Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further...

20
S1 Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu 2 O nanoparticles for CO 2 methanation María Cabrero-Antonino, a, † Sonia Remiro-Buenamañana, b, † Manuel Souto, c Antonio A. García-Valdivia, d Duane Choquesillo-Lazarte, e Sergio Navalón, a Antonio Rodriguez- Diéguez, d * Guillermo Mínguez Espallargas, c * and Hemenegildo García a,b, * Supporting Information 1. General methods and materials 2. Structural features of MOF(Zn) 3. Catalytic tests 4. Determination of valence band energies and optical gaps 5. References Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Transcript of Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further...

Page 1: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S1

Design of cost-efficient and photocatalytically activeZn-basedMOFsdecoratedwithCu2OnanoparticlesforCO2methanation

MaríaCabrero-Antonino,a,†SoniaRemiro-Buenamañana,b,†ManuelSouto,cAntonioA.

García-Valdivia,dDuaneChoquesillo-Lazarte,eSergioNavalón,aAntonioRodriguez-

Diéguez,d*GuillermoMínguezEspallargas,c*andHemenegildoGarcíaa,b,*

Supporting Information

1.Generalmethodsandmaterials2.StructuralfeaturesofMOF(Zn)3.Catalytictests4.Determinationofvalencebandenergiesandopticalgaps5.References

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2019

Page 2: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S2

1. Generalmethodsandmaterials

Materials and reagents. All the reagents and solvents employed in this study were of analyticalreagentorHPLCgradeandweresuppliedbySigma-Aldrich.

SynthesisofMOF(Zn)-1.3H-benzotriazole-5-carboxylate(10mg,0.06mmol)wasdissolvedin0.5mLofDMFbeforeadding0.5mLofdistilledwater.Separately16.51mg(0.09mmol)ofZn(CH3COO)2wasdissolvedin0.5mLofdistilledwaterbeforeadding0.5mLofDMF.Bothsolutionsweremixedandtheresultingsolutionwasplacedinaclosedglassvesselandintroducedinanovenat95°Cfor12h,afterwhichyellow/brownsinglecrystalswere isolated,whichwerewashedwithwater/methanol.Yield:55%basedonmetal.Heatingatdifferent temperaturesproducedifferentdegreesofbreathingasrevealedbysingle-crystaldiffraction(seebelow).

SynthesisofMOF(Zn)-2.MOF(Zn)-2isobtaineduponheatingat400°Cfor2hcrystalsofMOF(Zn)-1.

Synthesis of MOF-74(Zn). Synthesis of MOF-74(Zn) was adapted from a previously reportedprocedure.S1Amixtureof2,5-hydroxy-1,4-benzenedicarboxylicacid(H2DHBDC)(2.4g,12.1mmol)andzincnitratetetrahydrate,Zn(NO3)2·4(H20)(179mg,60.5mmol)weredissolvedinDMF(240mL)andwater(120mL),dissolvedandheatedto105°Cfor20hoursandthencooledtoroomtemperature.Yellowneedlecrystalswereobtainedinyield51%(basedonH2DHBDC)thatwerewashedwithDMFandmethanol,anddriedinair.

Synthesis of MIL-125(Ti)-NH2. MIL-125(Ti)-NH2 was prepared following previously reportedprocedures.S22-Aminoterephtalicacid(1.43g,7.9mmol)wasdissolvedin20mLofanhydrousN,N-dimethylformamide(DMF).Anhydrousmethanol(5mL)wasthenaddedtothereactionmixtureandthesystemsonicatedfor20min.ThereactionmixturewastransferredtoaTeflon-linedautoclave(50mL)andtitaniumisopropoxide(1.36g,4.8mmol)wassubsequentlyadded.Theautoclavewassealedandheatedat110°Cfor72h.AftercoolingtheTeflontoroomtemperature,theresultingprecipitatewasfiltered,washedwithDMFatroomtemperaturefor12hand,then,washedwithDMFat120°Cfor 12 h. This washing procedure was repeated usingmethanol as solvent. Finally, the solid wasrecoveredbyfiltrationanddriedintheovenat100°C.

SynthesisofCuO2@MOFsusingthephotodepositionmethod(PD).CopperNPsweredepositedinthepreviouslysynthesizedMOFs(MOF(Zn)-1,MOF(Zn)-2,MOF-74(Zn)andMIL-125(Ti)-NH2)usingthePDmethod.S3EachMOFwasdispersedbysonicationinamixtureofwater(13mL)andmethanol(5mL).Then,Cu(NO3)2·3H2Owasdissolvedinwater(2mL)anditwasaddedtotheMOFsolutionatinitial1wt%.Thesolutionwaspurgedwithargonfor20min.Finally,themixturewasirradiatedusinganUV-VisiblelightXelamp(300W)for4h.Theresultingsolidwasfiltered,washedwithwateranddriedintheovenat100°Cfor24h.

Page 3: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S3

2. StructuralfeaturesofMOF(Zn)

Upon heating the as-synthetised material (MOF(Zn)), the solvent molecules (DMF and H2O) areremoved from the channels causing a reversible continuous shrinkage of the structure.S4,S5 ThreedifferentMOFswithadifferentdegreeofbreathinghavebeenisolatedafter2hheatingat100°C,200 °C, and 350 °C, denoted MOF(Zn)-100, MOF(Zn)-200 (corresponding to MOF(Zn)-1), andMOF(Zn)-350.Interestingly,uponfurtherheatingat400˚C,thecrystalstructureexpandsandamuchmoreopenstructureisobtained(MOF(Zn)-2).

TheX-rayintensitydatawerecollectedonaBrukerD8Venturediffractometer(MOF(Zn),MOF(Zn)-RT, MOF(Zn)-100, MOF(Zn)-350 and MOF(Zn)-1) and on a Rigaku Oxford Diffraction Supernovadiffractometer(MOF(Zn)-1andMOF(Zn)-2),usingMo-Kαradiation.ThedataforMOF(Zn),MOF(Zn)-RT, MOF(Zn)-100, and MOF(Zn)-350were integrated with SAINTS6 and corrected for absorptioneffectswithSADABSS7.ThedataforMOF(Zn)-1andMOF(Zn)-2wereprocessedwithCrysAlisProS8,andabsorptioncorrectionsbasedonmultiple-scannedreflectionswerecarriedoutwithSCALE3ABSPACKinCrysAlisPro.AllcrystalstructuresweresolvedwithSHELXTS9andrefinedwithSHELXLS9.TheOLEX2softwarewas used as a graphical interface S10. Anisotropic atomic displacement parameterswereintroduced for all non-hydrogen atoms. Hydrogen atomswere placed at geometrically calculatedpositionsandrefinedwiththeappropriateridingmodel,withUiso(H) = 1.2Ueq(C,O)(1.5formethylgroups).

Eventhoughcrystaldatawascollectedupto0.77Angstromsresolution,crystalsstilldiffractedquiteweaklyathighangleduetotheirratherlowquality(withexceptiontoMOF(Zn)-RTandMOF(Zn)-1)and data were cut off according to intensity statistics, using restraints and constraints duringrefinement.

InMOF(Zn),itwasnotpossibletoclearlyseeelectron-densitypeaksindifferencemapswhichwouldcorrespondwithacceptablelocationsfortheHatomsbondedtoO1W.Therefore,therefinementwascompletedwithnoallowance for theseHatoms in themodel. The contributionsof thesemissingatoms(formulae,formulaweight,etc.)havebeenincludedintheCIF.

In MOF(Zn)-RT, a DMF solvent molecule was found disordered over two alternative positions(0.52:0.48 ratio), and was refined with rigid groups, partially equal anisotropic displacementparametersandrestraintsongeometryanddisplacementparameters.Inthisheavy-atomstructureitwasnotpossibletoclearlyseeelectron-densitypeaks indifferencemapswhichwouldcorrespondwithacceptablelocationsfortheHatomsofthedisorderedDMFmolecule.Therefore,therefinementwascompletedwithnoallowancefortheseHatomsinthemodel.Thecontributionsofthesemissingatoms(formulae,formulaweight,etc.)havebeenincludedintheCIF.

During the refinement ofMOF(Zn)-100, a number of ISOR restraints had to be used to obtainreasonable displacement parameters for all non-hydrogen atoms. Their Uij values were thereforerestrained to be approximately spherical. Severely disordered DMF inMOF(Zn)-100 could not bemodelledreasonably,andwerethereforeremovedfromthediffractiondata(usingtheOLEX2Masktool)butconsideredforcalculationofempiricalformula,formulaweight,density,linearabsorptioncoefficientandF(000).Asolventmaskwascalculatedand322.0electronswerefoundinavolumeof

Page 4: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S4

642.0Å3inonevoid.Thisisconsistentwiththepresenceof2DMFmoleculesperformulaunitwhichaccountfor320.0electrons.

AnumberofISORrestraintshadtobeusedtoobtainreasonabledisplacementparametersforallnon-hydrogen atoms inMOF(Zn)-350. Their Uij values were therefore restrained to be approximatelyspherical. In thisheavy-atomstructure itwasnotpossible to clearly seeelectron-densitypeaks indifferencemapswhichwouldcorrespondwithacceptablelocationsfortheHatomsbondedtoO1W,O2WandO3.Therefore,therefinementwascompletedwithnoallowancefortheseHatomsinthemodel.Thecontributionsofthesemissingatoms(formulae,formulaweight,etc.)havebeenincludedintheCIF.

InMOF(Zn)-1,SADI,FLAT,RIGUandEADPcommandswereusedtoobtainreasonablegeometryandanisotropic displacement parameters for the DMF solvent molecule. This molecule is disorderedacross a twofold rotation axis; bonds to symmetry equivalents were suppressed using PART -1command. Inthisheavy-atomstructure itwasnotpossibletoclearlyseeelectron-densitypeaks indifferencemapswhichwouldcorrespondwithacceptablelocationsfortheHatomsofthedisorderedDMFmolecule.Therefore,therefinementwascompletedwithnoallowancefortheseHatomsinthemodel.Thecontributionsofthesemissingatoms(formulae,formulaweight,etc.)havebeenincludedintheCIF.

WholemoleculedisorderofthebtcaligandwasmodelledinMOF(Zn)-2viaAFIX,DFIX,FLAT,EADP,andRIGUcommands.Theratiobetweenthetwocomponentswasrefinedfreelyandconvergedat0.48:0.52.ADFIXcommandwasusedtorestrainthegeometryoftheµ2-bridgingformatoligandinordertoexhibitaO-CH-OmoietybetweensymmetryrelatedZn2atoms(symmetryoperation:-x,+y,5/2-z).Figure1.d.showsa labelledORTEPplotshowingtheμ2-bridging formato ligand linkingtwosymmetry-relatedhalf-occupancyZn2atoms.CrystaldataandrefinementdetailsarelistedinTableS1.

Page 5: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S5

TableS1.Selectedcrystallographicdataforallcompounds.

Compound MOF(Zn)-1 MOF(Zn)-2

Activationtemperature Assynthesised 24hatRT 2hat100°C 2hat200°C 2hat350°C 2hat400°C

Spacegroup C2/c C2/c C2/c C2/c C2/c C2/c

Chemicalformula C20H24N8O9Zn3 C20H22N8O8Zn3 C20H22N8O8Zn3 C17H15N7O7Zn3 C14H16N6O10Zn3 C15H7N6O7Zn4

FormulaMass(g/mol) 716.58 698.56 698.56 625.47 624.44 644.75

a(Å) 17.7182(14) 18.037(2) 18.94(3) 19.2623(14) 19.544(2) 16.643(2)

b(Å) 13.0967(12) 12.5871(13) 10.098(16) 9.9839(6) 9.0665(12) 14.593(2)

c(Å) 11.0610(10) 11.0828(13) 10.957(17) 11.0852(7) 11.0933(13) 10.964(2)

β(°) 94.014(4) 93.046(5) 90.71(4) 90.246(8) 90.176(4) 90.296(16)

V(Å3) 2560.4(4) 2512.6(5) 2095(6) 2131.8(2) 1965.7(4) 2662.8(7)

Z 4 4 4 4 4 4

T 150K 120K 120K 120K 120K 120K

ρcalc(g·cm-3) 1.859 1.847 2.215 1.949 2.110 1.608

2qrange(°) 2.305–22.960 2.658–25.197 2.286–19.167 3.676–25.052 2.476–25.051 3.354–17.216

Data/Restraints/Parameters 1765/0/195 2238/144/226 848/90/132 1877/27/173 1588/90/150 805/263/156

Nºreflections 15414 7245 7160 16741 5727 6607

Independentreflections[I>2σ(I)]

1765 2238 848 1877 1588 805

GoF 1.106 1.072 1.664 1.126 1.060 1.165

RFactor[I>2σ(I)] R1=0.0402,wR2=0.0828

R1=0.0494,wR2=0.0831

R1=0.1798,wR2=0.4035

R1=0.0296,wR2=0.0666

R1=0.0625,wR2=0.1336

R1=0.1035,wR2=0.2575

RFactor(alldata) R1=0.0587,wR2=0.0891

R1=0.0860,wR2=0.0918

R1=0.2122,wR2=0.4232

R1=0.0349,wR2=0.0689

R1=0.1151,wR2=0.1578

R1=0.1239,wR2=0.2778

CCDCCode 1916085 1916086 1916087 1916083 1916082 1916084

Page 6: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S6

FigureS1. (a)Representationof thedifferent crystal structuresobtainedduring thebreathingprocessuponincreasingthetemperature.(b)DifferentviewsofthestructureofMOF(Zn)-1.(c)DifferentviewsofthestructureofMOF(Zn)-2.(d)AlabelledORTEPplotat50%probabilityleveloftheasymmetricunitofMOF(Zn)-2showingtheμ2-bridgingformatoligandlinkingtwosymmetry-relatedhalf-occupancyZn2atomsandthedisorderedbtcaligand(symmetryoperations:$1:-x,+y,5/2-z;$2:-x,-y,2-z;$3:-1/2-x,1/2+y,3/2-z;$4:1/2+x,1/2+y,+z).

Page 7: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S7

FigureS2.ExperimentalandsimulatedPXRDspectraoftheMOFactivatedat200˚C(MOF(Zn)-1)andat400˚C(MOF(Zn)-2).

Page 8: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S8

FigureS3.Thermogravimetricanalysis(TGA)profileofMOF(Zn)ataheatingrateof5ºC/minunderaconstantstreamofN2.

Page 9: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S9

3. CatalytictestsCatalystcharacterization

Highresolutiontransmissionelectronmicroscopyimages(HR-TEM)andscanningTEMimagesindarkfieldmode(DF-STEM)wererecordedonaJEOLJEM2100Finstrumentoperatingat200kW.AnOxforddetectorcoupledtotheSTEMinstrumentwasemployedtomeasurethecompositionofselectedMOFareas.Themetalparticlesizedistributionandstandarddeviationwereestimatedbycountingabout300nanoparticles.ThemorphologyandcompositionoftheMOFsampleswerefurthercharacterizedusingascanningelectronmicroscope(SEM,Zeissinstrument,AURIGACompact)coupledwithaEDXdetector. Isothermal nitrogen adsorption experiments were carried out using an ASAP 2010Micromeriticsdevice.X-rayphotoelectron(XP)spectrawerecollectedonaSPECSspectrometerwithaMCD-9detectorusingamonochromaticAl(Ka=1486.6eV)X-raysource.Spectradeconvolutionwasperformedwith the CASA software using the C 1s peak at 284.4 eV as binding energy reference.Inductively coupledplasmaatomic emission spectroscopy (ICP-AES) hasbeenused to confirm themetal contentof the catalystpreviouslydigested in concentratednitric acid. The contentofCu2OmetalloadedwasdeterminedbyIPC-AESbefore(0.92%wtCu)andafter(0.89%wtCu)use.

Photocatalyticmethanationtests

Forthephotoassistedmethanation,aquartzphotoreactorequippedwithaheatingmantletocontrolthedesiredtemperatureduringtheexperimentwasutilized.Thephotocatalyst(15mg)aspowderwasplacedasabedinsidethereactor,thesystemwaspurgedandchargedwithH2,andthenCO2wasadded until a ratio 4 to 1 was achieved. The photoreactor was heated up to 215 °C, once thetemperaturewasstable,thephotocatalystwasirradiatedunderUV-VislightusingaXelamp(300W)aslightsource.Thereactionwasmonitoredbytakingperiodicallygassamplesfromthereactorthatwere injected into anAgilent 490MicroGCequippedwith two channels and thermal conductivitydetectors.OnechannelallowsanalyzingH2,O2,N2andCOwithaMolSieve5Åcolumnwhiletheotherchannel shows CO2, CH4 and short chain hydrocarbons using a Pore Plot Q column. Gases werequantifiedcalibratingtheinstrumentanalyzingofgasmixtures.Thelimitofdetectionofthemicro-GCofthereactionthatisestimatedtobebelow0.1μg·cat–1·h–1.

Page 10: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S10

FigureS4. (a)RepresentativeDF-STEM imageofCu2O@MOF(Zn)-1. (b)EDSanalysisof twocoppernanoparticles(spectrumAandB).

FigureS5.(a,b)DF-STEMimagesofCu2O@MOF(Zn)-2.(c)Copperparticlesizedistribution

Spectrum B

Spectrum A

25nm

SpectrumA

SpectrumB

100 nm

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-1111-1212-1313-1414-1515-1616-170

5

10

15

20

25

Freq

uenc

y (%

)

Copper particle size (nm)

50 nm200 nm

a)b)

c)

Page 11: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S11

FigureS6.DF-STEM imagesof (a)Cu2O@MIL-125(Ti)-NH2 and (b,c)Cu2O@MOF-74(Zn). The insetsshowthecopperparticlesizedistribution, theaveragecopperparticlesizeandstandarddeviationobtainedaftercountingmorethan300particles.

Figure S7. SEM images of (a,b,c) Cu2O@MOF(Zn)-1 and (d, e, f) Cu2O@MOF(Zn)-2, revealing themorphologyofthecrystals.

0-1 1-2 2-3 3-4 4-50

10

20

30

40

50

Freq

uenc

y (%

)

Copper particle size (nm)

4.29± 0.95

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-130

4

8

12

16

20

24

28

Freq

uenc

y (%

)

Copper particle Size (nm)

6.07± 1.52

a)b)

20µm 20µm 20µm

20µm 20µm 20µm

a)b)c)

d)e)f)

Page 12: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S12

FigureS8.SEMimagesof(a)Cu2O@MOF(Zn)-1and(b)Cu2O@MOF(Zn)-2.(c)ElementalanalysismappingofaselectedareaofCu2O@MOF(Zn)-1.

20µm 10µm 10µm

5µm 5µm 5µm

5µm 5µm

C O

Zn Cu

a)

b)

c)

20µm 10µm 10µm

Page 13: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S13

FigureS9.(a)DF-STEMand(b)BF-STEMimagesoffreshCu2O@MOF(Zn)-1photocatalyst;theinsetcorrespondstothecopperparticlesizedistributionobtainedbycountingabout300particles.(c)SEMimage of fresh SEM image and (d) XPS Cu2p spectrum of Cu2O@MOF(Zn)-1 showing the bestdeconvolutiontoindividualcomponents.

20 nm

0-1 1-2 2-30

10203040506070

Freq

uenc

y (%

)

Copper particle size (nm)

1.61± 0.46a)b)

930 940 950 960 970

36000

36500

37000

37500

38000

38500

39000

39500

CPS

Binding Energy (eV)

Cu0/Cu+

2p3/2

Cu2+

2p1/2

Cu2+

Cu2+satellite

Cu0/Cu+

10µm

c)d)

25 nm

1.6nm

Page 14: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S14

FigureS10.XPSspectraofCu2O@MOF(Zn)-1.(a)C1sXPS,(b)O1sXPS,(c)N1sXPS,(d)Cu2pXPS,(e)Zn2pXPS.

FigureS11.XPSspectraofCu2O@MOF(Zn)-2.(a)C1sXPS,(b)O1sXPS,(c)N1sXPS,(d)Cu2pXPS,(e)Zn2pXPS.

280 285 2904000

6000

8000

10000

12000

14000

16000

CPS

Binding Energy (eV)

930 940 950 960 970

36000

36500

37000

37500

38000

38500

39000

39500

CPS

Binding Energy (eV)

395 400 405

9000

10000

11000

12000

13000

14000

15000

CPS

Binding Energy (eV)

525 530 535 54012000

14000

16000

18000

20000

22000

24000

26000

CPS

Binding Energy (eV)

1020 1030 1040 1050

36000

38000

40000

42000

44000

46000

48000

50000

CPS

Binding Energy (eV)

a)b)c)

d)e)

C=C

O=C-O O=C-OM-O-

Cu0/Cu+

2p3/2

Cu2+

2p1/2

Cu2+

Cu2+satellite

Cu0/Cu+

Zn2p3/2

Zn2p1/2

525 530 53512000

14000

16000

18000

20000

22000

24000

CPS

Binding Energy (eV)

396 398 400 402 404 4069000

10000

11000

12000

13000

14000

15000

16000

CPS

Binding Energy (eV)

930 940 950 96025500

26000

26500

27000

27500

28000

28500

29000

CPS

Binding Energy (eV)

280 285 2904000

6000

8000

10000

12000

14000

16000

18000

CPS

Binding Energy (eV)

1020 1030 1040 1050

32000

34000

36000

38000

40000

42000

CPS

Binding Energy (eV)

a)b)c )

d)e)Cu0/Cu+

2p3/2

Cu2+

2p1/2

Cu2+

Cu2+satellite

Cu0/Cu+

Zn2p3/2

Zn2p1/2

C=C

O=C-O

O=C-O

M-O-

Page 15: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S15

FigureS12.PowderX-raydiffractionpatternsofthedifferentcopper-supportedMOF-basedcatalysts(MOF(Zn)-1,MOF-74(Zn)andMIL-125(Ti)-NH2)beforeandafterthephotocatalytictests.

Figure S13.DF-SEM images andEDX spectrumof selected areaof Cu2O@MOF(Zn)-1 sample after

photocatalyticmethanationofCO2.

20 nm

0-1 1-2 2-3 3-4 4-50

10

20

30

40

50

60

Freq

uenc

y (%

)

Copper particle size (nm)

1.73± 0.91

50nm 25nm

Page 16: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S16

-5 0 5 10 15 20 2505

101520253035404550

Light

CH

4 (µ

mol

·gca

t-1)

Time (h)

Dark

Figure S14. Reusability of Cu2O@MOF(Zn)-1 for the CH4 production at 215 °C upon 2236Wm−2

irradiationusinga300WXelamp.PH2=1.05bar,PCO2=0.25bar.LegendFirstuseCu2O@MOF(Zn)-

1(●),SeconduseCu2O@MOF(Zn)-1(♦)andthirduseofCu2O@MOF(Zn)-1(■).

Page 17: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S17

Figure S15. Mass spectra of the reaction products after the photocatalytic reaction using

Cu2O@MOF(Zn)-1for22hoursat215°Cusing13C18O2.

Page 18: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S18

4. Determinationofvalencebandenergiesandopticalgaps

FigureS16.Solid-stateCyclicVoltammetry(CV)andDifferentialPulseVoltammetry(DPV)ofMOF(Zn)-1andMOF-74(Zn)usingTBAPF60.1MinCH3CNaselectrolyteand0.05V/sscanrate.Platinumwirewasusedascounterelectrodeandsilverwireaspseudoreferenceelectrode.Ferrocenewasaddedasinternalstandard.AllpotentialsarereportedversusAg/AgCl.

Page 19: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S19

FigureS17.(a)UV-Visdiffusereflectanceand(b)TaucplotforMOF(Zn)-1(redline)andMOF-74(Zn)(blackline).

200 300 400 500 600 700 800

F(R)

l (nm)

1 2 3 4 5 6 70

50

100

150

200

250

300

350

400

ahn

eV

a)

b)

Page 20: Design of cost-efficient and photocatalytically active …MOF(Zn)-350. Interestingly, upon further heating at 400˚C, the crystal structure expands and a much more open structure is

S20

5. ReferencesS1.N.Rosi,J.Kim,M.Eddaoudi,B.Chen,M.O’KeeffeandO.M.Yaghi,J.Am.Chem.Soc.,2005,

127,1504.

S2.M.A.Nasalevich,R.Becker,E.V.Ramos-Fernandez,S.Castellanos,S.L.Veber,M.V.Fedin,F.

Kapteijn,J.N.H.Reek,J.I.vanderVlugtandJ.Gascón,EnergyEnviron.Sci.,2015,8,364.

S3.S.Remiro-Buenamañana,M.Cabrero-Antonino,M.Martínez-Guanter,M.Álvaro,S.Navalón

andH.García,Appl.Catal.B.-Environ.,2019(accepted).

S4.J.Xiao,Y.Wu,M.Li,B.-Y.Liu,X.-C.HuangandD.Li,Chem.Eur.J.,2013,19,1891.

S5.Y.Yueetal.J.Phys.Chem.C,2015,119,9442.

S6.SAINTv8.37A,BrukerAXSInc.,Madison,Wisconsin,USA,2015.

S7.L.Krause,R.Herbst-Irmer,G.M.SheldrickandD.Stalke.J.Appl.Cryst.,2005,48,3.

S8.CrysAlisPro1.171.38.46.RigakuOxfordDiffraction,2015.

S9.G.M.Sheldrick,ActaCryst.,2015,A71,3.

S10.O.V.Dolomanov,L.J.Bourhis,R.J.Gildea,J.A.K.HowardandH.Puschmann,J.Appl.Crystallogr.,2009,42,339.