Design of Pier

download Design of Pier

of 11

Transcript of Design of Pier

  • 8/18/2019 Design of Pier

    1/11

    Two Lane Bridge

    0.200 m 0.200 m 738.029 m

    1.450 m 736.58

     AHFL = 735.654 m 0.93 m

    0.300 m . m  A1

    0.650 m 0.350 m A2

    5.900 m

    6.920 m 7.573 m 8.073 m

    7.573 m

    6.923 m

    CBL = 728.081 m

    0.000 m

    Pier Bottom Level 728.081

    7.900 m

    0.000 m

    727.831 m 0.500 m 0.250 m

    727.581 m Foundation Level 0.250 m

    727.431 m 0.150 m M10

    DESIGN OF PIER

    8.600 m

    7.900 m

    735.654 m

    1.000 m

    735.00 m

     

  • 8/18/2019 Design of Pier

    2/11

    0.600 m

    8.900 m

    0.300 m  A1

    0.350 m  A2

    5.900 m

    5.900 m

    0.600 m

    CBL 728.081 m

    1.500 m soil FILL 0.000 m

    1.500 m 7.900 m

    3.600 m 0.500 m

    727.831 m 0.000 m

    0.250 m

    727.581 m

    0.150 m 7.900 m

    3.600 m

     As per IS 456 CL.25.1.2,

     A compression member may be considered as short

    when both the slenderness ratios ly/b are less than 12  

    Height of pier= L = 6.920 m

    l = Effective Heigh = 1.2 x L 8.304 m

    b = Width of member   1.10m

     Accordingl Slenderness Ratio = l/b = 7.55

  • 8/18/2019 Design of Pier

    3/11

    DATA : CANAL PARTICULARS

    DISCHARGE (DESIGNED) = 44.81 Cumec

    BED WIDTH = 2.75m 0

    FULL SUPPLY DEPTH = 3.273m

    SIDE SLOPES INNER = 2.0:1

    = 2.0:1

    = 1: 3000

    = 1.47 m/s

    = 0.018

    = 1.000 m

    C.B.L =

    =

    DATA : SINGLE LANE BRIDGE PARTICULARS

    =

    Depth of deck slab = 0.575 m

    Thickness of wearing coat = 0.075 m

    =

    ==

    = 8.600 m

    =

    =

    =

    = 8.900 m

    = 5.900 m

    = 1.100 m

    = 0.300 m

    = 0.350 m

    = 5.900 m

    =

    =

    =

    R.L Of Pier Bottom Lvel =

    R.L Of Bottom Of Foundation =

    PIER DESIGN

    DEAD LOAD OF SLB = 206.742 t

    = 93.787 t

    = 18.757 t (Refer: IRC- 6-2014 Cl. 211.2(a)

    = 9.379 t

    1) Dead Load Of Super Structure = 206.742 t

    2) Live Load Reaction On Pier  = 93.787 t

    736.304 m

    735.654 m

    735.654 m

    R.L Of Top Of Deck Slab

    R.L Of Top Of Pier 

    R.L Of Pier At Bottom of pier cap

    Effective span

    C/C Of Piers And Abutment

    Density Of Concrete.

    Top Length Of Pier Cap

    Outer To Outer 

    Bed Fall

    Velocity

    Rugosity Coefficient (N)

    LIVE LOAD REACTION ON PIER(Class

    "A" Loading with impact)

    BREAKING FORCE (20% of Live Load)

    736.579 m

    727.581 m

    728.081 m

    735.004 m

    736.579 m

    Free Board

     Aflux high flood Level (AHFL)

    Bottom Lvl Of Slab

    Top Of Deck Slab

    Pier Bottom LevelFoundation Level

    10.910 m

    10.370 m

    727.581 m728.081 m

    2.5 t/cum

    728.081 m

    Carriage Way Width

    Density Of M10 Bed Concrete. 2.4 t/cum

    BRAKING FORCE ON PIER(50% of  

    Breaking force)

    Bottom Length Of Pier Cap

    Width Of Pier Cap

    Straight Thickness Of Pier Cap

    Tapering Thickness Of Pier Cap

     Overall Length Of Pier 

  • 8/18/2019 Design of Pier

    4/11

    3) DEAD LOAD OF SUB STRUCTURE

     A) Pier Cap

    Rectangular Potion = 8.9 x 1.1 x 0.3

     A1 = 2.937 cum

    2.937 x 2.5

    7.343 t

    = 8.9 x (1.1+0.6)/2 *0.35*2.5

    = 2.570 t

    = (area of circle x6.92) + (0.6x5.3x6.92)

    ((PI() x0.6^2/4)x6.92)+(0.6x5.3x6.92)))

    =

    23.96 x 2.5

    = 59.900 t

    = 3.6 x 0.25 x 7.9

    =

    7.11 x 2.5

    = 17.775 t

    = 0.25 x 3.6 x 7.9

    =7.11 x 2.5

    = 17.775 t

    = 0.15 x 3.6 x 7.9

    =

    4.27 x 2.4

    = 10.238 t

    NO

    BOUYANCY

    15%

    BOUYANC

     Y

    100%

    BOUYANC

     Y

    206.742 206.742 206.742

    93.787 93.787 93.787

    300.528 300.528 300.528

    7.343 7.343 7.343

    2.570 2.570 2.570

    59.900 56.306 35.940

    69.812 66.218 45.852

    276.554 272.960 252.594

    370.340 366.746 346.380

    17.775 16.709 10.665

    17.775 16.709 10.66510.238 23.036 14.334

    45.788 56.453 35.664

    TOTAL

    Total

    1.FOOTING ABOVE SECTION

    2.FOOTING BELOW SECTION

    7.110 cum

    7.110 cum

    1.DEAD LOAD OF SUPER STRUCTURE

    FOOTING SECTION(1)

    FOOTING SECTION (2)

    SUMMURY OF LOADS

    a) UPTO SILL LEVEL

    2.i)BED BLOCK RECTANGULAR

    2.ii)TRAPEZOIDAL PORTION

    3.)PIER SECTOIN

    23.960 cum

    Trapezoidal Portion

    PIER SECTION UPTO SILL LEVEL

    FOOTING Bed M10

    4.266 cum

    3. BED CONCRETE (M10) BELOW FOOTING SECTION

    Total

    TOTAL LOADS UPTO SILL LEVEL WITHOUT LL

    TOTAL LOADS UPTO SILL LEVEL WITH LL

    b) UPTO FOUNDING LEVEL

    2.LIVE LOAD ON SUPER STRUCTURE

  • 8/18/2019 Design of Pier

    5/11

  • 8/18/2019 Design of Pier

    6/11

    Transverse moment = 9.01 x1.9

     MOMENT AT PIER BOTTOM LEVEL 728.081M

    Leverarm = ((1.45 +0.925 )/2)+ 0.65 +6.92

    8.758

    Transverse moment = 8.76 x1.9

    Longitudinal Wind Force on super structure at 25 % of transverse wind force

     MOMENT AT FOUNDATION LEVEL 727.431M

    Longitudinal Force = 1.9 x ( 25/100 )

    = 0.475

    Longitudinal moment = 9.41 x0.48

     MOMENT AT 605.068M

    Longitudinal Force = 1.9 x ( 25/100 )

    = 0.475

    Longitudinal moment = 9.26 x0.48

     MOMENT AT 605.368M

    Longitudinal Force = 1.9 x ( 25/100 )

    = 0.475

    Longitudinal moment = 9.01 x0.48

     MOMENT AT PIER BOTTOM LEVEL 728.081M

    Longitudinal Force = 1.9 x ( 25/100 )

    = 0.475

    Longitudinal moment = 8.76 x0.48

    Down ward vertical wind load Fv = PZ x A3 x G x CL

     A1 = Area in Plan= 8.9x10.91 = 97.099 m2

    G = Gust Factor = 2

    CL = Lift co-efficient

    CL = 0.75

    Down ward vertical wind load Fv = 32.91 x (8.9 x10.91) x2 x 0.75

    4.793 t

    The bridges shall not be considered to be carrying any live load when wind speed exceeds 36 m/s

    ( refer cl 209.3.7 of IRC-6:2010, page -28)

    B). SUBSTRUCTURE

    Transverse Wind Force FT = PZ x A1 x G x CD

     A1 =

     A1 = 4.54 mm²

    G = Gust Factor

    G = 2

    CD = Drag co-efficient depending upon the shape of Sub structure

    CD from (Table-5 of IRC 6-2010) = 1.700 H/B = 13.700

    CD = 1.700 t/b = 0.102

    16.639 t-m

    ( refer cl 209.3.5 of IRC-6:2010, page -28)

    Down ward vertical wind load Fv

    Solid area in normal projected elevation

    4.469 t-m

    4.160 t-m

    4792.971 kg

    17.114 t-m

    4.397 t-m

    4.279 t-m

  • 8/18/2019 Design of Pier

    7/11

    Transverse Wind Force FT = 400.300 kg

    Transverse Wind Force FT = 0.410 t (Refer cl 209.3.3 of IRC-6:2014, pg-31)

     MOMENT AT FOUNDATION LEVEL 727.431M

    Leverarm = (0.65 + 6.92 + 0.25+0.25+0.15)

    8.220 m

    Transverse moment = 3.370 tm

     MOMENT AT 605.068M

    Leverarm = (0.65 + 6.92 + 0.25+0.25)

    8.070 m

    Transverse moment = 3.309 tm

     MOMENT AT 605.368M

    Leverarm = (0.65 + 6.92 + 0.25)

    7.820 m

    Transverse moment = 3.206 tm

     MOMENT AT PIER BOTTOM LEVEL 728.081M

    Leverarm = (0.65 + 6.92)

    7.570 m

    Transverse moment = 3.104 tm

    i.e 0.14*25/100 = 0.035

     MOMENT AT FOUNDATION LEVEL 727.431M

    Longitudinal Force = 0.1025

    Longitudinal moment = 0.1 x 8.22

     MOMENT AT 605.068M

    Longitudinal Force = 0.1025

    Longitudinal moment = 0.1 x 8.07

     MOMENT AT 605.368MLongitudinal Force = 0.1025

    Longitudinal moment = 0.1 x 7.82

     MOMENT AT PIER BOTTOM LEVEL 728.081M

    Longitudinal Force = 0.1025

    Longitudinal moment = 0.1 x 7.57

    0.776 t-m

     At foundation  AT 605.068M @ 605.368M At Pier Bottom

    Lever arm 8.220 m 8.070 m 7.820 m 7.570 m

    Transverse moment 3.370 t-m 3.309 t-m 3.206 t-m 3.104 t-m

    Longitudinal moment 0.843 t-m 0.827 t-m 0.802 t-m 0.776 t-m

    Level at Vertical force t Force Hzl. - X in t Hzl. - Z in t ML in tm MT in tm At sill level

    605.768 4.793 0.578 2.310 4.936 19.743 t-m

    605.368 4.793 0.578 2.310 5.080 20.320 t-m

    605.068 4.793 0.578 2.310 5.224 20.898 t-m

    604.768 4.793 0.578 2.310 5.311 21.244 t-m at foundation level

    4) Water Currents

    Longitudinal Wind Force on super structure at 25 % of transverse wind force

    Total Wind Loads at base with out Live Load

    0.843 t-m

    0.827 t-m

    0.802 t-m

  • 8/18/2019 Design of Pier

    8/11

  • 8/18/2019 Design of Pier

    9/11

      Since, the pressure due to water current is very low, force due to water current shall be neglected

    ML MT ML MT ML MT

    1. Dead Load Eccentricity 0.000 0.000 0.000 0.000 0.000 0.000

    2.Temp And Shrinkage 0.000 0.000 0.000 0.000 1.121 0.000

    3.Water Current Force 0.000 0.560 0.000 0.580 0.000 0.600

    4.Floating Debris 0.000 0.000 0.000 0.000 0.000 0.000

    5.Braking Force 90.954 0.000 93.299 0.000 95.643 0.000

    6.Live Load Eccentricity 26.260 65.651 26.260 65.651 26.260 65.651

    Total Moments Without LL 0.000 0.560 0.000 0.580 1.121 0.600

    Total Moments With LL 117.214 66.211 119.559 66.231 123.025 66.251

    6.Moment Due To Wind 4.936 19.743 5.080 20.320 5.224 20.898

    Total Moment Without LL 4.936 20.303 5.080 20.900 6.346 21.498

    Total Moment With LL 122.150 85.954 124.639 86.551 128.249 87.149

     

    Total Load At Pier Bottom Without LL 276.554

    Total Load At Pier Bottom With LL 370.340

    Total Load At Foundation Without LL

    Total Load At Foundation With LL

    SECTIONAL PROPERTIES PIER BOTTOM

    AREA (Sqm) 3.823

    SECTION MODULUS (Cum)

    In Longitudinal Direction 0.354

    In Transverse Direction 3.481

    WITHOUT BUOYANCY

    P/A ML/ZL MT/ZT

    t/sqm t/sqm t/sqm Max MIN.

    No LL 72.344 0.000 0.161 72.505 72.183

    With LL 96.878 331.114 19.021 447.013 -253.256

    No LL 72.344 13.943 5.833 92.120 52.569

    With LL 96.878 345.057 24.692 466.627 -272.871

    15% BUOYANCY

    STRESSES (t/sqm)

    SUMMURY OF MOMENTSAT PIER BOTTOM LEVEL728.081 AT 727.581 LEVELAT 727.831 LEVEL

    28.440

    17.064

    37.446

    Without Wind

    With Wind

    FINAL STRESSES IN CONCRETE AT PIER BOTTOM LEVEL

    FOUNDING

  • 8/18/2019 Design of Pier

    10/11

  • 8/18/2019 Design of Pier

    11/11

    100% BUOYANCY

    P/A ML/ZL MT/ZT

    t/sqm t/sqm t/sqm Max MIN.

    No LL 10.136 0.000 0.016 10.152 10.119

    With LL 13.433 7.226 1.769 22.429 4.437

    No LL 10.136 0.311 0.584 11.031 9.241

    With LL 13.433 7.538 2.337 23.308 3.559

    40.000 Safe

    As per IRC-78 -2000 CL.706.1.2

    "The permissible increase in stresses in the various members will be 33(⅓) per cent for the

    the combination of wind"

    40.000 x 1.33 = 53.3 t/m2 Safe

    Design of PCC footing at Earth side

    Maximum Base Pressure = 24.755 t/m2

    Modulus of section (Z) = (0.25) ̂ 2 x 1/6

    0.010 m3

    Moment Due to cantilever M = (Wl^2/2) = 24.75 x0 ̂ 2 x 1/2

    0.000 tm

    M = 0.000 = 0.000 t/m2

    Z 0.010

    MAX PERMISSBLE TENSILE STRESSES IN CONCRETE - M20 -53.0 t/m2 Safe

    Hence Footing is to be design as RCC.

     RCC FOOTING for PIERData

    Grade of concrete = M20m = 14

    sbc = 6.67Mpa

    Permissible stress in steel = 240.0Mpa

    k = 0.28

     j = 0.91

    Q = 0.85

    Pressure due to DL AND LL = 24.75 24.75

    Resultant = 24.75 t/m2

    FLEXURE DESIGN

    Bending Moment = 12.38 t-m Clear Cover = 75Effective Depth required = 382.49 mm

    Effective Depth Provided = 417 Hence, OK

     Ast Required = 1364.35 mm2

     Astmin = 500.4 mm2

    PROVIDE TOR 16 dia @ 140c/c

     Ast Provided = 1436.15664 > 1364.35 Hence OK

    Distribution reinforcement

     Ast minimum = 600.0mm2

    dia of bar  = 16

    Spacing HOWEVER PROVIDE TOR 16 dia @ 335c/c

    Without Wind

    With Wind

    FINAL STRESSES IN CONCRETE AT FL

    As per IRC-21 -2000 Table-9 & 11

    STRESSES (t/sqm)

    NET SBC WITHOUT WIND LOAD