Design

download Design

of 23

Transcript of Design

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Job Tag : Description : Job Name : Drawing No : Vessel Tag : AutoPIPE Vessel (Microprotol) procal V33.2.0.6 1 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Table of Contents

    Update this field to get the table of contents.

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 2 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Input data list Design Parameters. Design pressure code : API 650 12th Ed. 2013-03 Karman Effects Prevented by 3 Helicoidal Plates at 120 : No

    Local Load Design Method : / Design length for vertical vessels : 500 mm Flange Standard : ASME B16.5-2009/B16.47-2006 Specific Gravity : 8 Piping standard in acc. With : ASME B36.10M-2004/B36.19M-2004 Design and optimize : Yes Apply UG 45 : Yes Design check : No Apply UG 36(c)(3) : Yes MAWP calculation req'd. : No Apply PD A.3.6 : No With Stiffeners : Yes Apply UG 23 (d) : No Plate associated with stiffeners : Yes Apply UBC 1612.3.2 (33%) : No Support rings as stiffening : No Apply DIN 18800 part 4 : No Min. distance between stiffeners : 0 mm Materials database : C:\Users\...\Config\Material.emdm Gas Pressure in Vessel : Yes Considered Piping Platform Ladder Fireproofing Insulation Trays Scaffolding Lifted / / / / / / / Erected M+W M+W M+W / / / / Operating M+W M+W M+W M+W M+W M / Shutdown M+W M+W M+W M+W M+W M / Test M+W M+W M+W / / / / M = means that the weight of the component is taken into consideration.

    W = the effect of wind load resulting from the component is considered.

    Load Case Lifted Erected Operating Shutdown Test

    Freight weight

    Corroded Weight

    No No Yes No Yes No Yes Default Values. Rounded Up Dist. Flange / Axis : 0 mm Dist. Insulation / Flange : 0 mm Extension for Welded Tubes : / Safety factor for flanges in operation/test : 1 1 Rule limiting available area in opening reinforcement f(T) : Friction Factor for Bolt Torque - Thread / Nut supporting surface : 0 0

    Geometry Definition.

    No. Type Tag Designation Thk. (*) Corr. Tol. Temp..

    (mm) (mm) (mm) (C) 01 [44] Bottom Plates 44 6.000 0.0 0.0 20.0 02 [01] Shell 1 vir Virola 6.000 0.0 0.0 20.0 03 [01] Shell 2 vir Barrel 6.000 0.0 0.0 20.0 04 [01] Shell 31.07 Barrel 6.000 0.0 0.0 20.0 05 [01] Shell 31.08 Barrel 6.000 0.0 0.0 20.0 06 [01] Shell 31.09 Barrel 6.000 0.0 0.0 20.0 07 [01] Shell 31.10 Barrel 6.000 0.0 0.0 20.0 08 [45] Roof 45 6.000 0.0 0.0 20.0

    (*) minimum input thickness.

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 3 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    List of Materials. Shell Shells / heads : SA516GR60

    SA516GR60 ASME II (Plate, Carbon Steel, 2013) K02100 P-No. : 1 Group No. : 1 Specific gravity: 7.85 Poisson Factor: 0.3 Chemical comp. (%)

    C Mn 0.3 1

    Modulus of Elasticity (ASME II part D table TM)

    C -200 -125 -75 25 100 150 200 250 300 350 400 450 500 550

    MPa103 216 212 209 202 198 195 192 189 185 179 171 162 151 137 Thermal expansion coefficients (ASME II part D table TE)

    C 20 50 75 100 125 150 175 200 225 250 275 300 325 350 400

    mm/mm10-6 11.5 11.8 11.9 12.1 12.3 12.4 12.6 12.7 12.9 13 13.2 13.3 13.4 13.6 13.8

    C 425 450 475 500 550 575 600 625 675 700 725 750 775 800 825

    mm/mm10-6 14 14.1 14.2 14.4 14.6 14.7 14.8 14.9 15.1 15.1 15.2 15.3 15.3 15.4 15.5 Strength

    C -30 375 400 425 450 475 500 525

    MPa 414 414 408 382 352 319 285 253 Yield strength 0.2%

    C -30 40 65 100 125 150 175 200 225 250 275 300 325 350 375

    MPa 221 221 208 201 198 195 192 189 185 182 177 172 167 162 157

    C 400 425 450 475 500 525

    MPa 153 149 144 140 137 133

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 4 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Codes, Guidelines and Standards Implemented.

    Pressure vessel design code: API 650 12th Ed. 2013-03 Earthquake design code: ASCE/SEI 7-10 Wind design code: ASCE/SEI 7-10 Anchor design method: Thompson Standard of flange ratings: ASME B16.5-2009 Standard for pipes: ASME B36.10M-2004/B36.19M-2004 Material standard(s) and update(s): ASME II 2013 SA516GR60 Plate Units: SI g = 9.80665 m/s2 [ Weight (N) = Mass (kg) g ]

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 5 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Design Conditions. Compartment 1 / / Internal pressure : 0 MPa / / Required MAWP : / / Design Temperature : 20 C / / Height of liquid : 16 000 mm / / Operating fluid spec. gravity : 1 / / Corrosion : 0 mm / / External pressure : / / External temperature : / / Test Pressure : / / Test fluid spec. gravity : 1 / / Insulation Thickness : 0 mm / / Weight/density of insulation : 35 kg/m3 / / Construction Category : / / Nominal stress : / /

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 6 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Allowable stresses and safety factors API 650 - 5.6.2

    S Allowable tensile stress. ST Minimum value of tensile strength. SY Minimum value of yield strength at design/room temperature

    Allowable tensile stress S

    Materials Normal Conditions Exceptional and test conditions

    Excluding bolting

    Carbon steel MIN{ (ST 0.4) , (SY 0.67) } MIN{ (ST 0.43) , (SY 0.75) } Austenitic stainless steel MIN{ (ST 0.4) , (SY 0.67) } MIN{ (ST 0.43) , (SY 0.75) }

    Copper MIN{ (ST 0.4) , (SY 0.67) } MIN{ (ST 0.43) , (SY 0.75) } Aluminium MIN{ (ST 0.4) , (SY 0.67) } MIN{ (ST 0.43) , (SY 0.75) } Nickel MIN{ (ST 0.4) , (SY 0.67) } MIN{ (ST 0.43) , (SY 0.75) } Titanium MIN{ (ST 0.4) , (SY 0.67) } MIN{ (ST 0.43) , (SY 0.75) }

    Bolting Carbon steel MIN{ (ST 0.4) , (SY 0.67) } MIN{ (ST 0.43) , (SY 0.75) } Austenitic stainless steel MIN{ (ST 0.4) , (SY 0.67) } MIN{ (ST 0.43) , (SY 0.75) }

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 7 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Hydraulic Test Pressure F.7.6 : pt = 1.25 p = 0 MPa p = Design Pressure pt = test pressure

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 8 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Hydrostatic Pressure

    Type of components

    Operating Test

    Specific Gravity liquid level hydrostatic height Hydrostatic pressure Specific Gravity

    liquid level hydrostatic height Hydrostatic pressure

    (mm) (mm) (MPa) (mm) (mm) (MPa)

    Shell(s)

    01 44 1 0.00 16 000.00 0.1569 1 0.00 16 000.00 0.1569

    02 1 vir 1 3 000.00 16 000.00 0.1569 1 3 000.00 16 000.00 0.1569

    03 2 vir 1 3 000.00 13 000.00 0.1275 1 3 000.00 13 000.00 0.1275

    04 31.07 1 3 000.00 10 000.00 0.0981 1 3 000.00 10 000.00 0.0981

    05 31.08 1 3 000.00 7 000.00 0.0686 1 3 000.00 7 000.00 0.0686

    06 31.09 1 3 000.00 4 000.00 0.0392 1 3 000.00 4 000.00 0.0392

    07 31.10 1 1 000.00 1 000.00 0.0098 1 1 000.00 1 000.00 0.0098

    08 45 1 0.00 0.00 0.0000 1 0.00 0.00 0.0000

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 9 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Tank Design Shell design

    5.6.3 Calculation of Thickness by the 1-Foot Method

    td =( ) CA

    SGHD

    d

    + 3.09.4 tt =

    ( )tS

    HD 3.09.4

    td = Shell thickness tt = hydrostatic test shell thickness H = Liquid Level G = Liquid Specific Gravity Sd = Allowable stress at Temp. St = allowable stress for the hydrostatic test condition CA = Corrosion allowance tmin = 5.6.1.1 Minimum thickness D = Nominal Diameter = 22 m

    Course H (m) G Sd (MPa) St (MPa) CA (mm) td (mm) tt (mm) tmin

    (mm) tuse (mm)

    1 2 3 4 5 6

    16 13 10 7 4 1

    1 1 1 1 1 1

    147 147 147 147 147 147

    165 165 165 165 165 165

    0 0 0 0 0 0

    11.513 9.313 7.113 4.913 2.713 0.513

    10.257 8.297 6.337 4.377 2.417 0.457

    6 6 6 6 6 6

    12 10 8 6 6 6

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 10 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Bottom plate design

    5.4.1 Bottom plate thickness Minimum thickness required excluding CA = 6 mm CA = Corrosion allowance = 0 mm Minimum thickness required including CA = 6 mm Provided Bottom Plate Thickness = 6 mm

    5.5 Annular bottom plate Effective product height = HG 23 m Stress product = (td /as constructed t exclusive of CA) (Sd) = 141.0383 MPa Hydrostatic Test Stress = (tt /as constructed t) (St) = 141.0383 MPa Table 5-1 Annular Bottom Plate Thickness tb = 6 mm Provided Annular Bottom-Plate Thickness = 6 mm

    Required radial width = ( ) 5.0215HG

    tb = 322.5 mm Minimum outside radial width = 50 mm Minimum inside radial width = 600 mm

    Minimum radial width of annular plate = 662 mm Provided radial width of annular plate = 662 mm Provided outside radial width of annular plate = 50 mm Provided inside radial width of annular plate = 600 mm

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 11 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Self-supporting Roof

    tn = thickness = 26 mm = angle of cone elements to the horizontal = 12 D = Nominal Diameter = 22 m rr = roof radius = 0 m CA = Corrosion allowance = 0 mm = Density = 7 850 kg/m3 Insulation : thickness = 0 mm ; Density = 35 kg/m3

    5.2.1 Lr = Minimum Roof Live Load Pe = External Pressure DL = dead load Sb = 0.84S S = Snow load Su = 1.5Sb 5.2.2 T = Greater load combinations e(1) and e(2) with balanced snow load Sb

    ( ) ( ){ }rbeLerbL LSPDPLSDT ;max4.0;4.0;maxmax ++++= U = Greater load combinations e(1) and e(2) with unbalanced snow load Su

    ( ) ( ){ }rueLeruL LSPDPLSDU ;max4.0;4.0;maxmax ++++= Pe (kPa) S (kPa) Lr (kPa) DL (kPa) Sb (kPa) Su (kPa) T (kPa) U (kPa)

    Operation test

    0 0

    0 0

    1 0

    2.0015 2.0015

    0 0

    0 0

    3.0015 2.0015

    3.0015 2.0015

    Top Stiffener (Externally Set) = L5x5x1/2 127 12.7 (Z = 51 931 mm3) ; Location = 16 000 mm ; Material = SA516GR60 Minimum Top Angle Size 5.1.5.9 (e) : L75x75x10 (Z = 13 782 mm3) 5.9.3 : L65x65x6 (Z = 6 444 mm3)

    5.10.5.1 (2:12) tan() (9:12) tmin = Minimum thickness required excluding CA = 5 mm tmax = Maximal required thickness excluding CA = 13 mm Eratio = module of elasticity ratio (Appendix M.5.1) E = modulus of elasticity

    tT = CATDEratio + 2.2sin8.4

    tU = CAUDEratio + 2.2sin5.5

    t = max( tT , tU ; tmin+CA ) Temp. = Temperature Temp. (C) E (MPa) Eratio CA (mm) tT (mm) tU (mm) t (mm)

    Operation test

    20 20

    202 350 202 350

    1 1

    0 0

    25.749 21.027

    22.472 18.351

    25.749 21.027

    5.10.5.2 Fyr = Yield Strength (Roof) Fa = 0.6 min(Fyr ; Fys ; Fya )

    =

    tan8

    2

    ar F

    pDA Fys = Yield Strength (Shell) p = max(T,U) Fya = Yield Strength (Stiffener)

    p (kPa) Fyr (MPa) Fys (MPa) Fya (MPa) Fa (MPa) Ar (mm2) Operation

    test 3.0015 2.0015

    221 221

    221 221

    221 221

    132.6 132.6

    6 442.9 4 296.36

    Frangible Roof 5.10.2.6 (d) The slope of the roof should not exceed 2:12. (false) (0.2126 > 0.1667) The support elements of the roof must not be attached to the roof. (unknown) The roof is attached to the top angle with a single continuous fillet weld on the top side (only) that should not exceed 5 mm. (unknown) The Roof-to-Top angle compression ring is restricted to details a-e in Figure F-2. (true) The roof-to-shell joint cross-sectional area is less than the limit: DLS / (2Fytan). (false) The anchorage should be designed for 3 times the failure pressure calculated by F.6 as specified in 5.12. (unknown)

    The roof joint is not frangible

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 12 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Appendix F

    Figure F-1 Decision tree P = internal pressure = 0 kPa Does tank have internal pressure ? Does internal pressure exceed weight of roof plates ? Does internal pressure exceed the weight of the shell, roof and attached framing ? Does internal pressure exceed 18 kPa ? Basic Design

    An anchorage is not required per Appendix F

    Appendix F Figure F-2 Detail a ta = thickness of angle leg th = thickness of roof plate tb = thickness of bar ts = largest shell thickness tc = thickness of shell plate tf = ta + tc wc = 0.6 (Rc tc)1/2 wh = min{ 0.3(R2 th)1/2 ; 300 mm} Rc = inside radius of tank shell R2 = Rc / (sin ) Le = 250ta / (Fy)1/2 Fy = minimum specified yield strength Aa = stiffener area As = shell plate area Ar = roof area A = Aa + As + Ar

    ta (mm) tb (mm) tc (mm) th (mm) ts (mm) tf (mm) Rc (mm) R2 (mm) Operation

    test Operation

    12.7 12.7 12.7

    0 0 0

    6 6 6

    26 26 26

    0 0 0

    18.7 18.7 18.7

    10 994 10 994 10 994

    52 878.21 52 878.21 52 878.21

    wc (mm) wh (mm) Le (mm) Fy (MPa) Aa (mm2) As (mm2) Ar (mm2) A (mm2) Operation

    test Operation

    154.101 154.101 154.101

    300 300 300

    213.574 213.574 213.574

    221 221 221

    3 064.51 3 064.51 3 064.51

    924.6 924.6 924.6

    7 800 7 800 7 800

    11 789.11 11 789.11 11 789.11

    F.4.1 A = area resisting the compressive force = 0.012 m2 Fy = lowest yield strength of the materials in the roof-to-shell junction = 221 MPa = Angle = 12 D = Diameter = 22 m DLR = nominal weight of roof plate plus any attached structural components = 777 847.6 N

    PF4.1 = 2200127.0

    200tan

    DD

    DAF LRy +

    = 7.76 kPa

    F.4.2 D = Diameter = 22 m DLS = nominal weight of the shell and any framing (but not roof plates) supported by the shell and roof = 718 343.6 N DLR = nominal weight of roof plate plus any attached structural components = 777 847.6 N Mw = overturning moment from horizontal plus vertical wind pressure = 0 Nm

    PF4.2 = Pmax = 32200153.000127.0000849.0

    DM

    DD

    DD wLRLS + = 3.3 kPa

    F.4.3 Pmax > 0.8 Pf

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 13 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    F.5.1 A = total compression area required at the roof-to-shell junction = 11 789.11 mm2 Pi = internal pressure = 0 kPa DLR = nominal weight of roof plate plus any attached structural components = 777 847.6 N D = Diameter = 22 m Fy = lowest yield strength of the materials in the roof-to-shell junction = 221 MPa = Angle = 12

    AF5.1 =

    tan

    00127.0200 22

    y

    LRi

    FD

    DPD = -4 205.92 mm2

    F.6 P = under internal pressure = 0 kPa DLR = nominal weight of roof plate plus any attached structural components = 777 847.6 N D = Diameter = 22 m

    Pf = 2000746.06.1

    DDP LR = -1.2 kPa

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 14 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    Appendix E

    Maximum design product level : H = 16 m Nominal tank diameter : D = 22 m Specific Gravity : G = 1 E.4.5.1 Impulsive Natural Period Equivalent uniform thickness of tank shell : tu = 6 mm Elastic Modulus of tank material : E = 202 350 MPa Liquid Specific Gravity : = 1 000 kg/m3

    =

    EDtHCT

    u

    ii 2000

    1 = 0.292 s Ci = Figure E-1 = 6.073

    E.4.5.2 Convective (Sloshing) Period

    =

    DH

    Ks68.3tanh

    578.0 = 0.581 DKT sc 8.1= = 4.903 s

    E.4.6.1 Spectral Acceleration Coefficients I = 1.25 SUG = II K = 1.5 Q = 0.667 Rwi = 4 TL = 4 s

    SDS = 0.267 SD1 = 0.16 S1 = 0.1 DSvSA 47.0= =

    0.125 Rwc = 2 DSDS SST 1= = 0.6 s

    Impulsive spectral acceleration parameter : Convective spectral acceleration parameter :

    = 007.0;max

    wiDSi R

    ISA = 0.083

    = i

    wcc

    LDc AR

    ITTKSA ;min 21 = 0.025

    Sai = 0.267 Sac = 0.267 E.6.1.1 Effective Weight of Product Total weight of the tank : Wp = 59 645 250 N Total weight of shell : Ws = 718 343.6 N Total weight of fixed tank roof : Wr = 777 847.6 N Weight of the tank bottom : Wf = 175 580.7 N Effective impulsive portion of the liquid weight :

    pi W

    HD

    HD

    W866.0

    866.0tanh

    = = 41 615 750 N

    Effective convective portion of the liquid weight :

    pc WDH

    HDW

    =67.3tanh230.0 = 18 682 420 N

    Uplift load due to product pressure : wint = 0 N/m Roof load acting on the tank shell : Wrs = 777 847.6 N E.6.1 Seismic base shear Design base shear due to impulsive component :

    ( )ifrsii WWWWAV +++= = 3 607 293 N Design base shear due to convective component :

    ccc WAV = = 466 281.4 N

    Total design base shear : 22 ci VVV += = 3 637 304 N

    E.6.1.2.1 Center of Action for Ringwall Overturning Moment

    HX i 375.0= = 6 m H

    DH

    DH

    DH

    X c

    =67.3sinh67.3

    167.3cosh0.1 = 10.78 m

    E.6.1.2.2 Center of Action for Slab Overturning Moment

    H

    HD

    HD

    X is

    += 0.1866.0tanh

    866.0333.10.1375.0 = 9.47 m H

    DH

    DH

    DH

    X cs

    =67.3sinh67.3

    937.167.3cosh0.1 = 11.57 m

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 15 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    E.6.1.4 Dynamic Liquid Hoop Forces

    ( )

    =

    DH

    DYHGDA

    Nc

    c 68.3cosh

    68.3cosh85.1 2

    =HD

    HY

    HYGDHAN ii 866.0tanh5.048.8

    2

    Y = Distance from liquid surface to analysis point Product hydrostatic membrane force :

    ( )3.09.4 = HDGNh

    tNh

    h = ( )t

    NANN hvcis

    222 5.2++=

    Total combined hoop stress in the shell : shT = Allowable Hoop Stress : ( )jydh EFSF 9.0;333.1min=

    Y (m) Ni (N/mm) Nc

    (N/mm) Nh

    (N/mm) h

    (MPa) s

    (MPa) T

    (MPa) Sd

    (MPa) Fy

    (MPa) Ej Fh

    (MPa)

    1 2 3 4 5 6

    16 16 16 16 16 16

    103.33 103.33 103.33 103.33 103.33 103.33

    3.06 3.06 3.06 3.06 3.06 3.06

    1 692.46

    1 692.46

    1 692.46

    1 692.46

    1 692.46

    1 692.46

    141.04 169.25 211.56 282.08 282.08 282.08

    11.14 13.37 16.72 22.29 22.29 22.29

    152.18 182.62 228.27 304.37 304.37 304.37

    147 147 147 147 147 147

    221 221 221 221 221 221

    0.85 0.85 0.85 0.85 0.85 0.85

    169.07 169.07 169.07 169.07 169.07 169.07

    E.6.1.5 Overturning Moment Height from the bottom of the tank shell to the tank's center of gravity : Xs = 0 m

    Height from the bottom of the tank shell to the roof's center of gravity : Xr = 16.78 m

    Ringwall moment :

    ( )[ ] ( )[ ]22 cccrrssiiirw XWAXWXWXWAM +++= = 22.46535106 Nm

    Slab moment :

    ( )[ ] ( )[ ]22 csccrrssisiis XWAXWXWXWAM +++= = 34.33826106 Nm

    E.6.2.1.1.2 Required minimum width of thickened bottom annular ring measured from the inside of the shell

    =

    e

    ya HG

    FtDL 01723.0;45.0max;035.0min = 0.45 m

    ( )ve AGG 4.01= = 0.95 Ls = 0.45 m ta = 6 mm Fy = 221 MPa

    E.6.2.1.1 Uplift resistance force in annular region

    sea LHGw 5742= = 34 424.99 N/m wrs = Wrs /D E.6.2.1.1.1 Anchorage Ratio

    Shell and roof weight :

    +

    = rss

    t wDWw = 21 647.84 N/m ( )[ ]int2 4.04.01 wwAwD

    MJavt

    rw

    += = 0.844

    An anchorage is not required per Appendix E E.6.2.1.2 Mechanically-Anchored Uplift load on anchors :

    ( )

    = vtrw

    AB AwDMw 4.01273.1 2 = 38 525.03 N/m

    Bolt loads :

    =

    AABAB n

    DwP = 95 095 N Number of bolts : na = 28

    AutoPIPE Vessel (Microprotol) procal V33.2.0.6 16 prodia2 V33.2.0.6 Bentley Systems, Inc.

  • DSD . .

    Design Calculations

    2014-03-21 Revision :

    C:\Users\...\Tank\New1.emvd (2014-03-20)

    E.6.2.2 Maximum Longitudinal Shell-Membrane Compression Stress at the bottom of the shell

    Maximum longitudinal shell compression stress :

    ( )s

    rwvtc tD

    MAw1000

    1273.14.01 2

    ++= = 6.818 MPa

    Allowable longitudinal shell compression stress :

    ( )[ ]

    +=