Design of Metal Roof Deck Diaphragms for Low Rise Buildings

71
Design of Metal Roof Deck Diaphragms Design of Metal Roof Deck Diaphragms for Low-Rise Steel Buildings Robert Tremblay É École Polytechnique, Montréal, Canada North American Steel Construction Conference Orlando, Florida May 12, 2010

description

metal roof deck diaphragms design guide and presentation. Structural diaphragms. Civil engineering material

Transcript of Design of Metal Roof Deck Diaphragms for Low Rise Buildings

  • Design of Metal Roof Deck DiaphragmsDesign of Metal Roof Deck Diaphragmsfor Low-Rise Steel Buildings

    Robert Tremblaycole Polytechnique, Montral, Canada

    North American Steel Construction ConferenceOrlando, Florida

    May 12, 2010

  • Plan

    Background InformationBackground Information

    SDI Method

    Example 1 (US)

    Example 2 (Canada) & Modelling

    C l i ConclusionsMay12 ED69A

    www.aisc.org/conferencepdh

    R. Tremblay, Ecole Polytechnique of Montreal 2

    May13 WE86S

  • 1. Background Information

    ROOF JOISTS(typ.) ROOF BEAMS

    St t l (typ.)

    V

    StructuralSystem

    COLUMN(typ )

    VERTICALX BRACING

    V

    (typ.)(typ.)

    R. Tremblay, Ecole Polytechnique of Montreal 3

  • DeckSheetJoist

    (typ )SidelapFastener

    Sidelap Frame

    Button punch

    Frame

    (typ.) Fastener(typ.)

    Weld

    FrameFastener(typ.) Weld

    Screwor

    Screw

    orNail

    R. Tremblay, Ecole Polytechnique of Montreal 4

  • Joist(typ.)

    S

    DeckSheet

    S

    S C d

    R. Tremblay, Ecole Polytechnique of Montreal 5

  • d

    R. Tremblay, Ecole Polytechnique of Montreal 6

  • ROOF JOISTS(typ.) ROOF BEAMS

    (typ.)

    G, EIV

    COLUMN(typ.)

    VERTICALX BRACING

    (typ.)

    w = V / L

    +b

    + SFB

    L/2 L/2

    R. Tremblay, Ecole Polytechnique of Montreal 7

  • P S

    S

    0.4 S

    u

    u G'a

    S = P / b G = S / 1

    b

    = / a = P ( / b) / a

    R. Tremblay, Ecole Polytechnique of Montreal 8

  • R. Tremblay, Ecole Polytechnique of Montreal 9

  • 2. SDI Method

    http://www.sdi.org/ http://www.cssbi.ca/R. Tremblay, Ecole Polytechnique of Montreal 10

  • Shear Strength

    Qf Qf Qf Qf Qf Qf Qf

    1. Edge Panel:

    Pn

    Fe FeFp Fp w/2xpxe

    Fe = 2 Q x / wF = 2 Q x / w

    f e

    p f p

    L

    p f p

    Qf QfQs Qs QsQf QfF FF F

    2. Intermediate Panel:

    P w/LnP w/Ln

    Fe1

    Fe2

    Fe1

    Fe2

    Fp1

    Fp2

    Fp1

    Fp2

    xp1xe1xp2xe2

    w/2

    Qf QfQs Qs QsQfL

    Qf

    R. Tremblay, Ecole Polytechnique of Montreal 11

  • Shear Strength3. Corner Fastener:

    4. Elastic Shear Buckling:

    S = min (S S S S )Sn = min (Sne, Sni, Snc, Snb )

    R. Tremblay, Ecole Polytechnique of Montreal 12

  • R. Tremblay, Ecole Polytechnique of Montreal 13

  • Shear Stiffness

    P ( /b)

    SDI Procedure :PS

    Su

    G =P (a/b)

    S + C + d0.4 Su

    1G'

    a

    S = P / b = / a

    G = S / = P ( / b) /

    a

    b

    S C d

    R. Tremblay, Ecole Polytechnique of Montreal 14

  • Shear Stiffness

    R. Tremblay, Ecole Polytechnique of Montreal 15

  • R. Tremblay, Ecole Polytechnique of Montreal 16

  • + equations for shear strength and stiffnessf i f tfor various fasteners

    R. Tremblay, Ecole Polytechnique of Montreal 17

  • R. Tremblay, Ecole Polytechnique of Montreal 18

  • R. Tremblay, Ecole Polytechnique of Montreal 19

  • Shear Stiffness

    (3 spans assumed in tables)

    when using the tables

    R. Tremblay, Ecole Polytechnique of Montreal 20

  • R. Tremblay, Ecole Polytechnique of Montreal 21

  • R. Tremblay, Ecole Polytechnique of Montreal 22

  • R. Tremblay, Ecole Polytechnique of Montreal 23

  • http://www.cssbi.ca/

    R. Tremblay, Ecole Polytechnique of Montreal 24

  • http://www.canamgroup.ws

    http://www.us.hilti.com

    http://www cssbi ca/

    http://www.vulcraft.com

    http://www.cssbi.ca/

    http://www.wheelingcorrugating.com/R. Tremblay, Ecole Polytechnique of Montreal 25

  • 3. Example 1 (U.S.)

    Joists @ 75''o/cX-Bracing

    (typ.)1.5'' steel deck

    (sheets 25'-0" long)- Boston, MA@(typ.) (sheets 25 -0 long)

    0

    0

    '

    -

    0

    "

    5 - SCBF- R=6, Cd=5.0

    4

    @

    2

    5

    '

    -

    0

    "

    =

    1

    & O=2.0- Seismic

    10 @ 20'-0" = 200'-0"

    4

    1

    Truss (typ.)

    loads resistedby diaphragm

    A KRoof dead load = 21 psfWeight of walls = 5 psfRoof snow load = 35 psf

    1sL

    Site Class D = 0.30 g ; = 0.07g = 6 s

    S ST

    & X-braces

    R. Tremblay, Ecole Polytechnique of Montreal 26

  • Design Assumptions

    -

    0

    "

    5

    Design parallelto short walls

    g

    4

    @

    2

    5

    '

    -

    0

    "

    =

    1

    0

    0

    '

    -

    to short walls

    X-Bracing 10 @ 20'-0" = 200'-0"

    4

    A K

    1

    Rigid diaphragm=> torsion

    Occupancy Category II

    => Importance Factor, I = 1.0 Regular structure

    Equivalent Lateral

    Importance Factor, I 1.0

    hn = 22 ft & CBF=> T = 0 02 (22) 0.75 = 0 20 sq

    Force Procedure applies

    => Ta = 0.02 (22) 0.75 = 0.20 s V based on amplified period

    => C T = 1 6(0 20) = 0 32 spp

    Wind loads neglected=> CuTa = 1.6(0.20) = 0.32 s

    (to be verified)R. Tremblay, Ecole Polytechnique of Montreal 27

  • W = 593K0.02 V

    Assume T = 1.6 x Ta = 0.32 s

    = 1.0 (SDC B)0.54 V

    K

    K

    = 16.6

    V = 30.8

    CRCM 0.46 V

    R = 6.0 & I = 1.0

    => C = 0 052 => V = 30 8K (E ) 100'10'0.02 V

    => Cs = 0.052 => V = 30.8K (Eh)

    Include torsional effects-11

    K

    K

    10010

    0.2

    0.3

    /

    C

    s

    BostonSa (Elastic)Cs (CBF - R = 6.0)

    22'

    41.3O

    11.0

    11.0 KK

    0.0

    0.1

    S

    a

    (

    g

    )

    25'

    /C0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    T/C brace system

    R. Tremblay, Ecole Polytechnique of Montreal 28

  • Bracing members: Tension-compression bracing required for SCBF

    Bracing members:

    Use ASTM A500, gr. C square HSS (Fy = 50 ksi)

    Pu 16.6K/2/cos(41.3o) = 11.0K (negl. gravity loads)

    b/t < 0.64(E/Fy)0.5 = 15.4 (AISC 341-05)

    KL/r < 4 0(E/F )0.5 = 96 (AISC 341 05) KL/r < 4.0(E/Fy)0.5 = 96 (AISC 341-05)with L = (252 + 222)0.5 x 12 = 400 in.,K = 0 5 (X-bracing)K = 0.5 (X-bracing),but KL/r < 200 permitted if columns designedfor the brace expected yield tensile capacityfor the brace expected yield tensile capacity

    R. Tremblay, Ecole Polytechnique of Montreal 29

  • Select HSS 3x3x3/16: (tdes = 0.174)

    Ag = 1.89 in2

    b/t = (3.0-3x0.174)/0.174 = 14.2 < 15.4 OK

    KL/r = (0 5)(400)/1 14 = 175 < 200 OK (but > 96) KL/r = (0.5)(400)/1.14 = 175 < 200 OK (but > 96)

    cPn = 13.9K > 11.0K OK16.6K

    22'11

    .0

    -11.0 KK Check Pu = 11.0K with gravity loads once

    25'

    41.3Ogravity loads once columns are designed

    25

    R. Tremblay, Ecole Polytechnique of Montreal 30

  • Tension capacity of brace connections: Tension capacity of brace connections:

    ARyFy = (1.4)(50)(1.89) = 132K,but not greater than the brace force than canbe transferred to the brace by the system( f d ti t i lift)(e.g., foundation overturning uplift).

    Note: brace force corresponding to 0Eh(0 = 2.0) does not apply

    Compression capacity of brace connections:1.1RyPn = (1.1)(1.4)(13.9/0.9) = 23.8K

    R. Tremblay, Ecole Polytechnique of Montreal 31

  • Diaphragm (incl. collectors & chords): Diaphragm and collector elements on short walls

    designed for 16.6K/100 = 166 plf.

    Currently, ASCE 7 & AISC do not require design of these elements for load combinations withthese elements for load combinations with overstrength (0Eh) or forces corresponding to yielding in braces!! 0.02 Vyielding in braces!!

    0.54 VK= 16 6

    V

    CRCM 0.46 VK= 16.6

    0.02 V

    100' 10'

    R. Tremblay, Ecole Polytechnique of Montreal 32

  • Diaphragm designed for Su = 166 plf: 1 1/2 wide rib (WR) roof deck (Canam P3606): span = 75; sheet length = 225 #10 screw sidelap connectors #10 screw sidelap connectors Hilti X-ENP-19 L15 frame fasteners

    Select 22 ga. (0.0295) deck with 36/4 fastenerSelect 22 ga. (0.0295 ) deck with 36/4 fastener layout & 2 sidelap connectors/span (SDI 3rd ed.):

    Sn = 354 plf & G = 14.3 k/inSn 354 plf & G 14.3 k/inDeckSheetJoist

    (typ.)SidelapFastener(typ.)

    FrameFastener(typ.)( y )

    R. Tremblay, Ecole Polytechnique of Montreal 33

  • Span = 6 25 => S = 545 plf S = 0 65 x 520 = 354 plfSpan = 6.25 => Sn = 545 plf. Sn = 0.65 x 520 = 354 plfK1 = 0.304 ft

    R. Tremblay, Ecole Polytechnique of Montreal 34

  • Span = 6.25 => Snb = 1315 plf

    Snb = 0.80 x 1315 = 1052 plf >> SnSnb 0.80 x 1315 1052 plf >> Sn

    R. Tremblay, Ecole Polytechnique of Montreal 35

  • R. Tremblay, Ecole Polytechnique of Montreal 36

  • R. Tremblay, Ecole Polytechnique of Montreal 37

  • G =870

    K1 = 0.304 ft

    /

    G =3.78 + (0.3)1072 + (3)(0.304)(6.25)

    6.25

    G 870K2 = 870 k/in

    K4 = 3.78G = 14.3 k/in

    G = 8703.78 + 51.5 + 5.70

    Dxx = 1072 ft

    Check with spreadsheet:

    = 548 plf

    = 14.7 k/inR. Tremblay, Ecole Polytechnique of Montreal 38

  • Collectors designed for Pu = 8.30K:(SDC B: no need to design for overstrength)

    K

    K

    4.15

    4 15

    c)K

    KK

    22'

    16.6 /100' = 0.166 kip/ft- 4.15

    - 8.30

    25' (typ.)

    0.02 V

    0.54 VK16 6

    V

    CRCM 0.46 VK= 16.6

    0.02 V

    100' 10'

    R. Tremblay, Ecole Polytechnique of Montreal 39

  • Chords designed for Pu = 7.9K :a) c)

    KV = 30 8

    CR

    CM

    DeckSheet

    Frame

    Joist(typ.)

    SidelapFastener(typ.)

    PLAN15.7 / 200' = 0.0785 kip/ftK

    V = 30.8CMFrameFastener(typ.)

    K

    KK

    0.0785 kip/ft

    6.3

    -1.6-7.9

    b) d)

    K

    7.7K

    22'

    20(typ )30.8 / 200' = 0.154 kip/ft

    K

    - 7.7K

    PLAN ELEVATION (LONG WALL)(typ.)

    Pu = (154 plf)(200)2 / 8 / 100 = 7.7K

    Select W8x10, A = 2.96 in2

    R. Tremblay, Ecole Polytechnique of Montreal 40

  • Check and diaphragm flexibility:w = V / L

    bSteel DeckUnits (typ.)

    Chord (typ.)

    + SFB

    Units (typ.)

    Vertical

    V

    L/2 L/2Vertical

    X Bracing(typ.)

    Collector(typ.)

    R. Tremblay, Ecole Polytechnique of Montreal 41

  • w = V / L

    w = 30.8k / 200 ft= 154 plf

    b

    B = 0.11 (Bracing) + SF

    B

    F = 5 wL4/(384 EI)I = 2 x 2.96 (12 x 50)2Connectors

    L/2 L/2

    ( )= 2.13 x 106 in4

    F = 0.089W8x10A = 2.96 in2(HSS)

    S = wL2/(8 Gb) 0 54L = 200 ft

    SECTION "A"

    S = 0.54b = 100 ftG = 14.3 k/in

    R. Tremblay, Ecole Polytechnique of Montreal 42

  • = C ( + ) / I = 5 0 (0 11 + 0 63) / 1 0 = 3 7 = Cd(B + D) / I = 5.0 (0.11 + 0.63) / 1.0 = 3.7Less than 2% drift limit (5.28 for hn = 22)

    0.63 > 2 x 0.11 = 0.22 => Flexible diaphragm=> Out-of-plane X-braces

    dont resist V

    K

    0.55 VK

    K

    = 16.9

    V = 30.8

    CRCM 0.45 V

    100'10' 100 10

    R. Tremblay, Ecole Polytechnique of Montreal 43

  • Verification of the Building PeriodV / L

    M WT 2 2K g V

    = =

    w = V / L

    For flexible diaphragms (ASCE-41): D

    B

    ( ) ( ) + = + B D B D0.78W WT 2 0.10 0.080 , in inchesg V V0 06

    T = CuTa

    W = 593k 0.020.04

    0.06

    V

    /

    W

    Computed T

    Under V = 30.8k, B = 0.11 & D = 0.63T [ (593 / 30.8) (0.004 x 0.11 + 0.0031 x 0.63) ]0.5

    0.0 0.5 1.0 1.5 2.0Period, T (s)

    0.00

    T [ (593 / 30.8) (0.004 x 0.11 + 0.0031 x 0.63) ]= 1.09 s

    R. Tremblay, Ecole Polytechnique of Montreal 44

  • ROOF JOISTS(typ.) ROOF BEAMS

    (typ.)

    Elastic

    COLUMN(typ )

    VERTICALX BRACING

    x 1/R

    (typ.)(typ.)

    VeR

    V = f th ti l tR of the vertical system

    R. Tremblay, Ecole Polytechnique of Montreal 45

  • KKKK16.6 /100' = 0.166 kip/ft

    4.15

    - 4.15- 8.30

    22'

    25' (typ.)Collector Collector

    RoofDiaphragm

    BracingMembers(Inelastic)

    Columns

    VV

    K

    KK K

    K

    117 /100' = 1.17 kip/ft

    29.3

    - 29.3- 58.5

    23 8

    CollectorElements

    BracingConnections

    Anchor Bolts& Foundations

    Collector Collector

    ELEVATION (END WALL)

    KK

    22'

    25' (typ.)

    13223.8

    ELEVATION (END WALL)

    R. Tremblay, Ecole Polytechnique of Montreal 46

  • 4. Design Example 2 (Canada)

    76.0 m

    NSeismic Loads

    Site: Montreal, Site Class C

    N

    5

    .

    6

    m

    ,Vertical Bracing:

    Tension-Only (T/O) BracingType MD: R = 1 3 R = 3 0

    4

    5

    Type MD: Ro = 1.3, Rd = 3.0 Roof snow loads: Ss = 2.48 kPaBuilding Height : 8.6 mDesign along N-S direction

    R. Tremblay, Ecole Polytechnique of Montreal 47

  • Joists(typ.)

    Steel Deck38 mm Deep3 Spans Min.

    Tension-OnlyX-Bracing (typ.)

    G

    4

    5

    6

    0

    0

    6

    @

    7

    6

    0

    0

    =

    4

    W460x52 (typ.)

    10 @ 7600 = 76 000

    A

    10 @ 7600 = 76 000

    1 11

    R. Tremblay, Ecole Polytechnique of Montreal 48

  • 450Membrane+ Insulation+ Gypsum board+ Steel deck

    18 600500

    + Joists/Beams+ Electr./Mech.= 1.23 kN/m2

    Precast pre-insulatedpanels : 4.94 kN/m2

    76.0 m

    4

    5

    .

    6

    m

    300

    10 000

    WRoof = (45.6)(76.0) [ 1.23 kPa + (0.25)(2.48 kPa) ] = 6410 kNW = 2 (76 0) [ (9 1)2/2/8 6 ][ 4 94 kPa ] = 3620 kN

    [mm]

    WWalls = 2 (76.0) [ (9.1)2/2/8.6 ][ 4.94 kPa ] = 3620 kNW = 6410 + 3620 = 10 030 kN

    R. Tremblay, Ecole Polytechnique of Montreal 49

  • V = S(T) IE W / (Ro Rd)

    Ta = 2 x 0.025 x 8.6 = 0.43 s (to be verified)S = 0.422I = 1 0IE = 1.0 Ro = 1.3 Rd = 3.0

    V = [(0.422) (1.0) (10030) ] / [ (1.3) (3.0)] = 1080 kN

    76 0 m Accidental eccentricity = 0.1 x 76.0 m = 7.6 mNote: Contribution of the

    76.0 m

    vertical bracing parallel to the direction of loading is neglected (fl ibl di h )

    1080 kN 648 kNCM

    7.6 m

    (flexible diaphragm).

    R. Tremblay, Ecole Polytechnique of Montreal 50

  • Design of the Vertical Bracing

    648 kN

    = 48.5 deg.

    8.6 m

    X en T/O : Tf = 489 kNHSS ASTM A500 gr. CFy = 345 MPay 3 5 a

    T = A F > Tf3 requirements :

    Tr = A Fy > TfKL/r < 200 , with K = 0.5 and L = Lc-c - 500 mm 11 000 mmbo/t < 330/Fy0.5 si KL/r < 100

    425/F 0 5 i KL/ 200425/Fy0.5 si KL/r = 200& linear interpolation if 100 < KL/r < 200

    R. Tremblay, Ecole Polytechnique of Montreal 51

  • HSS 102x102x4.8 :A 1630 2A = 1630 mm2

    Tr = 506 kN > Tf (= 489 kN)KL/r = 5500 / 39.4 = 140 < 200 OKb/t = (102 4 x 4.30) / 4.3 = 19.7 < 19.8 OK

    R. Tremblay, Ecole Polytechnique of Montreal 52

  • Diaphragm Design

    Expected strength of bracing members& expected horizontal shear in diaphragm, Vu

    ( )= =

    u y y y

    1/1.342 68

    T AR F ,o R 1.1

    C 1 2 AR F / 1 AR F V /2u( )= + =

    2.68u y y y y y

    y yy 2

    C 1.2 AR F / 1 AR F

    R FKL

    CC TT uu uuy 2r E

    HSS 102x102x4.8 : RyFy = 385 MPaTu = 628 kNCu = 176 kN

    V 4 (C + T ) ( ) 2130 kN ( h l b ildi )Vu = 4 (Cu + Tu) (cos ) = 2130 kN (whole building)>> V = 1080kN

    R. Tremblay, Ecole Polytechnique of Montreal 53

  • Vu = 4 (Cu + Tu) (cos ) = 2130 kN (whole building)

    Design shear flow:

    < V with RoRd = 1.3 = 3240 kN OK

    qf = (2130 kN / 2) / 45.6 m = 23.4 kN/mqf

    CC TT uu uu

    V /2u

    Canam P3606 Steel Deck :Canam P3606 Steel Deck : Joist Spacing : 1900 mm

    19 mm Welds & No. 10 ScrewsR. Tremblay, Ecole Polytechnique of Montreal 54

  • Select t = 1.21 mmW ld 36/9Welds on 36/9screws at 150 mm o/c

    qr = 24.8 kN/m > 23.4 kN/mG = 24.3 kN/mm

    R. Tremblay, Ecole Polytechnique of Montreal 55

  • Alternativesolution :

    R. Tremblay, Ecole Polytechnique of Montreal 56

  • Lateral Deformations

    w = 1080 kN / 76.0 m= 14.2 kN/m

    w = V / L

    B = 21.1 mm (Bracing) + b

    SF

    F = 5 wL4/(384 EI)2

    L/2

    B

    L/2

    I = 2 x 6440 (45 600/2)2

    = 6.70 x 1012 mm4

    = 4 6 mmHSSConnectors F = 4.6 mm

    S = wL2/(8 Gb)L = 76 000 mmW460x52A = 6640 mm2

    S wL /(8 G b)S = 9.3 mmb = 45 600 mmG = 24.3 kN/mmSECTION "A"

    R. Tremblay, Ecole Polytechnique of Montreal 57

  • Check Inter-Storey Drift:

    Under E : Expected = RoRdElasticUnder E : Expected RoRdElasticElastic = 21.1 + 4.6 + 9.3 = 35.0 mm

    Expected = (1.3)(3.0)(35.0) = 137 mm = 0.016 hs< 0.025 hs => OK !

    R. Tremblay, Ecole Polytechnique of Montreal 58

  • Using a Numerical Model (SAP2000)

    Membrane Element

    0.01 x ABeam(no connectors)

    0.5 x Abracing (T/O)

    R. Tremblay, Ecole Polytechnique of Montreal 59

  • Properties of the membrane elements:

    = 7.7x10-8 kN/mm3

    E = 200 kN/mm2G = 76.92 kN/mm2

    t = 1.21 mm

    R. Tremblay, Ecole Polytechnique of Montreal 60

  • Modification of the stiffness of the membrane elements:

    Axial Stiffness Modification:Kx (f11) & Ky (f22)Modifier = 0.001od e 0 00(deck axialstiffness neglected)

    Shear Stiffness Modification:G (f12)

    G = 24.3 kN/mm

    G = G x tG = G x t= 76.92 x 1.21= 93.07 kN/mm

    Modifier = 24.3 / 93.07= 0.261

    R. Tremblay, Ecole Polytechnique of Montreal 61

  • Modification of the seismic mass:

    w = 1.23 kN/m2 + (0.25)(2.48 kPa) = 1.85 kN/m26 / 2= 1.85x10-6 kN/mm2

    w = x t= 7.7x10-8 x 1.21= 9.317x10-8 kN/mm2

    Modifier = 1 85x10-6 / 9 317x10-8Modifier = 1.85x10-6 / 9.317x10-8= 19.9

    R. Tremblay, Ecole Polytechnique of Montreal 62

  • = 21 1 mmB = 21.1 mm

    F = 4.3 mmF 4.3 mm

    S = 9.5 mmTotal = 34.9 mmx 50

    x 200R. Tremblay, Ecole Polytechnique of Montreal 63

  • Modification of the stiffness of membrane elements:

    Modifier Kx (f11) = 1219 / 914= 1.333

    DeckSheetJoist

    (typ.)SidelapFastener(typ.)

    Modifier Ky (f22) = 0.001 FrameFastene(typ.)

    Total = 33.5 mmR. Tremblay, Ecole Polytechnique of Montreal 64

  • Verification of the Building Period

    M WT 2 2K g V

    = = w = V / L

    K g V

    For flexible diaphragms (ASCE-41): D

    B

    ( ) ( ) + = + B D B D0.78W WT 2 0.004 0.0031 , in mmg V Vg V VFor the example building (Section 2) :

    W = 10 030 kNUnder V = 1080 kN, B = 21.1 mm & D = 15.2 mmT [ (10 030 / 1080) (0.004x21.1 + 0.0031x15.2) ]0.5

    = 1.11 sR. Tremblay, Ecole Polytechnique of Montreal 65

  • LDiaphragm

    (EI G') ( )K K W+B

    D b

    (EI, G )

    BracingBents (K )

    ( )B DB D

    2

    K K WT 2K K g

    +=

    BD D 3 2with : K L EI L G'b

    = +

    For the sample building (Section 2) :

    KB = 1080 kN / 21.1 mm = 51.1 kN/mmG = 24 3 kN/mm I = 6 70 x 1012 mm4G = 24.3 kN/mm, I = 6.70 x 10 mmL = 76 000 mm, b = 45 600 mmKD = 97.0 kN/mmD=> T 1.10 s

    R. Tremblay, Ecole Polytechnique of Montreal 66

  • From Numerical Simulation: T = 1.10 s

    R. Tremblay, Ecole Polytechnique of Montreal 67

  • NBCC 2005:

    Ta = 0.025 hn = 0.025 (8.6 m) = 0.215 sbut T = 2 x Ta = 0.43 s permitted if verified by dynamic analysis

    0.8 T CNB = 0 215 s S = 0 67

    0 4

    0.6

    S ( )

    Ta, CNB = 0.215 s - S = 0.67

    T = 2 Ta, CNB = 0.43 s - S = 0.42

    0.2

    0.4S (g)

    T = Tcalc = 1.10 s - S = 0.13

    0 0.4 0.8 1.2 1.6 2T (s)

    0

    V =S(T) Mv IE W( ) V

    Rd RoR. Tremblay, Ecole Polytechnique of Montreal 68

  • Numerical modelling useful for more complex structures:

    . Lachapelle, Lainco Inc. / R. Tremblay, Ecole Polytechnique of Montreal 69

  • 1

    42

    3

    . Lachapelle, Lainco Inc. / R. Tremblay, Ecole Polytechnique of Montreal 70

  • Conclusions

    SDI method is a comprehensive approach to h t th d tiff ti fassess shear strength and stiffness properties of

    metal roof deck diaphragms.

    S i i d i f b d d b t ki Seismic design forces can be reduced by taking advantage of the diaphragm flexibility on the building period, but realistic (conservative) g ( )period estimates are needed.

    Capacity design approach needed to prevent inelastic response in the diaphragms, including chords and collectors.

    R. Tremblay, Ecole Polytechnique of Montreal 71