gears

Planar Approximation

bevel gearsoscillation modulepulleysfour-bar linkage

bevel gearsoscillation modulepulleysfour-bar linkage

four-bar linkage

pulleys

bevel gearsoscillation modulepulleysfour-bar linkage bevel-gears

Planar Approximation

bevel gearsoscillation modulepulleysfour-bar linkage

bevel gearsoscillation modulepulleysfour-bar linkage

four-bar linkage

pulleys

bevel gearsoscillation modulepulleysfour-bar linkage bevel-gears

Planar Approximation

input motion planar motion

bevel gearsoscillation modulepulleysfour-bar linkage

bevel gearsoscillation modulepulleysfour-bar linkage

four-bar linkage

pulleys

bevel gearsoscillation modulepulleysfour-bar linkage bevel-gears

Oscillation Module

oscillation module

the four-bar linkage converts uni-directional rotation to oscillation

Di Ai

Fi

Oscillation Module

oscillation module

li�1

the four-bar linkage converts uni-directional rotation to oscillation

Di Ai

Fi

Oscillation Module

oscillation module

li�1

the four-bar linkage converts uni-directional rotation to oscillation

Di Ai

Fi

li

the output crank of the linkage drives the link attached to it

Oscillation Module

oscillation module

li�1

the four-bar linkage converts uni-directional rotation to oscillation

Di Ai

Fi

li

the output crank of the linkage drives the link attached to it the pulleys propagate the

input rotation to the next link

Pi Qi li

Di+1

Oscillation Module

oscillation module

Motion Approximation

t

Motion Approximation

t

��i

Motion Approximation

t

E�i =#linksX

i

#framesX

t

✓sin

��i(t)���i(t)

2

◆2

��i

linkage parametersangular speed

Motion Approximation

t

E�i =#linksX

i

#framesX

t

✓sin

��i(t)���i(t)

2

◆2

��i

linkage parametersangular speed

Motion Approximation

t

E�i =#linksX

i

#framesX

t

✓sin

��i(t)���i(t)

2

◆2

��i

��i�1

�↵��↵ +��i�1

↵̇i depends on input speed & pulley ratios

linkage parametersangular speed

Motion Approximation

t

E�i =#linksX

i

#framesX

t

✓sin

��i(t)���i(t)

2

◆2

��i

��i�1

�↵��↵ +��i�1

↵̇i depends on input speed & pulley ratios

linkage parametersangular speed

Motion Approximation

t

E�i =#linksX

i

#framesX

t

✓sin

��i(t)���i(t)

2

◆2

��i

��i�1

�↵��↵ +��i�1

↵̇i depends on input speed & pulley ratios

linkage parametersangular speed

Motion Approximation

t

SQP method in the MATLAB Optimization Toolbox

E�i =#linksX

i

#framesX

t

✓sin

��i(t)���i(t)

2

◆2

��i

��i�1

�↵��↵ +��i�1

↵̇i depends on input speed & pulley ratios

Design Pipeline

Input Motion Generated Automaton

Motion Approximation Kinematic chains & layout Fabrication

Layout: Kinematic chains

Fi

gi

Layout: Kinematic chains

Fiscale

gi

Layout: Kinematic chains

Fiscale

gi

tooth count

Layout: Kinematic chains

Fiscale

gi

tooth count

pulley sizes & belt length

Layout: Kinematic chains

Fiscale

gi

tooth count

pulley sizes & belt length(limited options)

Layout: Kinematic chains

Fiscale

link lengths

gi

tooth count

pulley sizes & belt length(limited options)

Layout: Kinematic chains

Fiscale

link lengths

gi

Ej =X

i

wa ⇤ Eang + wp ⇤ Epul + ws ⇤ Elength

tooth count

pulley sizes & belt length(limited options)

Layout: Kinematic chains

Fiscale

link lengths

gi

match the desired angular speed of each oscillation module

Ej =X

i

wa ⇤ Eang + wp ⇤ Epul + ws ⇤ Elength

tooth count

pulley sizes & belt length(limited options)

Layout: Kinematic chains

Fiscale

link lengths

gi

match the desired angular speed of each oscillation module

Ej =X

i

wa ⇤ Eang + wp ⇤ Epul + ws ⇤ Elength

find the functioning pulley parameters:belt length & wheel radii

tooth count

pulley sizes & belt length(limited options)

Layout: Kinematic chains

Fiscale

link lengths

gi

match the desired angular speed of each oscillation module

Ej =X

i

wa ⇤ Eang + wp ⇤ Epul + ws ⇤ Elength

find the functioning pulley parameters:belt length & wheel radii

preserve the relative bone lengthstooth count

pulley sizes & belt length(limited options)

Layout: Kinematic chains

Fiscale

link lengths

gi

match the desired angular speed of each oscillation module

Ej =X

i

wa ⇤ Eang + wp ⇤ Epul + ws ⇤ Elength

find the functioning pulley parameters:belt length & wheel radii

preserve the relative bone lengths

E =X

j

Ej + Esym

tooth count

pulley sizes & belt length(limited options)

Layout: Kinematic chains

Fiscale

link lengths

gi

match the desired angular speed of each oscillation module

Ej =X

i

wa ⇤ Eang + wp ⇤ Epul + ws ⇤ Elength

find the functioning pulley parameters:belt length & wheel radii

preserve the relative bone lengths

E =X

j

Ej + Esym

assign similar lengths to symmetric link pairs

tooth count

pulley sizes & belt length(limited options)

Layout: Kinematic chains

Fiscale

link lengths

gi

match the desired angular speed of each oscillation module

Ej =X

i

wa ⇤ Eang + wp ⇤ Epul + ws ⇤ Elength

find the functioning pulley parameters:belt length & wheel radii

preserve the relative bone lengths

E =X

j

Ej + Esym

assign similar lengths to symmetric link pairs

Gurobi, mixed-integer solver

tooth count

pulley sizes & belt length(limited options)

continuous

discrete

Layout: Unified design

Layout: Unified design

bevel gearsoscillation modulepulleysfour-bar linkage bevel gearsoscillation modulepulleysfour-bar linkage

Layout: Unified design

bevel gearsoscillation modulepulleysfour-bar linkage bevel gearsoscillation modulepulleysfour-bar linkage

Layout: Unified design

bevel gearsoscillation modulepulleysfour-bar linkage bevel gearsoscillation modulepulleysfour-bar linkage

Design Pipeline

Input Motion Generated Automaton

Motion Approximation Kinematic chains & layout Fabrication

Fabrication

generated automata laser-cut & purchased pieces

Fabrication

generated automata laser-cut & purchased pieces physical prototype

Results: Walking

Input Motion Generated Automaton Physical Prototype

Results: Dancing

Input Motion Generated Automaton Physical Prototype

Input Motion Motion Approximation Generated Automaton

Results: Ballerina

Design Pipeline

Input Motion Generated Automaton

Motion Approximation Kinematic chains & layout Fabrication

Design Pipeline

Input Motion Generated Automaton

Motion Approximation Kinematic chains & layout Fabrication

oscillationmodule

Design Pipeline

Input Motion Generated Automaton

Motion Approximation Kinematic chains & layout Fabrication

oscillationmodule

fabricationconstraints

Limitations

‣ planar approximation

Limitations

‣ planar approximation

‣ simple planar mechanisms

‣ single input crank

Limitations

‣ planar approximation

‣ simple planar mechanisms

‣ single input crank

Limitations

‣ planar approximation

‣ simple planar mechanisms

‣ single input crank

non-circular gears 6-bar linkages

Motion Capturewith Microsoft Kinect(tracking by ipi Soft)

Input Motion Generated Automaton

What is next?

What is next?

self-standing automata other mechanisms

Acknowledgements

Zohreh Sasanian

Minh Dang

Nobuyuki Umetani

Tina J. Simith

EPFL ENAC Output Center

ERC Starting Grant 257453 COSYM

Marie Curie Career Integration Grant

Adobe Research Grant

UCL Impact Award

Thank you...

http://www.duygu-ceylan.com/duygu-ceylan/mechAuto.html