Design and Correction of optical Systems - uni-jena.deand... · 2012. 4. 25. · 0.5000 0.5375...

45
Design and Correction of optical Systems Part 2: Materials Summer term 2012 Herbert Gross 1

Transcript of Design and Correction of optical Systems - uni-jena.deand... · 2012. 4. 25. · 0.5000 0.5375...

  • Design and Correction of optical Systems

    Part 2: Materials

    Summer term 2012

    Herbert Gross

    1

  • Part 2: Materials - Contents

    2.1 Introduction

    2.2 Dispersion

    2.3 Transmission

    2.4 Glasses

    2.5 Plastics

    2.6 Crystals

    2.7 Liquids and Gases

    2.8 Metals

  • Overview

    � Important types of optical materials:

    1. Glasses

    2. Crystals

    3. Liquids

    4. Plastics, cement

    5. Gases

    6. Metals

    � Optical parameters for characterization of materials

    1. Refractive index, spectral resolved n(λ)

    2. Spectral transmission T(λ)

    3. Reflectivity R

    4. Absorption

    5. Anisotropy, index gradient, eigenfluorescence,…

    � Important non-optical parameters

    1. Thermal expansion coefficient

    2. Hardness

    3. Chemical properties (resistence,…)

  • Dispersion

    n(λλλλ)

    ni(λλλλ)

    λλλλo

    normal normalanomal

    λλλλ

    n

    � Dispersion:

    Refractive index changes with wavelength

    � Normale dispersion: larger index n for shorter wavelengths,

    Ray bending of blue rays stonger than red

    � Notice:

    Diffraction dispersion is anomalous

    with dn/dλ > 0

    The different sign allows for chromatic

    correction in diffractive elements.

    ( ) ( )21 λλ nnn −=∆

    d n

    d λ< 0

  • Important Test Wavelengths

    λλλλ in [nm] Name Color Element

    248.3 UV Hg

    280.4 UV Hg

    296.7278 UV Hg

    312.5663 UV Hg

    334.1478 UV Hg

    365.0146 i UV Hg

    404.6561 h violett Hg

    435.8343 g blau Hg

    479.9914 F' blau Cd

    486.1327 F blau H

    546.0740 e grün Hg

    587.5618 d gelb He

    589.2938 D gelb Na

    632.8 HeNe-Laser

    643.8469 C' rot Cd

    656.2725 C rot H

    706.5188 r rot He

    852.11 s IR Cä

    1013.98 t IR Hg

    1060.0 Nd:YAG-Laser

  • Spectral Lines

    Selected atomic lines of the sun spectrum used for test purposes

    λ λ λ λ [nm]400 450 500 550 600 650 700 750

    K H G F E D12

    C AB

    h g fe d c b12 a

  • Chromatical Evaluation of Optical Systems

    � Chromatical performance evaluation of optical systems:

    Usage of one main (central) wavelength and two secondary wavelenghts

    � Additional definition of wvalengths at the boundaries of the used spectral range, e.g.

    - one further wavelength near to the UV edge (g, i)

    - one further wavelength near to the IR-edge (s,t)

    Main wavelength 1st secondary wavelength 2nd secondary wavelength

    e 546.07 green F' 480.0 bue C' 643.8 red

    d 587.56 yellow F 486.1 blue C 656.3 red

  • Dispersion

    � Description of dispersion:

    Abbe number

    � Visual range of wavelengths:

    � Typical range of glasses

    νe = 20 ...120

    � Two fundamental types of glass:

    Crone glasses:

    n small, ν large

    Flint glasses

    n large, ν small

    ( )( )

    ν λλ

    =−

    n

    n nF C

    1

    ' '

    νee

    F C

    n

    n n=

    1

    ' '

  • Dispersion

    Material with different dispersion values:

    � Different curvature of the dispersion curve

    � Stronger change of index over wavelength for large dispersion

    � Inversion of index sequence at the boundaries of the spectrum possible

    refractive index n

    F6

    SK18A

    λλλλ

    1.675

    1.7

    1.65

    1.625

    1.60.5 0.75 1.0 1.25 1.751.5 2.0

  • Dispersion Equation

    � Experimental determination of

    refractive indices for discrete

    wavelengths

    � Fit of model based or empirical

    dispersion function

    � Interpolation for desired wavelength

    � Types of dispersion formulas:

    1. Empirical, no extrapolation

    allowed

    2. Based on physical oscillator

    model, extrapolation possible

    in certain rangeλλλλ

    n

    400 600 800 1000 1200 1400 1600 1800 2000 2200 24001.48

    1.49

    1.5

    1.51

    1.52

    1.53

    1.54

    measured data points

    model curve of dispersion

    ∑−

    +=j j

    j

    o

    knn

    22

    22

    ωω

  • Dispersion Formulas

    � Schott formula

    empirical

    � Sellmeier

    Based on oscillator model

    � Bausch-Lomb

    empirical

    � Herzberger

    Based on oscillator model

    � Hartmann

    Based on oscillator model

    n a a a a a ao= + + + + +− − − −

    1

    2

    2

    2

    3

    4

    4

    6

    5

    8λ λ λ λ λ

    n A B C( )λλ

    λ λ

    λ

    λ λ= +

    −+

    2

    212

    2

    222

    n A B CD E

    Fo

    o

    ( )

    ( )

    λ λ λλ

    λ

    λ λλ

    λ λ

    = + + + +

    − +−

    2 4

    2

    2

    2 22

    2 2

    ( )mmit

    aaaan

    o

    oo

    o

    µλ

    λλλλλλ

    168.0

    )(222

    3

    22

    22

    1

    =

    −+

    −++=

    λλλ

    −+

    −+=

    5

    4

    3

    1)(a

    a

    a

    aan o

  • Relative Partial Dispersion

    � Relative partial dispersion :

    Change of dispersion slope with λ

    � Definition of local slope for selected

    wavelengths relative to secondary

    colors

    � Special selections for characteristic

    ranges of the visible spectrum

    λ = 656 / 1014 nm far IR

    λ = 656 / 852 nm near IR

    λ = 486 / 546 nm blue edge of VIS

    λ = 435 / 486 nm near UV

    λ = 365 / 435 nm far UV

    ( ) ( )P

    n n

    n nF Cλ λ

    λ λ1 2

    1 2=

    −' '

    λλλλ

    n

    400 600 800 1000700500 900 1100

    e : 546 nm

    main color

    F' : 480 nm

    1. secondarycolor

    g : 435 nmUV edge

    C' : 644 nm

    s : 852 nm

    IR edge

    t : 1014 nm

    IR edge

    C : 656 nmF : 486 nm

    d : 588 nm

    i : 365 nm

    UV edge

    i - g

    F - C

    C - s

    C - t

    F - e

    g - F

    2. secondarycolor

    1.48

    1.49

    1.5

    1.51

    1.52

    1.53

    1.54

    n(λλλλ)

  • Relative Partial Dispersion

    � Typical behavior of glasses:

    Flint (e.g. SF9) glasses have stronger dispersion than crown glasses (e.g. LaK21)

    � Larger difference of refractive index over the visible spectrum

    λλλλ

    dn/dλλλλ

    0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    SF9

    LaK21

    ∆∆∆∆nSF9

    ∆∆∆∆nLaK21

  • Normal Line

    � The relative partial dispersion changes approximately linear with the dispersion for glasses

    � Nearly all glasses are located on the normal line in a P-ν-diagram

    � Glasses apart from the normal line shows anomalous partial dispersion

    these material are important for chromatical correction of higher order

    2,12,12,1 λλλλλλ ν baP d +⋅=

    21212121 λλλλλλλλ ν PbaP d ∆++⋅=

  • Normal Line

    Pg,F

    0.5000

    0.5375

    0.5750

    0.6125

    0.6500

    90 80 70 60 50 40 30 20

    F2

    F5

    K7

    K10

    LAFN7

    LAKN13

    LAKL12

    LASFN9

    SF1

    SF10

    SF11

    SF14

    SF15

    SF2

    SF4

    SF5

    SF56A

    SF57

    SF66

    SF6

    SFL57

    SK51

    BASF51

    KZFSN5

    KZFSN4

    LF5

    LLF1

    N-BAF3

    N-BAF4

    N-BAF10

    N-BAF51N-BAF52

    N-BAK1

    N-BAK2

    N-BAK4

    N-BALF4

    N-BALF5

    N-BK10

    N-F2

    N-KF9

    N-BASF2

    N-BASF64

    N-BK7

    N-FK5

    N-FK51N-PK52

    N-PSK57

    N-PSK58

    N-K5

    N-KZFS2

    N-KZFS4

    N-KZFS11

    N-KZFS12

    N-LAF28

    N-LAF2

    N-LAF21N-LAF32

    N-LAF34

    N-LAF35

    N-LAF36

    N-LAF7

    N-LAF3

    N-LAF33

    N-LAK10

    N-LAK22

    N-LAK7

    N-LAK8

    N-LAK9

    N-LAK12

    N-LAK14

    N-LAK21

    N-LAK33

    N-LAK34

    N-LASF30

    N-LASF31

    N-LASF35

    N-LASF36

    N-LASF40

    N-LASF41

    N-LASF43

    N-LASF44

    N-LASF45

    N-LASF46

    N-PK51

    N-PSK3

    N-SF1

    N-SF4

    N-SF5

    N-SF6

    N-SF8

    N-SF10

    N-SF15

    N-SF19

    N-SF56

    N-SF57

    N-SF64

    N-SK10

    N-SK11

    N-SK14

    N-SK15

    N-SK16

    N-SK18N-SK2

    N-SK4

    N-SK5

    N-SSK2

    N-SSK5

    N-SSK8

    N-ZK7

    N-PSK53

    N-PSK3

    N-LF5

    N-LLF1

    N-LLF6

    BK7G18

    BK7G25

    K5G20

    BAK1G12

    SK4G13

    SK5G06

    SK10G10

    SSK5G06

    LAK9G15

    LF5G15

    F2G12

    SF5G10

    SF6G05

    SF8G07

    KZFS4G20

    GG375G34

    νννν

    normal

    line

  • Transmission

    � Internal transmission:

    only volume absorption, without losses at the interfaces

    � Typical characterization:

    transmission of a plate with finite width 25 mm

    calculation of the transmission of a sample

    with arbitrary thickness

    � Glasses: strong edge at the UV side

    � Definition of edge position

    1. 50% value

    2. mean value of 20% and 80% value

    d

    in

    outd e

    I

    IT

    ⋅−== α

    ( ) mmd

    mmd TT 2525=

    λλλλ

    T

    200 400 500 600 700 8000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    50 % -

    Definition

    20 / 80 % -

    Definition

  • Transmission

    � Typical transmission of glass

    � Three ranges:

    1. steep UV edge

    2. high transmission

    plateau in the visible

    3. slow edge towards

    the IR

    λλλλ inµµµµm

    T (d=10mm)

    UV-edgeionization

    of the

    atoms

    IR-edgeabsorption

    by residualwater

    window withtransmission T > 0.99

    0.50 1.51.0 2 2.50.90

    0.925

    0.975

    0.95

    1.0

    NIRVIS

  • Transmission

    � Absolute transmission of a sample,

    Only energy in-out-ratio

    Losses at the interfaces (Fresnel) are incorporated

    � Internal transmission of a sample,

    only volume losses, interface efects removed

    0I

    IT =

    0i

    i

    I

    IT =

    I(x)

    x

    Io

    Iio

    IIi

    n

  • Transmission: Glasses

    � Transmission of

    glasses

    � plate with thickness

    d = 10 mm

    in mλλλλµµµµ

    T (d=10mm)

    TiF6

    KzFSN4

    LaK33

    BK7

    LaF2

    SK4

    FK52

  • Transmission: IR- and UV Materials

    Transmission of UV- and IR-materials (with Fresnel losses at interfaces)

    T

    Log λ λ λ λ

    in µ µ µ µm

    ZnS3mm

    IRG 5 mm

    Suprasil 3mm

    CdTe

    4mm

    ZnSe

    3mm

    Ge

    3mm

    GaAs

    3mm

    IRG 1002mm

    100

    50

    0

    visualrange

    infrared

    3 - 5infrared

    8 - 12

    0.1

  • Glass

    � Glass blocks

    � Striae in glass

    Ref: P. Hartmann / Schott

  • Glass Diagram 2010

    � Usual representation of

    glasses:

    diagram of refractive index

    vs dispersion n(ν)

    � Left to right:

    Increasing dispersion

    decreasing Abbe number

  • Glass Diagram: Changes of Numbers

    Ref: P. Hartmann / Schott

  • Data Sheet

    Glass:

    LAFN7

    Part 1

  • Data Sheet

    Glass:

    LAFN7

    Part 2

  • Ranges of the Glass Diagram

    Crown glasses

    ν

    νe e

    e e

    für n

    für n

    > <

    > >

    54 7 16028

    49 7 16028

    . .

    . .

    Flint glasses

    ν

    νe e

    e e

    für n

    für n

    < <

    < >

    54 7 16028

    49 7 16028

    . .

    . .

    Two major families of glass types, depending on chemical ingredients:

    1. Crown:

    Low index, low dispersion

    2. Flint:

    High index, high dispersion

    n

    80 70 60 50 40 30 2025354555657585

    1.45

    1.50

    1.55

    1.60

    1.65

    1.70

    1.75

    1.80

    1.85

    1.90

    1.95

    2.00

    LaK

    LaSF

    SF

    TiSF

    TiF

    BaSF

    F

    LF

    LLF

    BaLF

    LaF

    PSK

    PK

    FK TiK

    BKK

    SK

    BaK

    SSK

    KF

    crown glass

    flint

    glass

    BaF

  • Chemical Glass Families

    Abbr. Name Abbr. Name

    Crownglasses

    K Kron

    Flintglasses

    F Flint

    BaK Baritkron BaF Baritflint

    BaLK Baritleichtkron BaLF Baritleichtflint

    BK Borkron BaSF Baritschwerflint

    ZK Zinkkron LLF Doppelleichtflint

    SK Schwerkron KF Kronflint

    SSK Doppelschwerkron KzF Kurzflint

    FK Fluorkron LaF Lanthanflint

    TiK Tiefkron LaSF Lanthanschwerflint

    PK Phosphatkron LF Leichtflint

    PSK Phosphatschwerkron SF Schwerflint

    LaK Lanthankron TiF Tiefflint

    TiSF Schwertiefflint

    KzFS Kurzschwerflint

  • Available Ranges in the Glass Diagram

    νννν

    n

    20 30 40 50 60 70 80 90 1001.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2

    20 30 40 50 60 70 80 90 1001.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2

    Schott Ohara

    � Nearly equal area in the glass diagramm with available materials for all vendors

    � No options with Index / dispersion

    1. high / high

    2. low / low

  • Plastics

    Material Index at 546 nm

    Abbenumber

    MaxTemp

    Therm expan10-6 K-1

    Scatterin %

    Trans.3mm,

    Densityg/cm3

    PMMA - Polymethyl-Methacrylat 1.49280 57 90 65 2 92 1.19

    PC - Polycarbonat - Makrolon, Lexan 1.59037 30 120 69 4 87 1.20

    CR39 - DEGBAC - Gießharz 1.5011 57.8 100 120 1 1.32

    PS - Polystyrol 1.590 30.8 80 70 3 89 1.06

    DPSC - Diphenyl-sulfidcarbonat 1.612 26.0

    CMMA 1.50 56.0

    Styrol, SAN 1.566 34.7 95 65 4 90 1.09

    SMA 1.585 31.3

    SMMA 1.568 33.5

    FMS 1.508 34.0

    SCMA 1.535 42.5

    COC 1.533 56.0

    MR8 1.60 42.0

  • Plastic Materials

    Plastics in the

    n - ν - diagram

    90 80 70 60 50 40 30 20

    1.40

    1.45

    1.50

    1.55

    1.60

    1.65

    1.70

    1.75

    1.80

    1.85

    1.90

    1.95

    2.00

    refractiveindex n

    Abbe number νννν

    10

    PMMA

    CR39o

    o

    o

    o

    SAN

    PS oPC

    CMMAo

    o COC oSCMA

    oFMS

    oSMMA

    oSMA

    DPSC

    o

    oMR8

    plastics

    anorganic

    glasses

  • Properties of Plastic Materials

    1. Stress induced birefringence during processing

    2. Generation of local inhomogenieties of the refractive index in die casting

    3. Water intake (swelling) : change of shape (up to 4%) and decrease in the refractive index

    4. Electro-static charge

    5. Aging due to cold forming, polymerization, opalescence, yellowing

    6. Strong thermal variation of the refractive index

    7. Limiting temperature (above the transition temperature the material is destroyed)

    100 ... 120 °C

    8. For an increased abrasive hardness and for the prevention from charging and

    swelling ,special coatings may have to be applied.

    9. During the cooling process significant changes occur in the volume caused by shrinking.

    There are two different types of plastics

    a. thermosets, shrinking 0.4%...0.7%

    b. thermoplasts, shrinking 4%...14%

  • Usage of Plastics in Optical Systems

    � Most attractive use of plastics: Consumer optics

    - benefit of light weight

    - critical cost

    - high number of pieces

    � Advantages for special components due to manufacturing technique:

    - complex surface shapes, arrays, aspheres

    - for injection moulding cost of complex shape only for master piece

    � Typical products with plastics components:

    - Eye glasses

    - binoculars

    - photographic lenses

    - pic-up objective lenses

    - illumination systems

  • Plastics vs Glass Materials

    property unit range plastics range glass

    refractive index n 1.49 ...1.61 1.44...1.95

    dispersion ν 25...57 20...90

    uniformity of the refractive index 10-3

    ...10-4

    10-4

    ...10-6

    temperature dependence of the refractive index 10-6*K

    -1 -100...-160 -10...+10

    Vickers hardness N/mm2 120...190 3000...7000

    thermal expansion 10-6*grd

    -1 70...100 5...10

    thermal conductivity Wm-1grd-1

    0.15...0.23 0.5...1.4

    internal transmission in the green range 0.97...0.993 0.999

    stress - optical coefficient 10-12

    Pa-1

    40 3

    stress- birefringence 5*10-5

    ...10-3

    0

    density g/cm3 1.05...1.32 2.3...6.2

    water intake % 0.1...0.8 0

    Comparison plastics with glasses

  • UV- and IR - Materials

    material refractive

    index λλλλ-range (µµµµm) UV IR νννν P

    MgF2 1.389 0.12 - 9.0 • •

    ZnS 2.25 0.4 - 14.5 • 12.831 0.271

    CaF2, calcium fluoride 1.42 0.12 - 11.5 • • 47.53 0.397

    ZnSe 2.44 0.5 - 22.0 • 34.20 0.291

    MgO 1.69...1.737 0.28 - 9.5 • 53.4

    CdTe 2.70 0.9 - 31.0 •

    diamond 2.3757 0.25...3.7, 6.0... • (•) 2387 0.469

    germanium 4.003 2.0...15 • 701.42 0.556

    silicon 3.433 1.2...15 • 420.16 0.523

    BaF2 1.474 0.18...12 • • 81.7 0.651

    SiO2 , quartz 1.544 0.15...4.0 • (•) 69.9 0.653

    Al2O3 , sapphire 1.769 0.17...5.5 • (•) 6.626 0.650

  • IR - Materials

    name composition application toxity processing

    germanium Ge 5 can be processed very well

    gallium arsenide GaAs 2 toxic

    silicon Si 5 high tool wear

    zink sulfide ZnS 4 can be processed very well

    zink selenide ZnSe 4 slightly toxic can be processed very well

    sapphire Al2O3 3

    IG2 / AMTIR-1 Ge33As12Se55 3 toxic

    IG3 Ge30As13Se32Te25 3 toxic

    IG4 Ge10As40Se50 3 toxic

    IG5 / AMTIR-3 Ge28Sb12Se60 4 slightly toxic can be processed well

    IG6 As40Se60 3 toxic

    GASIR1 Ge22As20Se58 3 toxic

    GASIR2 Ge20Sb15Se65 3 slightly toxic

    calcium fluoride CaF2 3

    barium fluoride BaF2 3

    lithium fluoride LiF 3

    sodium chloride NaCl 2

    sodium fluoride NaF 2

    potassium bromide KBr 2

    potassium chloride KCl 2

    potassium iodide KJ 2

    KRS 5 TlBr-TlJ 2 toxic

    KRS 6 TlBr-TlCl 2 slightly toxic

    thallium bromide TlBr 1

    thallium iodide TlJ 1

  • Gases

    � Refractive indices near to 1

    � Definition of indices relative to vacuum

    (usual glasses: relative to air)

    � Strong changes of the index with temeprature and pressure

    � Examples

    ( )T

    T

    p

    pnn 0

    0

    011 ⋅⋅−+=

    medium ne ννννe

    Air 1.000293246 89.68

    Argon 1.00028314 80.90

    Chlorine 1.0007840 56.40

    Helium 1.00003495 194.17

    Ammonia 1.000379 47.38

    carbon dioxyde 1.0004506 77.82

    oxygen 1.00027227 71.09

    nitrogen 1.00029914 89.83

    steam 1.0002527 66.50

    hydrogen 1.00013937 77.00

  • Refractive Index of Air

    � Empirical formula for the refracdtive index of air at normal pressure as a function of

    - wavelength λ in µm

    - temprature T in °C

    (n-1) 10-6

    T = 70 °

    T = 50 °

    T = 20 °

    in mλ µ

    [ ]( )2000367.0101803.0476.1036.26810142

    6 −⋅−⋅

    ++⋅+= − Tn

    λλ

  • Refractive Index of Air

    � Formula of Edlen:

    Refractive index of air as a function of

    T : temperature in °C

    p : pressure in torr

    x : relative CO2-content

    q : partial pressure of water steam

    ( )[ ]

    ( )

    −⋅⋅−

    ⋅+

    ⋅−⋅⋅+⋅⋅

    −+

    −+⋅⋅−⋅++=

    −−

    2

    108

    22

    8

    0384.0802.310

    0036610.01

    009876.05953.0101

    60.93214

    /19.38

    15518

    /1130

    233398337.8091100004.05327.011

    λ

    λλ

    qT

    Tpp

    xn

  • Liquids

    � Examples

    � Index of water

    λλλλ

    n

    400 600 800 1000 1200 1400 1600 1800 2000

    1.30

    1.31

    1.32

    1.33

    1.34

    1.35

    1.36

    200

    1.37

    medium ndEthylalcohol 1.362

    Gasoline 1.440

    Benzene 1.501

    Glycine 1.455

    Methyliodide CH2J2 1.742

    Carbon sulfate 1.628

    Cedar wood oil 1.51

    Liquid oxygen 1.221

    Liquid hydrogen 1.11

  • Absorption of Water

    � Spectral resolved absorption coefficient of water

    Ref: A. Kienle

  • Technical Liquids

    Liquids of the vendor Cargille

    020406080100120

    νννν-Number

    PCs

    0,4

    0,45

    0,5

    0,55

    0,6

    0,65

    0,7

    0,75

    SCHOTT Glasses

    Series A

    Series AAA

    Series AA

    Series E

    Series I

    Series EC31

    νννν-Number

    Pg,F

    0102030405060708090100

    Series E

    Series I

    Series EC31

    SCHOTT Glasses

    Series A

    0,5

    0,55

    0,6

    0,65

    0,7

    0,75

    Abbe normal line

  • Cements

    � Optical cement materials:

    - rigid connection of glass components

    - typical thickness 0.01 mm without optical

    effects

    - elasticity for compensation of thermal expansion

    differences desired

    - typical index n = 1.45…1.55 (epoxy resins)

    � Organic cement problems with

    - UV transmission

    - long term stability

    - high energy density

    - thermal stability

    crown

    glassflint

    glassn

    1.5

    1.7

    1.6

    cement

    z

  • Metals

    � Complex refractive index

    � Alternative formulation:

    attenuation κ

    � Relation with conductivity σ

    � Typical data of some metals

    ir ninn ⋅+=~

    ( )κ⋅+⋅= inn 1~

    ( )σνεµω

    σπεµ ⋅⋅+⋅=

    ⋅⋅+⋅= 24~ iin

    material n k δδδδ in [µµµµm]

    gold 0.402 2.54 0.034

    silver 0.129 3.25 0.026

    aluminum 0.912 6.56 0.013

    tungsten 3.50 2.72 0.032

    platinum 2.10 3.67 0.023

    silicon 4.12 0.048 1.787

  • Dispersion of the Refractive Index of Metals

    � Typically strong structure of the dispersion

    curve with absorption ranges

    � Example: Aluminum

    � Comparison of different metalsLog λ λ λ λ0.1 µµµµm

    10

    k

    1 µµµµm 10 µµµµm

    10-1

    10-2

    1

    n

    Vis

    λλλλ

    R

    1 µµµµm500 nm300 nm 2 µµµµm 5 µµµµm

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    10 µµµµm

    aluminum, Al

    silver, Ag

    mercury, Hg

    gold, Aucopper, Cu

    platinum, Pt

    nickel, Ni

    chromium, Cr

  • Outlook

    Next lecture: Part 3 – Components

    Date: Wednesday, 2012-05-02

    Contents: 3.1 Lenses - description and parameters

    - imaging formulas

    3.2 Mirrors

    3.3 Prisms - dispersion prims

    - reflection prisms

    - miscellaneous

    3.4 Special components - gratings

    - aspheres

    - diffractive elements

    - taper

    - gradient lenses

    45