DESIGN OF INFRARED THERMOGRAPHY DIAGNOSTICS FOR THE … · 2016. 5. 5. · [1 ‐5µm] optimized @...

25
JAN. 2015 DESIGN OF INFRARED THERMOGRAPHY DIAGNOSTICS FOR THE WEST PROJECT X. Courtois, MH. Aumeunier, Ph. Moreau, C. Balorin, H. Roche, M. Jouve, JM Travere, F. Micolon, C. Begat, M. Houry IRFM 1 st IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis Nice, 1 st -3 rd of June 2015

Transcript of DESIGN OF INFRARED THERMOGRAPHY DIAGNOSTICS FOR THE … · 2016. 5. 5. · [1 ‐5µm] optimized @...

  • JAN. 2015

    DESIGN OF INFRAREDTHERMOGRAPHY DIAGNOSTICSFOR THE WEST PROJECT

    X. Courtois, MH. Aumeunier, Ph. Moreau, C. Balorin, H. Roche, M. Jouve, JM Travere, F. Micolon, C. Begat, M. HouryIRFM

    1st IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis Nice, 1st - 3rd of June 2015

  • Introduction

    IR views objectives & location

    Design & performances

    Cameras and signal processing

    Conclusion

    OUTLINE

    Introduction

    IR views objectives & location

    Design & performances

    Cameras and signal processing

    Conclusion

  • | PAGE 3IR diagnostic for WEST project

    THE WEST PROJECTA MAJOR UPGRADE OF TORE SUPRA

    WEST + Tore Supra supra conductive magnets and actively cooled Plasma Facing Components = capabilities of long pulse operation in a full metallic environment,

    high fluency (10 MW/m² steady state), H mode

    => Tore Supra is a unique facility as test bed for ITER W Divertor technology

    carbon Limiter (2012) X-point, tungsten Divertor (2016)

    WEST (Tungsten (W) Environment for Steady State Tokamak) project:

    Aims to transform TORE SUPRA configuration

    Carbon Tungsten

  • OUTLINE

    Introduction

    IR views objectives & location

    Design & performances

    Cameras and signal processing

    Conclusion

  • | PAGE 5IR diagnostic for WEST project

    Equatorial portWide Angle Tangentialview

    Bumper (W/CFC)

    Lower divertor (full W) Baffle (W/Cu)

    Antennae protection (W/CFC)

    Upper divertor (W/Cu)

    Upper port protection (W/Cu)

    Outer wall (SS)

    Inner wall (SS)

    Endoscope optic front end

    Standarddivertor view

    Antennae view

    folded spherical mirror

    Niche

    High resolution view

    Objectives: Measure the surface temperature of Plasma Facing Components (PFC) In order to ensure their integrity and provide data for physics

    IR VIEWS  &  MONITORED COMPONENTS

  • | PAGE 6IR diagnostic for WEST project

    LH C3

    LH C4

    ICRH Q4

    ICRH Q2ICRH Q1

    7 Divertor Standard Views 100% divertor surface (with overlap)

    7 endoscopes located in upper ports

    Objectives: RT protection of the divertor Physics studies :

    • Plasma Wall Interactions• PFC behavior (dust deposition, ageing)• ...

    Spatial resolution

  • | PAGE 7IR diagnostic for WEST project

    1 Wide Angle tangential view (equatorial port)=> temperature monitoring of upper divertor,

    upper port protections, a bumper

    LH C3

    LH C4

    ICRH Q4

    ICRH Q2ICRH Q1

    sas

    5 Antennas views3 ICRH & 2 LHCD => for RT protectionSpatial resolution Study gaps and leading edges=> Redundancy with the standard viewsSpatial resolution 14 IR views in total

    IR VIEWS OBJECTIVES & LOCATION  (2/2)

  • OUTLINE

    Introduction

    IR views objectives & location

    Design & performances

    Cameras and signal processing

    Conclusion

  • | PAGE 9IR diagnostic for WEST project

    UPPER  PORT  ENDOSCOPE  OVERALL  DESCRIPTION

    Optical tube 100 mm 3 optical lines

    large FOV, water cooled

    HeadOptic front end+ Heat load

    IR Cameras

    Machine Flange

    Niche- Folded mirror- cooling plate

    NEW !

    NEW !

    NEW !

    NEW

    NEW

  • | PAGE 10IR diagnostic for WEST project

    IR Wavelength

    Band

    Expected range of Temperature

    (ε=0,2)

    Time resolution

    Pixel Projection

    (512x640 pix)

    Expected resolution with real lenses

    @ 95% true temp.

    Standard Divertor view (x7)DESIGN COMPLETED

    Antenna view via mirror (x5)DESIGN COMPLETED

    High Resolution Divertor viewDESIGN ONGOING

    Wide Angle Tangential viewDESIGN IN PROGRESS

    OPTICAL DESIGN AND PERFORMANCES

    [1 ‐ 5µm]optimized @ 1.7 µm 300°C - 3200°C

    50 Hz full frameMulti Integration Time(high dyn. T° range)

    2 mm 6 mm @1.7µm24 mm @3.7µm

    [0.6 ‐ 5µm]optimized @ 1.7 µm 250°C - 3200°C

    250 Hz full frame1 adaptive IT

    (reduced T° range)0.7 mm 10 mm NA (high depth of field)

    [1 ‐ 5µm]optimized @ 1.7 µm 200°C - 3200°C

    50 Hz full frameMulti Integration Time

    (high dynamicT° range)

    2.8 mm 8 mm @1.7µm12 mm @3.7µm

  • | PAGE 11IR diagnostic for WEST project

    STANDARD DIVERTOR VIEW (2 X 48° FOV)

    STD DVT LEFT VIEW LEFT VIEWRIGHT VIEW

    Optical simulation:

    Left and right views uses 2 optical lines Optically combination on one detector frame

    SPEOS CAAV5 © CEA

  • | PAGE 12IR diagnostic for WEST project

    STANDARD DIVERTOR VIEW OPTICAL DESIGN

    ~ 2000 mm

    28 lenses (ZnSe, ZnS_Broad, Silicon, CAF2)2 prisms4 mirrors2 tight sapphire windows

    camera

    Status : Optical and Opto‐mechanical design completed Call for tender for Manufacturing in progress

  • | PAGE 13IR diagnostic for WEST project

    ANTENNA VIEW SIMULATION 

    SPEOS CAAV5 ©CEA

    Monte Carlo Ray tracing photonic simulation

  • | PAGE 14IR diagnostic for WEST project

    ANTENNA VIEW OPTICAL DESIGN

    ~ 2200 mm

    Status : Optical and Opto‐mechanical design completed Call for tender for Manufacturing in progress Mirror: 2 prototypes under manufacturing 

    (Molybdenum & SS) 

    Antenna

    tight window and deflecting mirror

    head optics

    relay lenses

    camera lens

    tight window

    32 lenses (CAF2, Sapphire, AMTIR1, ZnS_Broad)2 mirrors2 tight sapphire windows

    watercooled

    plate

    Molybdenum or SSspherical mirror

    Radius 250mm

    Folded Mirror

  • | PAGE 15IR diagnostic for WEST project

    HIGH RES.  DIVERTOR VIEW (20° FOV)

    The HR view uses the third optical line

    LEFT VIEWRIGHT VIEW

    HR VIEW

    Optical simulation

    Status : Design in progress

    SPEOS CAAV5 © CEA

    512 pixels

    640 pixels   ≈  430 mm

    Strike points

  • | PAGE 16IR diagnostic for WEST project

    Simpler design (more space available): 2 mirrors in the vacuum vessel + tight window + camera lens

    Camera + lens Tight window(sapphire)

    Status : Optical design completed Opto‐mechanical and Mechanical design in progress

    Optical head

    spherical mirror

    Pupil hole 3mm

    plan mirror

    TANGENTIAL VIEW PRELIMINARY DESIGN

  • | PAGE 17IR diagnostic for WEST project

    IN‐SITU TEST : IR REFERENCE SOURCES

    Rugged & vacuum resistant 5 W900°C @ emissivity = 0.8

    Alumina

    3.5 mmNi filament

    3V

    IR sources located on antennas and on divertor views:

    => reference hot spot check camera good working adjust masks of Region Of Interest

    IR sources

    Example of location on LH antenna

  • OUTLINE

    Introduction

    IR views objectives & location

    Design & performances

    Cameras and signal processing

    Conclusion

  • | PAGE 19IR diagnostic for WEST project

    Wall Monitoring SystemTmax , ROI Alarm + Arc detection

    + Reflection assessment

    PX

    Ie/ P

    CIe

    exte

    nder 3 x 64 MB/s

    Raw DL + Temperature + ROI data

    3 FPGA boardsAcquisition + RT processing

    Optical Transceiver

    Camera Link

    GPIO

    Optical Transceiver

    Cameras

    Cam. Link

    Optical fibre

    WEST database + IR server

    RT Works IR data

    (lossless compression)

    Acquisition PC>500 GB Local data storage

    (+screen in Control Room)

    RS232GPIO

    Optic fibre Ethernet 64MB/s x3 IR luminance video stream

    + Tmax & alarm / Region Of InterestC

    hron

    o bo

    ard Copper link

    Other Diag. data

    IR a

    cqui

    sitio

    n U

    nit

    Wal

    l Mon

    itorin

    g sy

    stem

    Toka

    mak

    WE

    ST

    power supply

    PXI Express (5 identical units)

    RS232

    Data capture (Cameras)

    RT basic data processing & Acquisition system

    GLOBAL DATA PROCESSING ARCHITECTURE

    RT Monitoring and interfaces with external systems

  • | PAGE 20IR diagnostic for WEST project

    HOME‐MADE IR CAMERAS

    IRFM experience in camera assembling for harsh environment (B +T°) :

    On the shelf InSb detector• spectral range : 1,5µm – 5,0µm• 640x512 pixels, Pitch : 15µm• 250 Hz acquisition rate @ full frame• Camera Link video format• Multi Integration Time (up to 6 IT)

    IRFM Design• Thermalized filter• Soft iron magnetic shielding• Rugged power supply• Water cooling control• Optical Camera Link transceivers

    Detector procurement in progress Camera design done

    Status:

    Bi‐spectral camera, HgCdTe 3.5 & 4.5 m 640x512 pix Fast camera, InSb 1‐5 m  640x512  350Hz 

    Others available cameras:

    12 home-made camerasCustomised features, affordable cost

  • | PAGE 21IR diagnostic for WEST project

    FPGA BOARD“CENTRAL” HARDWARE COMPONENT

    Functions:Camera basic functions:Detector local board controlData calibration & corrections (Bad Pixel Replacement, NUC,...) RT Multi Integration-Time processing (up to 6 IT)

    Data acquisition and storage on PC (PXIe bus) Real time data processing:Region Of Interest processing:

    Temperature threshold alarm -> Interlock system hard outputHot spot detection,Spatial and temporal filteringRT Data throughput to WMS (Ethernet)

    Under procurement Code development (VHDL) in progress 

    Status:

    Reuse of former developments on similar FPGA boards : Monitore Project (IRREEL diag) : algorithms for thermal events smart detection JET Protection Inner Wall project: algorithms for RT monitoring (ROI, filtering,...) Home‐made bi‐spectral camera : algorithms for calibration, NUC, adaptive IT, acquisition

  • | PAGE 22IR diagnostic for WEST project

    Multi-diagnostics analysis for High level Machine protection

    Discharge data analysis to optimize next discharge

    Physics parameters(λq, Prad, etc.)

    Plasma parameters : Magnetic equilibrium, Ip

    scenario compatibility with PFCs operational limits ?

    Before discharge

    During discharge After discharge

    PFC material, optical properties & operational limits

    (max surface temperature)

    Diagnostics features

    WEST Database

    M. Travere et al.,1st EPS Conference on Plasma Diagnostics, Frascati, April 2015

    Full integrated simulation from the plasma source to the measured temperature

    WALL MONITORING SYSTEMDISCHARGE LEARNING / OPTIMIZATION PROCESS

    Diag data

    (IR)

    Knowledge for scenario construction & operational limits

  • OUTLINE

    Introduction

    IR views objectives & location

    Design & performances

    Cameras and signal processing

    Conclusion

  • | PAGE 24IR diagnostic for WEST project

    CONCLUSION

    o The WEST upgrade of Tore Supra requires new diagnostics for PFCs protection

    o 4 different IR views are developed : standard and high resolution divertor views, antennas views,  and 1 wide angle tangential view

    o The developments are in progress : optical and opto‐mechanical systems, IR cameras, acquisition and RT processing

    o A novel system (WMS) is proposed for high level machine protection and discharge control

  • THANK YOU

    FOR YOUR ATTENTION